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1. Introduction

The method of quasilinearization of Bellman and Kalaba [2] has been extended, refined,
and generalized when the forcing function is the sum of a convex and concave function
using coupled lower and upper solutions. This method is now known as the method of
generalized quasilinearization. It has all the advantages of the quasilinearization method
such that the iterates are solutions of linear systems and the sequences simultaneously
converge to the unique solution of the nonlinear problem. See [1–4, 6–8] for details.

In this paper, we extend the method of generalized quasilinearization to system of non-
linear impulsive differential equations with periodic boundary conditions. For this pur-
pose, we develop a linear comparison theorem for system of impulsive differential equa-
tions with periodic boundary conditions. We develop two iterates which are solutions of
linear impulsive system with periodic boundary conditions which converge monotoni-
cally and quadratically to the unique solution of the nonlinear problem. Results related
to different types of coupled lower and upper solutions are developed.We note that the
results of [1] are a special case of our results where the forcing function is made to be
convex and in addition they obtain semiquadratic convergence only. The results of [3]
can be obtained as the scalar case of our result.

2. Preliminary notes and definitions

Let the points τk ∈ (0,T) be fixed such that τk+1 > τk, k = 1,2, . . . , p, τ0 = 0, τp+1 = T .
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2 Method impulsive systems with PB conditions

Consider the system of nonlinear impulsive differential equations (PBVP)

x′ = f
(
t,x(t)

)
+ g
(
t,x(t)

)
for t ∈ [0,T], t �= τk,

x
(
τk + 0

)= Ik
(
x
(
τk
))

+Gk
(
x
(
τk
))

,
(2.1)

with periodic boundary conditions

x(0)= x(T), (2.2)

where x ∈Rn, f ,g : [0,T]×Rn→Rn, Ik,Gk :Rn→Rn (k = 1,2, . . . , p).
We consider the set PC(X ,Y) of all functions u : X → Y , (X ,Y ⊂Rn) which are piece-

wise continuous in X with points of discontinuity of first kind at the points τk ∈ X , that
is, there exist the limits limt↓τk u(t)= u(τk + 0) <∞ and limt↑τk u(t)= u(τk − 0)= u(τk).

We consider the set PC1(X ,Y) of all functions u ∈ PC(X ,Y) that are continuously
differentiable for t ∈ X , t �= τk.

Let the functions α,β ∈ PC([0,T],Rn) be such that α(t)≤ β(t).
Consider the sets

S(α,β)= {u∈ PC
(
[0,T],Rn

)
: α(t)≤ u(t)≤ β(t) for t ∈ [0,T]

}
,

Ω(α,β)= {(t,x)∈ [0,T]×Rn : α(t)≤ x ≤ β(t)
}

,

Dk(α,β)= {x ∈Rn : α
(
τk
)≤ x ≤ β

(
τk
)}

, k = 1,2, . . . , p.

(2.3)

Definition 2.1. The function α0(t) ∈ PC1([0,T],Rn) is a lower solution of PBVP (2.1)-
(2.2) if

α′0(t)≤ f
(
t,α0(t)

)
+ g
(
t,α0(t)

)
for t ∈ [0,T], t �= τk,

α0
(
τk + 0

)≤ Ik
(
α0
(
τk
))

+Gk
(
α0
(
τk
))

,

α0(0)≤ α0(T).

(2.4)

If the inequalities are reversed, then α0(t) is called an upper solution. This is referred
to as natural upper and lower solutions.

Definition 2.2. The functions α0(t),β0(t)∈ PC1([0,T],Rn) are coupled lower and upper
solutions of PBVP (2.1)-(2.2) of type I if

α′0(t)≤ f
(
t,α0(t)

)
+ g
(
t,β0(t)

)
,

β′0(t)≥ f
(
t,β0(t)

)
+ g
(
t,α0(t)

)
for t ∈ [0,T], t �= τk,

α0
(
τk + 0

)≤ Ik
(
α0
(
τk
))

+Gk
(
β0
(
τk
))

,

β0
(
τk + 0

)≥ Ik
(
β0
(
τk
))

+Gk
(
α0
(
τk
))

,

α0(0)≤ α0(T), β0(0)≥ β0(T).

(2.5)
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Definition 2.3. The functions α0(t),β0(t)∈ PC1([0,T],Rn) are coupled lower and upper
solutions of PBVP (2.1)-(2.2) of type II if

α′0(t)≤ f
(
t,β0(t)

)
+ g
(
t,α0(t)

)
,

β′0(t)≥ f
(
t,α0(t)

)
+ g
(
t,β0(t)

)
for t ∈ [0,T], t �= τk,

α0
(
τk + 0

)≤ Ik
(
β0
(
τk
))

+Gk
(
α0
(
τk
))

,

β0
(
τk + 0

)≥ Ik
(
α0
(
τk
))

+Gk
(
β0
(
τk
))

,

α0(0)≤ α0(T), β0(0)≥ β0(T).

(2.6)

One can define other kinds of coupled lower and upper solutions of (2.1)-(2.2) on the
same lines.

We will prove some preliminary results for linear systems of impulsive differential
equations.

Let A= {ai j}Ni, j=1 be a matrix, N a natural number. We will say that A > 0 if ai j > 0 for
i, j = 1,2, . . . ,N .

Definition 2.4. The matrix B = {bi j}Ni, j=1 belongs to the class Ψ if
(P1) B ≥ 0;
(P2) for i : 1≤ i≤N :

∑N
j=1 bi j ≤ 1.

Definition 2.5. The matrix A(t)= {ai j(t)}Ni, j=1 belongs to the class Ξ if
(P1) ai j(t)∈ C([0,T],R), ai j(t)≥ 0 for j �= i, i, j = 1,2, . . . ,N , t ∈ [0,T];
(P2)

∑
j �=i ai j(t) + aii(t) < 0, t ∈ [0,T], i= 1,2, . . . ,N .

We will define the following operation between vectors: let x = (x1,x2, . . . ,xN ), y =
(y1, y2, . . . , yN ); then x@y = (x1y1,x2y2, . . . ,xN yN ).

We will use the following notation: e = (1,1, . . . ,1). We will note that the vector e is the
unit vector according to the operation @.

For our main results, we need the following lemma for linear systems of impulsive
differential inequalities.

Lemma 2.6. Assume that
(1) the matrix A(t)= {ai j(t)}Ni, j=1 belongs to the class Ξ;

(2) the matrices Bk = {b(k)
i j }Ni, j=1, k = 1, . . . , p, belong to the class Ψ;

(3) the function m∈ PC1([0,T],RN ) satisfies the inequalities

m′(t)≤A(t)m(t), t ∈ [0,T], t �= τk, (2.7)

m
(
τk + 0

)≤ Bkm
(
τk
)
, (2.8)

m(0)≤m(T). (2.9)

Then m(t)≤ 0 for t ∈ [0,T].

Proof. Let τ0 = 0, τp+1 = T . Consider the numbers

εk+1 = max
1≤i≤N

sup
t∈(τk+0,τk+1]

mi(t), k = 0,1,2, . . . , p. (2.10)
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Case 1. Let εk > 0 for k = 1,2, . . . , p+ 1.
Consider the case when there exists a number k : 0≤ k ≤ p such that mjk (ξk)= εk+1 for

some natural number jk and a point ξk ∈ (τk + 0,τk+1]. Thenm′
jk (ξk)= limh→0+((mjk (ξk −

h)−mjk (ξk))/−h)≥ 0 and from the inequality (2.7) we obtain

0≤m′
jk

(
ξk
)≤

∑

l �= jk

a jkl
(
ξk
)
ml
(
ξk
)

+ ajk jk

(
ξk
)
mjk

(
ξk
)≤

(
∑

l �= jk

a jkl
(
ξk
)

+ ajk jk

(
ξk
)
)

εk+1 < 0.

(2.11)

The obtained contradiction proves that this case is not possible.
Consider the case when for every k : 0 ≤ k ≤ p there exists a natural number jk such

that

lim
t→τk+0

mjk (t)= εk+1 (2.12)

and mi(t) < εk+1 for t ∈ (τk,τk+1], i= 1,2, . . . ,N . Then from the jump condition (2.8) we

have εk+1 =mjk (τk + 0) ≤∑N
i=1 b

(k)
jk i mi(τk) < (

∑N
i=1 b

(k)
jk i )εk ≤ εk. By induction, we obtain

that mj0 (T) < εp+1 ≤ εp ≤ ··· ≤ ε1 =mj0 (0). The last inequality contradicts the condi-
tion (2.9). Therefore, this case is impossible.
Case 2. There exists a natural number l : 1 ≤ l ≤ p + 1 such that εl ≤ 0. Let k =max{l :
εl ≤ 0}.

If k = p+ 1, then m(T)≤ 0.
If k < p + 1, then εk+1 > 0. According to the jump condition (2.8), we obtain m(τk +

0) ≤ Bkm(τk) ≤ 0. Therefore, there exist a natural number jk and a point ξk ∈ (τk,τk+1]
such that mjk (ξk)= εk+1 and m′

jk (ξk)≥ 0. From the inequality (2.7), we have

0≤m′
jk

(
ξk
)≤

∑

l �= jk

a jk l
(
ξk
)
ml
(
ξk
)

+ ajk jk

(
ξk
)
mj
(
ξk
)≤

(
∑

l �= jk

a jk l
(
ξk
)

+ ajk jk

(
ξk
)
)

εk+1 < 0.

(2.13)

The obtained contradiction proves that k = p + 1. Therefore, m(T) ≤ 0 and from the
boundary condition (2.9) it follows that m(0)≤ 0. As in the proof above, we obtain that
εl ≤ 0 for l = 1,2, . . . , p. Therefore, m(t)≤ 0 on [0,T]. �

As an application of Lemma 2.6, the following corollary is implied. This will be useful
in proving the existence and uniqueness of the linear nonhomogeneous impulsive system
with periodic boundary condition.

Corollary 2.7. Let conditions (1) and (2) of Lemma 2.6 be satisfied.
Then the PBVP for the homogeneous linear system

m′(t)= A(t)m(t), t ∈ [0,T], t �= τk, (2.14)

m
(
τk + 0

)= Bkm
(
τk
)
, (2.15)

m(0)=m(T) (2.16)

has only the trivial solution.
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We note that the solution of the linear system of impulsive equations (2.14), (2.15)
with the initial condition m(0)=m0 is m(t)=W(t,0)m0, where

W(t,s)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Uk(t,s) for t,s∈ (tk−1, tk
]
,

Uk+1
(
t, tk

)
BkUk

(
tk,s

)
for tk−1 < s≤ tk < t ≤ tk+1,

Uk+1
(
t, tk

) k∏

j=i+1

BjUj
(
t j , t j−1

)
BiUi

(
ti,s
)

for ti−1 < s≤ ti < tk < t ≤ tk+1,

(2.17)

and Uk(t,s) is the fundamental matrix of the linear system m′ = A(t)m(t), t ∈ (τk,τk+1]
(for more details, see [5, 9]).

Lemma 2.8. Let A(t)= {ai j(t)}Ni, j=1 ∈ Ξ and Bk = {b(k)
i j }Ni, j=1 ∈Ψ, k = 1, . . . , p.

Then det(E−W(t,0)) �= 0, where E is the unit N ×N matrix.

Proof. If m(0) = m(T), then m0 =W(T ,0)m0 and (I −W(T ,0))m0 = 0. According to
Corollary 2.7, the linear system (2.14)–(2.16) has only the trivial solution, so m0 = 0 and
therefore det(E−W(t,0)) �= 0. �

Consider the periodic boundary value problem for the nonhomogeneous linear sys-
tems of impulsive differential equations

m′(t)= A(t)m(t) +h(t), t ∈ [0,T], t �= τk, (2.18)

m
(
τk + 0

)= Bkm
(
τk
)

+ σk, (2.19)

m(0)=m(T). (2.20)

Lemma 2.9 (see [5, Theorem 2.5.1]). Assume that the matrix (E−W(t,0)) is nonsingular
and the function h∈ PC1([0,T],RN ).

Then the PBVP (2.18)–(2.20) has a unique solution m(t) given by the formula

m(t)=W(t,0)m0 +
∫ t

0
W(t,s)h(s)ds+

∑

0<tk<t

W
(
t, tk + 0

)
σk, (2.21)

where

m0 =
(
E−W(T ,0)

)−1
(∫ T

0
W(T ,s)h(s)ds+

p∑

k=1

W
(
T , tk + 0

)
σk

)

, (2.22)

and W(t,s) is defined by (2.17).

We will need the following comparison result.

Lemma 2.10. Assume that
(1) the matrix A(t)= {ai j(t)}Ni, j=1 belongs to the class Ξ;
(2) the matrices Bk, k = 1, . . . , p, belong to the class Ψ and σk are constants;
(3) the function h∈ PC([0,T],RN );
(4) the functions v(t) and w(t) are lower and upper solutions of the periodic boundary

value problem for the linear nonhomogeneous system (2.18)–(2.20).
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Then

v(t)≤W(t,0)m0 +
∫ t

0
W(t,s)h(s)ds+

∑

0<tk<t

W
(
t, tk + 0

)
σk ≤w(t) for t ∈ [0,T],

(2.23)

where m0 is given by (2.22), and W(t,s) is defined by (2.17).

Proof. Consider the functions p(t)= v(t)− x(t) and q(t)= x(t)−w(t), where x(t) is the
solution of (2.17)–(2.19). Both functions satisfy the linear system of inequalities (2.7)–
(2.9) and according to Lemma 2.6 the functions are nonpositive on [0,T], which proves
Lemma 2.10. �

In our main result, we will use the following integral mean-value theorem.

Lemma 2.11. Let the function F ∈ C1[D,RN ], where D ⊂RN is a convex set. Then

F(x)−F(y)=
(∫ 1

0
Fx
(
λx+ (1− λ)y

)
dλ
)

(x− y). (2.24)

3. Main results

In this section, we develop the method of quasilinearization for the periodic boundary
value problem for the system of nonlinear impulsive differential equations (2.1)-(2.2).
We obtain two monotone sequences which are solutions of appropriately chosen linear
impulsive differential systems with periodic boundary conditions. These monotone se-
quences converge quadratically to the unique solution of (2.1)-(2.2).

Theorem 3.1. Let the following conditions hold.
(1) The functions α0(t),β0(t)∈ PC1([0,T],Rn), α0(t)≤ β0(t) for t ∈ [0,T], are coupled

lower and upper solutions of the PBVP (2.1)-(2.2) of type I.
(2) The functions fx, gx exist and are continuous on Ω(α0,β0), fx(t,x) is nondecreasing

in x, gx(t,x) is nonincreasing in x for t ∈ [0,T], gx(t,α0(t))≤ 0, and for x ≥ y,

fx(t,x)− fx(t, y)≤ S1‖x− y‖, gx(t, y)− gx(t,x)≤ S2‖x− y‖, (3.1)

where S1 = {S(1)
i j }ni, j=1 > 0,S2 = {S(2)

i j }ni, j=1 > 0 are constant matrices, ‖ · ‖ is a norm in Rn.
(3) The functions Ik,Gk ∈ C1(Dk(α0,β0),Rn), I′k(x) are nondecreasing, G′k(x) are nonin-

creasing, k = 1,2, . . . , p, and I′k(α0)≥ 0, G′k(α0)≤ 0, and for x ≥ y,

I′k(x)− I′k(y)≤ Lk‖x− y‖, G′k(y)−G′k(x)≤Mk‖x− y‖, (3.2)

where Lk > 0, Mk > 0, k = 1,2, . . . , p, are constant matrices.
(4) The function fx(t,α0(t))x is quasimonotone nondecreasing in x and the function

( fx(t,β0)− gx(t,β0))e@x is strictly decreasing in x on [0,T].
(5) The inequalities (I′k(β0(τk))−G′k(β0(τk)))e ≤ e, k = 1,2, . . . , p, hold.
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Then there exist two sequences of functions {αm(t)}∞0 and {βm(t)}∞0 such that
(a) the sequences are increasing and decreasing correspondingly;
(b) both sequences uniformly converge on the intervals (τk,τk+1] to the unique solution of

the PBVP (2.1)-(2.2) in S(α0,β0), k = 0,1,2, . . . , p;
(c) the convergence is quadratic.

Proof. Consider the periodic boundary value problem for the system of impulsive linear
differential equations

x′(t)= f
(
t,α0(t)

)
+ g
(
t,β0(t)

)
+ fx

(
t,α0

)(
x−α0

)

+ gx
(
t,α0

)(
y−β0

)
for t ∈ [0,T], t �= τk,

y′(t)= f
(
t,β0(t)

)
+ g
(
t,α0(t)

)
+ fx

(
t,α0

)(
y−β0

)
+ gx

(
t,α0

)(
x−α0

)
,

x
(
τk + 0

)= Ik
(
α0
(
τk
))

+Gk
(
β0
(
τk
))

+ I′k
(
α0
(
τk
))[

x
(
τk
)−α0

(
τk
)]

+G′k
(
α0
(
τk
))[

y
(
τk
)−β0

(
τk
)]

,

y
(
τk + 0

)= Ik
(
β0
(
τk
))

+Gk
(
α0
(
τk
))

+ I′k
(
α0
(
τk
))[

y
(
τk
)−β0

(
τk
)]

+G′k
(
α0
(
τk
))[

x
(
τk
)−α0

(
τk
)]

,

x(0)= x(T), y(0)= y(T).

(3.3)

The PBVP (3.3) can be written in the form

p′ = A(0)(t)p(t) +h(0)(t) for t ∈ [0,T], t �= τk, (3.4)

p(τk + 0)= B(0)
k p

(
τk
)

+ σ (0)
k , (3.5)

p(0)= p(T), (3.6)

where

p =
(
x

y

)

, A(0)(t)=
(
fx
(
t,α0

)
gx
(
t,α0

)

gx
(
t,α0

)
fx
(
t,α0

)

)

,

B(0)
k =

(
I′k
(
α0
(
τk
))

G′k
(
α0
(
τk
))

G′k
(
α0
(
τk
))

I′k
(
α0
(
τk
))

)

,

h(0)(t)=
(
f
(
t,α0(t)

)
+ g
(
t,β0(t)

)− fx
(
t,α0

)
α0− gx

(
t,α0

)
β0

f
(
t,β0(t)

)
+ g
(
t,α0(t)

)− fx
(
t,α0

)
β0− gx

(
t,α0

)
α0

)

,

σ (0)
k =

(
Ik
(
α0
(
τk
))

+Gk
(
β0
(
τk
))− I′k

(
α0
(
τk
))
α0
(
τk
)−G′k

(
α0
(
τk
))
β0
(
τk
)

Ik
(
β0
(
τk
))

+Gk
(
α0
(
τk
))− I′k

(
α0
(
τk
))
β0
(
τk
)−G′k

(
α0
(
τk
))
α0
(
τk
)

)

.

(3.7)

Consider the matrices

C0(t)=
(

fx
(
t,α0

) −gx
(
t,α0

)

−gx
(
t,α0

)
fx
(
t,α0

)

)

, D0
k =

(
I′k
(
α0
(
τk
)) −G′k

(
α0
(
τk
))

−G′k
(
α0
(
τk
))

I′k
(
α0
(
τk
))

)

. (3.8)
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From conditions (2), (3), (4), and (5) of Theorem 3.1, it follows that C0(t)∈Ξ and
D0

k∈Ψ. According to Lemma 2.8, det(E−C0(t)) �= 0. Therefore, det(E−A0(t))= det(E−
C0(t)) �= 0. Therefore, according to Lemma 2.9, the boundary value problem (3.4) has a
unique solution, which can be written in the form (2.21)-(2.22). We denote the solution
of (3.4) by α1(t), β1(t). �

We will prove that α0(t) ≤ α1(t) and β0(t) ≥ β1(t) on [0,T]. Set p(t) = α0(t)− α1(t),
q(t)= β1(t)−β0(t). Then from the PBVP (3.3) we have

p′ ≤ fx
(
t,α0

)
p− gx

(
t,α0

)
q,

q′ ≤ −gx
(
t,α0

)
p+ fx

(
t,α0

)
q for t ∈ [0,T], t �= τk,

p
(
τk + 0

)≤ I′k
(
α0
(
τk
))
p
(
τk
)−G′k

(
α0
(
τk
))
q
(
τk
)
,

q
(
τk + 0

)≤ I′k
(
α0
(
τk
))
q
(
τk
)−G′k

(
α0
(
τk
))
p
(
τk
)
,

p(0)≤ p(T), q(0)≤ q(T).

(3.9)

The PBVP (3.9) can be written in the form

m′(t)≤ C0(t)m(t) for t ∈ [0,T], t �= τk,

m
(
τk + 0

)≤D0
km
(
τk
)
,

m(0)≤m(T),

(3.10)

where m= (p,q)T and the matrices C0(t) and D0
k are given by (3.8).

From conditions (2), (3), (4), and (5) of Theorem 3.1, it follows that conditions (1)
and (2) of Lemma 2.6 are satisfied for N = 2n and therefore m(t) ≤ 0 on [0,T], that is,
α0(t)≤ α1(t) and β1(t)≤ β0(t) on [0,T].

We will prove that α1(t)≤ β1(t). Set p(t)= α1(t)− β1(t). Then, from the PBVP (3.3),
conditions (2) and (3), and Lemma 2.11, we have

p′ ≤ [ fx
(
t,α0

)− gx
(
t,α0

)]
p for t ∈ [0,T], t �= τk,

p
(
τk + 0

)≤ [I′k
(
α0
(
τk
))−G′k

(
α0
(
τk
))

]p
(
τk
)
,

p(0)≤ p(T).

(3.11)

According to Lemma 2.6, for N=n, A(t)= fx(t,α0)−gx(t,α0), Bk=I′k(α0(τk))−G′k(α0(τk)),
we have p(t)≤ 0 on [0,T].

Assume that for some m the functions αm(t) and βm(t) are constructed such that
αm−1(t)≤ αm(t)≤ βm(t)≤ βm−1(t). Consider the boundary value problem for the system
of linear impulsive differential equations

x′(t)= f
(
t,αm(t)

)
+ g
(
t,βm(t)

)
+ fx

(
t,αm

)(
x−αm

)

+ gx
(
t,αm

)(
y−βm

)
for t ∈ [0,T], t �= τk,

y′(t)= f
(
t,βm(t)

)
+ g
(
t,αm(t)

)
+ fx

(
t,αm

)(
y−βm

)
+ gx

(
t,αm

)(
x−αm

)
,
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x
(
τk + 0

)= Ik
(
αm
(
τk
))

+Gk
(
βm
(
τk
))

+ I′k
(
αm
(
τk
))[

x
(
τk
)−αm

(
τk
)]

+G′k
(
αm
(
τk
))[

y
(
τk
)−βm

(
τk
)]

,

y
(
τk + 0

)= Ik
(
βm
(
τk
))

+Gk
(
αm
(
τk
))

+ I′k
(
αm
(
τk
))[

y
(
τk
)−βm

(
τk
)]

+G′k
(
αm
(
τk
))[

x
(
τk
)−αm

(
τk
)]

,

x(0)= x(T), y(0)= y(T), (3.12)

which can be written in the form

p′m+1 = A(m)(t)pm+1(t) +h(m)(t) for t ∈ [0,T], t �= τk, (3.13)

pm+1
(
τk + 0

)= B(m)
k pm+1

(
τk
)

+ σ (m)
k , (3.14)

pm+1(0)= pm+1(T), (3.15)

where

pm+1 =
(
αm+1

βm+1

)

, A(m)(t)=
⎛

⎝
fx
(
t,αm

)
gx
(
t,αm

)

gx
(
t,αm

)
fx
(
t,αm

)

⎞

⎠ ,

B(m)
k =

⎛

⎝
I′k
(
αm
(
τk
))

G′k
(
αm
(
τk
))

G′k
(
αm
(
τk
))

I′k
(
αm
(
τk
))

⎞

⎠ ,

h(m)(t)=
⎛

⎝
f
(
t,αm(t)

)
+ g
(
t,βm(t)

)− fx
(
t,αm

)
αm− gx

(
t,αm

)
βm

f
(
t,βm(t)

)
+ g
(
t,αm(t)

)− fx
(
t,αm

)
βm− gx

(
t,αm

)
αm

⎞

⎠ ,

σ (m)
k =

⎛

⎝
Ik
(
αm
(
τk
))

+Gk
(
βm
(
τk
))− I′k

(
αm
(
τk
))
αm
(
τk
)−G′k

(
αm
(
τk
))
βm
(
τk
)

Ik
(
βm
(
τk
))

+Gk
(
αm
(
τk
))− I′k

(
αm
(
τk
))
βm
(
τk
)−G′k

(
αm
(
τk
))
αm
(
τk
)

⎞

⎠ .

(3.16)

Consider the matrices

C(m)(t)=
⎛

⎝
fx
(
t,αm

) −gx
(
t,αm

)

−gx
(
t,αm

)
fx
(
t,αm

)

⎞

⎠ , D(m)
k =

⎛

⎝
I′k
(
αm
(
τk
)) −G′k

(
αm
(
τk
))

−G′k
(
αm
(
τk
))

I′k
(
αm
(
τk
))

⎞

⎠ .

(3.17)

From the inequality αm−1(t) ≤ αm(t), the monotonicity of the derivatives fx, gx, and

conditions (4) and (5) of Theorem 3.1, it follows that C(m)(t) ∈ Ξ and D(m)
k ∈ Ψ, k =

1,2, . . . , p. Therefore, according to Lemma 2.8, det(E−C(m)(t)) �= 0 and therefore det(E−
A(m)(t)) = det(E−C(m)(t)) �= 0. Applying Lemma 2.9, we obtain that the PBVP (3.13)–
(3.15) has a unique solution αm+1(t),βm+1(t).

We can prove in the same way as for the function α1(t) and β1(t) that αm(t)≤ αm+1(t)≤
βm+1(t)≤ βm(t).

We will prove the convergence of the sequences {αm(t)}∞0 and {βm(t)}∞0 .
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Consider the interval [0,τ1]. From (3.13)–(3.15), the functions αm, βm satisfy on [0,τ1]
the integral equation

pm+1(t)= pm+1(0) +
∫ t

0

(
A(m)(s)pm+1(s) +h(m)(s)

)
ds. (3.18)

The sequences {αm(t)} and {βm(t)} are uniformly bounded and equicontinuous on the
interval [0,τ1] and therefore they are uniformly convergent on this interval.

Denote

lim
m→∞αm(t)= u(1)(t), lim

m→∞βm(t)= v(1)(t), t ∈ [0,τ1
]
. (3.19)

From the uniform convergence and the definition of the functions αm(t) and βm(t), the
validity of the inequalities α0(t)≤ u(1)(t)≤ v(1)(t)≤ β0(t), t ∈ [0,τ1], follows.

Taking a limit into the integral equation (3.18) for t ∈ [0,τ1], we obtain

w(1)(t)=w(1)(0) +
∫ t

0

(
A1(s)w(1)(s) +h1(s)

)
ds, (3.20)

where

w(1) =
(
u(1)

v(1)

)

, A1(t)= lim
m→∞A

(m)(t)=
(
fx
(
t,u(1)

)
gx
(
t,u(1)

)

gx
(
t,u(1)

)
fx
(
t,u(1)

)

)

,

h1(t)= lim
m→∞h

(m)(t)=
(
f
(
t,u(1)(t)) + g

(
t,v(1)(t)

)− fx
(
t,u(1)

)
u(1)− gx

(
t,u(1)

)
v(1)

f
(
t,v(1)(t)

)
+ g
(
t,u(1)(t)

)− fx
(
t,u(1)

)
v(1)− gx

(
t,u(1)

)
u(1)

)

.

(3.21)

From the definition of the matrix A1(t) and the function h1(t), we have

A1(t)w(1)(t) +h1(t)=
(
f
(
t,u(1)(t)

)
+ g
(
t,v(1)(t)

)

f
(
t,v(1)(t)

)
+ g
(
t,u(1)(t)

)

)

. (3.22)

From (3.22) it follows that (w(1))′ =A1(t)w(1) +h1(t) on [0,τ1].
Consider the interval [τ1 + 0,τ2]. From (3.13), it follows that the functions αm, βm

satisfy on [τ1 + 0,τ2] the integral equation

pm+1(t)= pm+1
(
τ1 + 0

)
+
∫ t

τ1

(
A(m)(s)pm+1(s) +h(m)(s)

)
ds. (3.23)

On this interval, the sequences {αm(t)}∞0 and {βm(t)}∞0 are uniformly bounded and equi-
continuous and therefore they are uniformly convergent. Denote

lim
m→∞αm(t)= u(2)(t), lim

m→∞βm(t)= v(2)(t), t ∈ [τ1 + 0,τ2
]
. (3.24)

From the uniform convergence and the definition of the functions αm(t) and βm(t),
the validity of the inequalities α0(t)≤ u(2)(t)≤ v(2)(t)≤ β0(t) on [τ1 + 0,τ2] follows.
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Taking limits into (3.14) and (3.23), we obtain that w(2)(τ1)= B1w(1)(τ1) and

w(2)(t)=w(2)(τ1 + 0
)

+
∫ t

τ1

(
A2(s)w(2)(s) +h2(s)

)
ds

= B1w
(1)(τ1

)
+ σ1 +

∫ t

τ1

(
A2(s)w(2)(s) +h2(s)

)
ds,

(3.25)

where

w(2) =
(
u(2)

v(2)

)

, A2(t)= lim
m→∞A

(m)(t)=
(
fx
(
t,u(2)

)
gx
(
t,u(2)

)

gx
(
t,u(2)

)
fx
(
t,u(2)

)

)

,

B1 = lim
m→∞B

(m)
1 =

(
I′1
(
u(1)

(
τ1)
)

G′1
(
u(1)

(
τ1
))

G′1
(
u(1)

(
τ1
))

I′1
(
u(1)

(
τ1
))

)

,

σ1 =
(
I1
(
u(1)

(
τ1
))

+G1
(
v(1)

(
τ1
))− I′1

(
u(1)

(
τ1
))
u(1)

(
τ1
)−G′1

(
u(1)

(
τ1
))
v(1)

(
τ1
)

I1
(
v(1)

(
τ1
))

+G1
(
u(1)

(
τ1
))− I′1

(
u(1)

(
τ1
))
v(1)

(
τ1
)−G′1

(
u(1)

(
τ1
))
u(1)

(
τ1
)

)

,

h1(t)=
(
f
(
t,u(2)(t)

)
+ g
(
t,v(2)(t)

)− fx
(
t,u(2)

)
u(2)− gx

(
t,u(2)

)
v(2)

f
(
t,v(2)(t)

)
+ g
(
t,u(2)(t)

)− fx
(
t,u(2)

)
v(2)− gx

(
t,u(2)

)
u(2)

)

.

(3.26)

By induction, we prove that on each interval [τk + 0,τk+1] the sequences {αm(t)}∞0 and
{βm(t)}∞0 are uniformly convergent, where k = 0,1,2, . . . , p. Their limits u(k+1)(t) and
v(k+1)(t) satisfy the relations u(k+1),v(k+1) ∈ S(α0,β0), u(k+1) ≤ v(k+1) on [τk,τk+1],
w(k+1)(τk)= Bkw(k)(τk) + σk, and they are the solution of the linear integral equations

w(k+1)(t)=w(k+1)(τk
)

+
∫ t

τk

(
Ak+1(s)w(k+1)(s) +hk+1(s)

)
ds

= Bkw
(k)(τk

)
+ σk +

∫ t

τk

(
Ak+1(s)w(k+1)(s) +hk+1(s)

)
ds,

(3.27)

where

w(k+1) =
(
u(k+1)

v(k+1)

)

, Ak+1(t)= lim
m→∞A

(m)(t)=
(
fx
(
t,u(k+1)

)
gx
(
t,u(k+1)

)

gx
(
t,u(k+1)

)
fx
(
t,u(k+1)

)

)

,

Bk = lim
m→∞B

(m)
k =

(
I′k
(
u(k)

(
τk)
)

G′k
(
u(k)

(
τk
))

G′k
(
u(k)

(
τk
))

I′k
(
u(k)

(
τk
))

)

,

σk =
(
Ik
(
u(k)

(
τk
))

+Gk
(
v(k)

(
τk
))− I′k

(
u(k)

(
τk
))
u(k)

(
τk
)−G′k

(
u(k)

(
τk
))
v(k)

(
τk
)

Ik
(
v(k)

(
τk
))

+Gk
(
u(k)

(
τk
))− I′k

(
u(k)

(
τk
))
v(k)

(
τk
)−G′k

(
u(k)

(
τk
))
u(k)

(
τk
)

)

,

hk(t)=
(
f
(
t,u(k+1)(t)

)
+ g
(
t,v(k+1)(t)

)− fx
(
t,u(k+1)

)
u(k+1)− gx

(
t,u(k+1)

)
v(k+1)

f
(
t,v(k+1)(t)

)
+ g
(
t,u(k+1)(t)

)− fx
(
t,u(k+1)

)
v(k+1)− gx

(
t,u(k+1)

)
u(k+1)

)

.

(3.28)
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From the equalities (3.28), we obtain that

Ak+1(t)w(k+1)(t) +hk+1(t)=
⎛

⎝
f
(
t,u(k+1)(t)

)
+ g
(
t,v(k+1)(t)

)

f
(
t,v(k+1)(t)

)
+ g
(
t,u(k+1)(t)

)

⎞

⎠ ,

Bkw
(k)(τk

)
+ σk =

⎛

⎝
Ik
(
u(k)

(
τk)
)

+Gk
(
v(k)

(
τk
))

Gk
(
u(k)

(
τk
))

+ Ik
(
v(k)

(
τk
))

⎞

⎠ .

(3.29)

Define the piecewise continuous functions u,v ∈ PC([0,T],Rn) by the equalities u(t) =
u(k+1)(t) and v(t)= v(k+1)(t) for t ∈ (τk,τk+1], k = 0,1,2, . . . , p. From the properties of the
functions u(k+1)(t) and v(k+1)(t), it follows that u,v ∈ S(α0,β0) and u(t)≤ v(t) on [0,T].
By considering the function w = (u,v), it follows

w
(
τk + 0

)= lim
t↓τk

w(k+1)(t)=w(k+1)(τk
)= Bkw

k
(
τk
)

+ σk = Bkw
(
τk
)

+ σk. (3.30)

From the integral equations (3.27), it follows that the function w(t) satisfies the integral
equation

w(t)=w
(
τk + 0

)
+
∫ t

τk

(
A(s)w(s) +h(s)

)
ds, t ∈ [τk + 0,τk+1

]
. (3.31)

Taking the limit into the equality (3.15), we obtain that w(1)(0)=w(p+1)(T) or

w(0)=w(T). (3.32)

From the equalities (3.29), we obtain that for k = 0,1,2, . . . , p,

Ak+1(t)w(k+1)(t) +hk+1(t)=
⎛

⎝
f
(
t,u(t)

)
+ g
(
t,v(t)

)

f
(
t,v(t)

)
+ g
(
t,u(t)

)

⎞

⎠ ,

Bkw
(k)(τk

)
+ σk =

⎛

⎝
Ik
(
u
(
τk
))

+Gk
(
v
(
τk
))

Gk
(
u
(
τk
))

+ Ik
(
v
(
τk
))

⎞

⎠ .

(3.33)

From (3.30), (3.31), (3.32), and (3.33), it follows that the functions u(t) and v(t) are
solutions of the PBVP

u′ = f
(
t,u(t)

)
+ g
(
t,v(t)

)
, v′ = f

(
t,v(t)

)
+ g
(
t,u(t)

)
for t ∈ [0,T], t �= τk,

u
(
τk + 0

)= Ik
(
u
(
τk
))

+Gk
(
v(τk)

)
, v

(
τk + 0

)= Ik
(
v
(
τk
))

+Gk
(
u
(
τk
))

,

u(0)= u(T), v(0)= v(T).
(3.34)
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Consider the function p(t) = v(t)− u(t) ≥ 0. From the PBVP (3.34) and the properties
of the derivatives of the functions f , g, we obtain that

p′ =
∫ 1

0
fx
(
s,λv+ (1− λ)u

)
p−

∫ 1

0
gx
(
s,λv+ (1− λ)u

)
p ≤ ( fx

(
t,β0

)− gx
(
t,β0

))
p,

p
(
τk + 0

)= (I′k
(
β0
(
τk
))−G′k

(
β0
(
τk
)))

p
(
τk
)
, p(0)= p(T).

(3.35)

According to Lemma 2.6, for N=n, A(t)= fx(t,β0)−gx(t,β0), Bk=I′k(β0(τk))−G′k(β0(τk)),
we have p(t)≤ 0 on [0,T]. Therefore, p(t)= 0, which proves that u(t)= v(t).

We will prove that the convergence is quadratic.
Define the functions pm+1(t)= u(t)−αm+1(t) and qm+1(t)= βm+1(t)−u(t), t ∈ [0,T].

For t ∈ [0,T], t �= τk, we obtain the inequalities

p′m+1 ≤ f (t,u)− f
(
t,αm

)
+ g(t,u)− g

(
t,βm

)

− fx
(
t,αm

)(
pm− pm+1

)− gx
(
t,αm

)(
qm+1− qm

)

=
(∫ 1

0
fx
(
t,λu+ (1− λ)αm

)
dλ
)
pm−

(∫ 1

0
gx
(
t,λu+ (1− λ)βm

)
dλ
)
qm

− fx
(
t,αm

)(
pm− pm+1

)− gx
(
t,αm

)(
qm+1− qm

)

≤ ( fx(t,u)− fx
(
t,αm

))
pm +

(
gx
(
t,αm

)− gx
(
t,βm

))
qm

+ fx
(
t,αm

)
pm+1− gx

(
t,αm

)
qm+1

≤ fx
(
t,αm

)
pm+1− gx

(
t,αm

)
qm+1 + S1

∥
∥pm

∥
∥pm + S2

∥
∥αm−βm

∥
∥qm

≤ fx
(
t,αm

)
pm+1− gx

(
t,αm

)
qm+1 +

(
s̃+

1
2
m̃
)∥
∥pm

∥
∥2

+
3
2
m̃
∥
∥qm

∥
∥2

,

(3.36)

where s̃= (s̃1, s̃2, . . . , s̃n), m̃= (m̃1,m̃2, . . . ,m̃n), s̃i =
∑n

j=1 S
(1)
i j , m̃i =

∑n
j=1 S

(2)
i j , i= 1,2, . . . ,n.

For t ∈ [0,T], t �= τk, from the definition of the functions αm(t) and βm(t) and the fact
that u(t) is a solution of the PBVP (2.1)-(2.2), we obtain

q′m+1 ≤ f
(
t,βm

)− f (t,u) + g
(
t,αm

)− g(t,u)

− fx
(
t,αm

)(
qm− qm+1

)− gx
(
t,αm

)(
pm+1− pm

)

=
(∫ 1

0
fx
(
t,λβm + (1− λ)u

)
dλ
)
qm−

(∫ 1

0
gx
(
t,λαm + (1− λ)u

)
dλ
)
pm

− fx
(
t,αm

)(
qm− qm+1

)− gx
(
t,αm

)(
pm+1− pm

)

≤ ( fx
(
t,βm

)− fx
(
t,αm

))
qm +

(
gx
(
t,αm

)− gx(t,u)
)
pm

+ fx
(
t,αm

)
qm+1− gx

(
t,αm

)
pm+1

≤−gx
(
t,αm

)
pm+1 + fx

(
t,αm

)
qm+1 + S1

∥
∥pm + qm

∥
∥qm + S2

∥
∥pm

∥
∥pm

≤−gx
(
t,αm

)
pm+1 + fx

(
t,αm

)
qm+1 +

3
2
s̃
∥
∥qm

∥
∥2

+
(
m̃+

1
2
s̃
)∥
∥pm

∥
∥2
.

(3.37)
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For k = 1,2, . . . , p, from the impulsive conditions, we have

pm+1
(
τk + 0

)

≤ Ik
(
u
(
τk
))− Ik

(
αm
(
τk
))

+Gk
(
u
(
τk
))−Gk

(
αm
(
τk
))

+ I′k
(
αm
(
τk
))[

αm+1
(
τk
)−αm

(
τk
)]−Gk

(
αm
(
τk
))[

βm+1
(
τk
)−βm

(
τk
)]

≤ I′k
(
αm
(
τk
))
pm+1

(
τk
)−Gk

(
αm
(
τk
))
qm+1

(
τk
)

+μ1
∥
∥pm

(
τk
)∥∥2

+μ2
∥
∥qm

(
τk
)∥∥2

,

(3.38)

qm+1
(
τk + 0

)≤−Gk
(
αm
(
τk
))
pm+1

(
τk
)

+ I′k
(
αm
(
τk
))
qm+1

(
τk
)

+ μ̃1
∥
∥pm

(
τk
)∥∥2

+ μ̃2
∥
∥qm

(
τk
)∥∥2

,
(3.39)

where μi, μ̃i, i= 1,2 are constant vectors.
The differential inequalities (3.36)–(3.39) can be written in the form

r′m+1 ≤A(t)rm+1 +P
∥
∥rm

∥
∥2

, t �= τk,

rm+1
(
τk + 0

)≤ Bkrm+1
(
τk
)

+Qk

∥
∥rm

(
τk
)∥∥2

, rm+1(0)= rm+1(T),
(3.40)

where

rm+1 =
(
pm+1

qm+1

)

, P =
(
s̃+ 2m̃

2s̃+ m̃

)

, Qk =
(
μ1 +μ2

μ̃1 + μ̃2

)

,

A(t)=
(

fx
(
t,αm

) −gx
(
t,αm

)

−gx
(
t,αm

)
fx
(
t,αm

)

)

, Bk =
(

I′k
(
αm
(
τk
)) −G′k

(
αm
(
τk
))

−G′k
(
αm
(
τk
))

I′k
(
αm
(
τk
))

)

.

(3.41)

From the monotonicity of the functions fx(t,x) and gx(t,x), the inequalities αm(t) ≥
α0(t), βm(t) ≤ β0(t), and condition (4) of Theorem 3.1, it follows that condition (1) of
Lemma 2.8 is satisfied. The matrices Bk according to conditions (3) and (5) of Theorem
3.1 are from the class Ψ. According to Lemma 2.8, the inequality

rm+1(t)≤W(t,0)x0 +
∫ t

0
W(t,s)P

∥
∥rm(s)

∥
∥2
ds+

∑

0<tk<t

W
(
t, tk + 0

)
Qk

∥
∥rm

(
τk
)∥∥2

(3.42)

holds for t ∈ [0,T], where

x0 =
(
E−W(T ,0)

)−1
(∫ T

0
W(T ,s)P

∥
∥rm(s)

∥
∥2
ds+

p∑

k=1

W
(
T , tk + 0

)
Qk

∥
∥rm

(
τk
)∥∥2

)

(3.43)

and W(t,s) is given by (2.17).
From the inequalities (3.42), (3.43), it follows that there exists a number λ > 0 such that

|||rm+1||| ≤ λ|||rm|||2, where |||r||| = supt∈[0,T]‖r(t)‖. This inequality proves the quadratic
convergence.
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The next theorem is for the case when the lower and upper solutions are completely
opposite to those in Theorem 3.1.

Theorem 3.2. Let the following conditions hold.
(1) The functions α0(t),β0(t)∈ PC1([0,T],Rn), α0(t)≤ β0(t) for t ∈ [0,T], are coupled

lower and upper solutions of the PBVP (2.1)-(2.2) of type II.
(2) The functions fx, gx exist and are continuous on Ω(α0,β0), fx(t,x) is nondecreasing

in x, gx(t,x) is nonincreasing in x for t ∈ [0,T], fx(t,β0(t))≤ 0, and for x ≥ y,

fx(t,x)− fx(t, y)≤ S1‖x− y‖, gx(t, y)− gx(t,x)≤ S2‖x− y‖, (3.44)

where S1 > 0, S2 > 0 are constant matrices, ‖ · ‖ is a norm in Rn.
(3) The functions Ik,Gk ∈ C1(Dk(α0,β0),Rn), I′k(x) are nondecreasing, G′k(x) are nonin-

creasing, k = 1,2, . . . , p and G′k(β0)≥ 0, I′k(β0)≤ 0, and for x ≥ y,

I′k(x)− I′k(y)≤ Lk‖x− y‖, G′k(y)−G′k(x)≤Mk‖x− y‖, (3.45)

where Lk > 0, Mk > 0, k = 1,2, . . . , p, are constant matrices.
(4) The function gx(t,β0(t))x is quasimonotone nondecreasing in x and the function

(gx(t,α0)− fx(t,α0))e@x is strictly decreasing in x on [0,T].
(5) The inequality (G′k(β0(τk))− I′k(β0(τk)))e ≤ e holds.
Then there exist two sequences of functions {αm(t)}∞0 and {βm(t)}∞0 such that
(a) the sequences are increasing and decreasing correspondingly;
(b) both sequences uniformly converge on the intervals (τk,τk+1] to the unique solution of

the PBVP (2.1)-(2.2) in S(α0,β0), k = 0,1,2, . . . , p;
(c) the convergence is quadratic.

Proof. Consider the periodic boundary value problem for the system of impulsive linear
differential equations

x′(t)= f
(
t,β0(t)

)
+ g
(
t,α0(t)

)
+ gx

(
t,β0

)(
x−α0

)

+ fx
(
t,β0

)(
y−β0

)
for t ∈ [0,T], t �= τk,

y′(t)= f
(
t,α0(t)

)
+ g
(
t,β0(t)

)
+ gx

(
t,β0

)(
y−β0

)
+ fx

(
t,β0

)(
x−α0

)
,

x
(
τk + 0

)= Ik
(
β0
(
τk
))

+Gk
(
α0
(
τk
))

+G′k
(
β0
(
τk
))[

x
(
τk
)−α0

(
τk
)]

+ I′k
(
β0
(
τk
))[

y
(
τk
)−β0

(
τk
)]

,

y
(
τk + 0

)= Ik
(
α0
(
τk
))

+Gk
(
β0
(
τk
))

+G′k
(
β0
(
τk
))[

y
(
τk
)−β0

(
τk
)]

+ I′k
(
β0
(
τk
))[

x
(
τk
)−α0

(
τk
)]

,

x(0)= x(T), y(0)= y(T).

(3.46)

The PBVP (3.46) can be written in the form

p′ =A(0)(t)p(t) +h(0)(t) for t ∈ [0,T], t �= τk,

p
(
τk + 0

)= B(0)
k p

(
τk
)

+ σ (0)
k , p(0)= p(T),

(3.47)
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where

p=
(
x
y

)

, A(0)(t)=
⎛

⎝
gx
(
t,β0

)
fx
(
t,β0

)

fx
(
t,β0

)
gx
(
t,β0

)

⎞

⎠ , B(0)
k =

⎛

⎝
G′k
(
β0
(
τk
))

I′k
(
β0
(
τk
))

I′k
(
β0
(
τk
))

G′k
(
β0
(
τk
))

⎞

⎠ ,

h(0)(t)=
⎛

⎝
f
(
t,β0(t)

)
+ g
(
t,α0(t)

)− gx
(
t,β0

)
α0− fx

(
t,β0

)
β0

f
(
t,α0(t)

)
+ g
(
t,β0(t)

)− gx
(
t,β0

)
β0− fx

(
t,β0

)
α0

⎞

⎠ ,

σ (0)
k =

⎛

⎝
Ik
(
β0
(
τk
))

+Gk
(
α0
(
τk
))−G′k

(
β0
(
τk
))
α0
(
τk
)− I′k

(
β0
(
τk
))
β0
(
τk
)

Gk
(
α0
(
τk
))

+ Ik
(
β0
(
τk
))−G′k

(
β0
(
τk
))
β0
(
τk
)− I′k

(
β0
(
τk
))
α0
(
τk
)

⎞

⎠ .

(3.48)

Consider the matrices

C0(t)=
⎛

⎝
gx
(
t,β0

) − fx
(
t,β0

)

− fx
(
t,β0

)
gx
(
t,β0

)

⎞

⎠ , D0
k =

⎛

⎝
G′k
(
β0
(
τk
)) −I′k

(
β0
(
τk
))

−I′k
(
β0
(
τk
))

G′k
(
β0
(
τk
))

⎞

⎠ . (3.49)

From conditions (2), (3), (4), and (5) of Theorem 3.2, it follows that C0(t) ∈ Ξ and
D0

k∈Ψ. According to Lemma 2.8, det(E−C0(t)) �= 0. Therefore, det(E−A0(t))= det(E−
C0(t)) �= 0. Therefore, according to Lemma 2.9, the boundary value problem (3.46) has a
unique solution α1(t),β1(t).

We will prove that α0(t) ≤ α1(t) and β0(t) ≥ β1(t) on [0,T]. Set p(t) = α0(t)− α1(t),
q(t)= β1(t)−β0(t). Then we have

p′ ≤ − fx
(
t,β0

)
q+ gx

(
t,β0

)
p,

q′ ≤ gx
(
t,β0

)
q− fx

(
t,β0

)
p for t ∈ [0,T], t �= τk,

p
(
τk + 0

)≤G′k
(
β0
(
τk
))
p
(
τk
)− I′k

(
β0
(
τk
))
q
(
τk
)
,

q
(
τk + 0

)≤G′k
(
β0
(
τk
))
q
(
τk
)− I′k

(
β0
(
τk
))
p
(
τk
)
,

p(0)≤ p(T), q(0)≤ q(T).

(3.50)

The PBVP (3.50) can be written in the form

m′(t)≤A(t)m(t) for t ∈ [0,T], t �= τk,

m
(
τk + 0

)≤ Bkm
(
τk
)
,

m(0)≤m(T),

(3.51)

where

m=
(
p
q

)

, A(t)=
⎛

⎝
gx
(
t,β0

) − fx
(
t,β0

)

− fx
(
t,β0

)
gx
(
t,β0

)

⎞

⎠ , Bk=
⎛

⎝
G′k
(
β0
(
τk
)) −I′k

(
β0
(
τk
))

−I′k
(
β0
(
τk
))

G′k
(
β0
(
τk
))

⎞

⎠ .

(3.52)



S. G. Hristova and A. S. Vatsala 17

According to Lemma 2.6, m(t) ≤ 0 on [0,T], that is, α0(t) ≤ α1(t) and β1(t) ≤ β0(t) on
[0,T].

Following the same ideas as in the proof of Theorem 3.1, we can construct two se-
quences of functions {αm(t)}∞0 and {βm(t)}∞0 , αm,βm ∈ S(αm−1,βm−1) where the func-
tions are the unique solution of the boundary value problem for the linear system of
impulsive differential equations

x′(t)= f
(
t,βm(t)

)
+ g
(
t,αm(t)

)
+ gx

(
t,βm

)(
x−αm

)

+ fx
(
t,βm

)(
y−βm

)
for t ∈ [0,T], t �= τk,

y′(t)= f
(
t,αm(t)

)
+ g
(
t,βm(t)

)
+ gx

(
t,βm

)(
y−βm

)
+ fx

(
t,βm

)(
x−αm

)
,

x
(
τk + 0

)= Ik
(
βm
(
τk
))

+Gk
(
αm
(
τk
))

+G′k
(
βm
(
τk
))[

x
(
τk
)−αm

(
τk
)]

+ I′k
(
βm
(
τk
))[

y
(
τk
)−βm

(
τk
)]

,

y
(
τk + 0

)= Ik
(
αm
(
τk
))

+Gk
(
βm
(
τk
))

+G′k
(
βm
(
τk
))[

y
(
τk
)−βm

(
τk
)]

+ I′k
(
βm
(
τk
))[

x
(
τk
)−αm

(
τk
)]

,

x(0)= x(T), y(0)= y(T).

(3.53)

The inequality αm(t)≤ βm(t), t ∈ [0,T], holds and both sequences are uniformly conver-
gent.

Denote

lim
m→∞αm(t)= u(t), lim

m→∞βm(t)= v(t). (3.54)

From the uniform convergence and the definition of the functions αm(t) and βm(t), the
validity of the inequalities

α0(t)≤ u(t)≤ v(t)≤ β0(t) (3.55)

follows.
Since the functions αm(t) and βm(t) are solutions of the PBVP (3.53), we obtain that

the functions u(t) and v(t) are solutions of the PBVP

u′ = f
(
t,v(t)

)
+ g
(
t,u(t)

)
, v′ = f

(
t,u(t)

)
+ g
(
t,v(t)

)
for t ∈ [0,T], t �= τk,

u
(
τk + 0

)= Ik
(
v
(
τk
))

+Gk
(
u
(
τk
))

,

v
(
τk + 0

)= Ik
(
u
(
τk
))

+Gk
(
v
(
τk
))

,

u(0)= u(T), v(0)= v(T).

(3.56)

As in the proof of Theorem 3.1, we can obtain that u(t)= v(t) on [0,T].
We will prove that the convergence is quadratic.
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Define the functions pm+1(t)= u(t)−αm+1(t) and qm+1(t)= βm+1(t)−u(t), t ∈ [0,T].
For t ∈ [0,T], t �= τk, we obtain the inequalities

p′m+1≤ f (t,u)− f
(
t,βm

)
+g(t,u)−g(t,αm

)
+ fx

(
t,βm

)(
qm− qm+1

)
+ gx

(
t,βm

)(
pm+1− pm

)

=−
(∫ 1

0
fx
(
t,λu+ (1− λ)βm

)
dλ
)
qm +

(∫ 1

0
gx
(
t,λu+ (1− λ)αm

)
dλ
)
pm

+ fx
(
t,βm

)(
qm− qm+1

)
+ gx

(
t,βm

)(
pm+1− pm

)

≤ ( fx
(
t,βm

)− fx(t,u)
)
qm +

(
gx
(
t,αm

)− gx
(
t,βm

))
pm

− fx
(
t,βm

)
qm+1 + gx

(
t,βm

)
pm+1

≤ gx
(
t,βm

)
pm+1− fx

(
t,βm

)
qm+1 + S1

∥
∥qm

∥
∥qm + S2

∥
∥αm−βm

∥
∥pm

≤ gx
(
t,βm

)
pm+1− fx

(
t,βm

)
qm+1 +

(
s̃+

1
2
m̃
)∥
∥qm

∥
∥2

+
3
2
m̃
∥
∥pm

∥
∥2

,

(3.57)

where s̃= (s̃1, s̃2, . . . , s̃m), m̃= (m̃1,m̃2, . . . ,m̃n), s̃i =
∑n

j=1 S
1
i j , m̃i =

∑n
j=1 S

2
i j , i= 1,2, . . . ,n.

For t ∈ [0,T], t �= τk, from the definition of the functions αm(t) and βm(t) and the fact
that u(t) is a solution of the PBVP (2.1)-(2.2), we obtain

q′n+1 ≤− fx
(
t,βm

)
pm+1 + gx

(
t,βm

)
qm+1 + S1

∥
∥qm + pm

∥
∥pm + S2

∥
∥qm

∥
∥qm

≤− fx
(
t,βm

)
pm+1 + gx

(
t,βm

)
qm+1 +

3
2
s̃
∥
∥pm

∥
∥2

+
(
m̃+

1
2
s̃
)∥
∥qm

∥
∥2
.

(3.58)

For k = 1,2, . . . , p, from the jump conditions, we have

pm+1
(
τk + 0

)≤ Ik
(
u
(
τk
))− Ik

(
αm
(
τk
))

+Gk
(
u
(
τk
))

−Gk
(
αm
(
τk
))
I′k
(
αm
(
τk
))[

αm+1
(
τk
)−αm

(
τk
)]

−Gk
(
αm
(
τk
))[

βm+1
(
τk
)−βm

(
τk
)]

≤−Gk
(
αm
(
τk
))
pm+1

(
τk
)

+ I′k
(
αm
(
τk
))
qm+1

(
τk
)

+μ1
∥
∥pm

(
τk
)∥∥2

+μ2
∥
∥qm

(
τk
)∥∥2

,

(3.59)

qm+1
(
τk + 0

)≤ I′k
(
αm
(
τk
))
pm+1

(
τk
)−Gk

(
αm
(
τk
))
qm+1

(
τk
)

+ μ̃1
∥
∥pm

(
τk
)∥∥2

+ μ̃2
∥
∥qm

(
τk
)∥∥2

,
(3.60)

where μi, μ̃i, i= 1,2 are constant vectors.
The differential inequalities (3.57)–(3.60) and the periodic conditions for the function

p(t) and q(t) can be written in the form

r′m+1 ≤A(t)rm+1 +P
∥
∥rm

∥
∥2

, t �= τk,

rm+1
(
τk + 0

)≤ Bkrm+1
(
τk
)

+Qk

∥
∥rm

(
τk
)∥∥2

,

rm+1(0)= rm+1(T),

(3.61)
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where

rm+1 =
(
pm+1

qm+1

)

, P =
(
s̃+ 2m̃

2s̃+ m̃

)

, Qk =
(
μ1 +μ2

μ̃1 + μ̃2

)

,

A(t)=
(

gx
(
t,βm

) − fx
(
t,βm

)

− fx
(
t,βm

)
gx
(
t,βm

)

)

, Bk =
(
G′k
(
βm
(
τk
)) −I′k

(
βm
(
τk
))

−I′k
(
βm
(
τk
))

G′k
(
βm
(
τk
))

)

.

(3.62)

According to Lemma 2.10, the inequality

rm+1(t)≤W(t,0)x0 +
∫ t

0
W(t,s)P

∥
∥rm(s)

∥
∥2
ds+

∑

0<tk<t

W
(
t, tk + 0

)
Qk

∥
∥rm

(
τk
)∥∥2

(3.63)

holds for t ∈ [0,T], where

x0 =
(
E−W(T ,0)

)−1
(∫ T

0
W(T ,s)P

∥
∥rm(s)

∥
∥2
ds+

p∑

k=1

W
(
T , tk + 0

)
Qk

∥
∥rm

(
τk
)∥∥2

)

(3.64)

and W(t,s) is defined by (2.14).
From the inequalities (3.63), (3.64), it follows that there exists a number λ > 0 such that

|||rm+1||| ≤ λ|||rm|||2, where |||r||| = supt∈[0,T]‖r(t)‖. This inequality proves the quadratic
convergence. �

The next theorem is about the case when the PBVP (2.1)-(2.2) has a lower solution as
well as an upper solution.

Theorem 3.3. Let the following conditions hold.
(1) The functions α0(t),β0(t)∈ PC1([0,T],Rn), α0(t)≤ β0(t) for t ∈ [0,T], are natural

lower and upper solutions of the PBVP (2.1), (2.2).
(2) The functions fx, gx exist and are continuous on Ω(α0,β0), fx(t,x) is nondecreasing

in x, gx(t,x) is nonincreasing in x for t ∈ [0,T], and for x ≥ y,

fx(t,x)− fx(t, y)≤ S1‖x− y‖, gx(t, y)− gx(t,x)≤ S2‖x− y‖, (3.65)

where S1 > 0, S2 > 0 are constant matrices.
(3) The functions Ik,Gk ∈ C1(Dk(α0,β0),Rn), I′k(x) are nondecreasing, G′k(x) are nonin-

creasing, k = 1,2, . . . , p, and I′k(α0(τk)) +G′k(β0(τk))≥ 0 and for x ≥ y,

I′k(x)− I′k(y)≤ Lk‖x− y‖, G′k(y)−G′k(x)≤Mk‖x− y‖, (3.66)

where Lk > 0, Mk > 0, k = 1,2, . . . , p, are constant matrices.
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(4) The function ( fx(t,α0(t)) + gx(t,β0(t)))x is quasimonotone nondecreasing in x and
the function ( fx(t,β0) + gx(t,α0))e@x is strictly decreasing in x on [0,T].

(5) The inequality (I′k(β0(τk)) +G′k(α0(τk)))e≤ e holds.
Then there exist two sequences of functions {αm(t)}∞0 and {βm(t)}∞0 such that
(a) the sequences are increasing and decreasing correspondingly;
(b) both sequences uniformly converge on the intervals (τk,τk+1] to the unique solution of

the PBVP (2.1)-(2.2) in S(α0,β0), k = 0,1,2, . . . , p;
(c) the convergence is quadratic.

Proof. Consider the periodic boundary value problem for the system of impulsive differ-
ential equations

x′(t)= f
(
t,α0(t)

)
+ g
(
t,α0(t)

)
+
(
fx
(
t,α0

)
+ gx

(
t,β0

))(
x−α0

)
, t �= τk,

x
(
τk + 0

)= Ik
(
α0
(
τk
))

+Gk
(
α0
(
τk
))

+
(
I′k
(
α0
(
τk
))

+G′k
(
β0
(
τk
)))[

x
(
τk
)−α0

(
τk
)]

,

x(0)= x(T).
(3.67)

From conditions (2), (3), (4), and (5) of Theorem 3.3, it follows that the matrices A(t)=
fx(t,α0) + gx(t,β0) ∈ Ξ and Bk = I′k(α0(τk)) +G′k(β0(τk)) ∈ Ψ. According to Lemmas 2.8
and 2.9, the PBVP (3.67) has a unique solution α1(t).

Consider the periodic boundary value problem for the system of impulsive differential
equations

y′(t)= f
(
t,β0(t)

)
+ g
(
t,β0(t)

)
+
(
fx
(
t,α0

)
+ gx

(
t,β0

))(
y−β0

)
, t �= τk, (3.68)

y
(
τk + 0

)= Ik
(
β0
(
τk
))

+Gk
(
β0
(
τk
))

+
(
I′k
(
α0
(
τk
))

+G′k
(
β0
(
τk
)))[

y
(
τk
)−α0

(
τk
)]

,
(3.69)

y(0)= y(T). (3.70)

According to Lemmas 2.8 and 2.9, the PBVP (3.68)–(3.70) has a unique solution β1(t).
We will prove that α0(t) ≤ α1(t) and β0(t) ≥ β1(t) on [0,T]. Set p(t) = α0(t)− α1(t),

q(t)= β1(t)−β0(t). The functions p(t) and q(t) satisfy the following impulsive inequali-
ties:

m′ ≤ ( fx
(
t,α0

)
+ gx

(
t,β0

))
m for t ∈ [0,T], t �= τk,

m
(
τk + 0

)≤ (I′k
(
α0
(
τk
))

+G′k
(
β0
(
τk
)))

m
(
τk
)
,

m(0)≤m(T).

(3.71)

According to Lemma 2.6, m(t) ≤ 0 and p(t) ≤ 0 and q(t) ≤ 0 on [0,T], that is, α0(t) ≤
α1(t) and β1(t)≤ β0(t) on [0,T].

Consider the function p(t)= α1(t)−β1(t). Then from the PBVP (3.67)–(3.70), condi-
tions (2), (3), (4), and (5) of Theorem 3.3, and Lemma 2.11, we obtain that the function
p(t) satisfies the inequalities (3.71). According to Lemma 2.6, we have p(t)≤ 0 on [0,T],
that is, α1(t)≤ β1(t).
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As in the proof of Theorem 3.1, we can obtain both sequences of functions {αm(t)}
and {βm(t)}, which are the unique solutions of the PBVPs

x′(t)= f
(
t,αm−1(t)

)
+ g
(
t,αm−1(t)

)

+
(
fx
(
t,αm−1

)
+ gx

(
t,βm−1

))(
x−αm−1

)
for t ∈ [0,T], t �= τk,

x
(
τk + 0

)= Ik
(
αm−1

(
τk
))

+Gk
(
αm−1

(
τk
))

+
(
I′k
(
αm−1

(
τk
))

+G′k
(
βm−1

(
τk
)))[

x
(
τk
)−αm−1

(
τk
)]

,

x(0)= x(T);

y′(t)= f
(
t,βm−1(t)

)
+ g
(
t,βm−1(t)

)

+
(
fx
(
t,αm−1

)
+ gx

(
t,βm−1

))(
y−βm−1

)
, for t ∈ [0,T], t �= τk,

y
(
τk + 0

)= Ik
(
βm−1

(
τk
))

+Gk
(
βm−1

(
τk
))

+
(
I′k
(
αm−1

(
τk
))

+G′k
(
βm−1

(
τk
)))[

y
(
τk
)−βm−1

(
τk
)]

,

y(0)= y(T).

(3.72)

We can prove that αm,βm ∈ S(αm−1,βm−1), αm(t)≤ βm(t), t ∈ [0,T], and both sequences
are convergent.

Let their limits be u(t) and v(t) correspondingly.
The functions u(t), v(t) satisfy the inequalities

α0(t)≤ u(t)≤ v(t)≤ β0(t) (3.73)

and are solutions of the PBVP (2.1)-(2.2). Since the functions f , g and Ik,Gk are Lipschitz,
it follows that u(t)= v(t) on [0,T].

We will prove that the convergence is quadratic.
Define the functions pm+1(t)= u(t)−αm+1(t) and qm+1(t)= βm+1(t)−u(t), t ∈ [0,T].

For t ∈ [0,T], t �= τk, we obtain the inequalities

p′m+1 ≤ f (t,u)− f
(
t,αm

)
+ g(t,u)− g

(
t,αm

)
+
(
fx
(
t,αm

)
+ gx

(
t,βm

))(
pm+1− pm

)

=
(∫ 1

0
fx
(
t,λu+ (1− λ)αm

)
dλ
)
pm +

(∫ 1

0
gx
(
t,λu+ (1− λ)αm

)
dλ
)
pm

+
(
fx
(
t,αm

)
+ gx

(
t,βm

))(
pm+1− pm

)

≤ ( fx(t,u)− fx
(
t,αm

))
pm +

(
gx(t,αm

)− gx
(
t,βm

))
pm

+
(
fx
(
t,αm

)
+ gx

(
t,βm

))
pm+1

≤ ( fx
(
t,αm

)
+ gx

(
t,βm

))
pm+1 + S1

∥
∥pm

∥
∥pm + S2

∥
∥αm−βm

∥
∥pm

≤ ( fx
(
t,αm

)
+ gx

(
t,βm

))
pm+1 +

(
s̃+

1
2
m̃
)∥
∥pm

∥
∥2

+
1
2
m̃
∥
∥qm

∥
∥2

,

(3.74)

where s̃= (s̃1, s̃2, . . . , s̃m), m̃= (m̃1,m̃2, . . . ,m̃m), s̃i =
∑n

j=1 S
(1)
i j , m̃i =

∑n
j=1 S

(2)
i j , i= 1,2, . . . ,n.
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For t ∈ [0,T], t �= τk, from the definition of the functions αm(t) and βm(t) and the fact
that u(t) is a solution of the PBVP (2.1)-(2.2), we obtain

q′m+1 ≤ f
(
t,βm

)− f (t,u) + g
(
t,βm

)− g(t,u) +
(
fx
(
t,αm

)
+ gx

(
t,βm

))(
qm+1− qm

)

=
(∫ 1

0
fx
(
t,λβm + (1− λ)u

)
dλ
)
qm +

(∫ 1

0
gx
(
t,λβm + (1− λ)u

)
dλ
)
qm

+
(
fx
(
t,αm

)
+ gx

(
t,βm

))(
qm+1− qm

)≤ ( fx
(
t,βm

)− fx
(
t,αm

))
qm

+
(
gx(t,u)− gx

(
t,βm

))
qm +

(
fx
(
t,βm

)
+ gx

(
t,βm

))
qm+1

≤ ( fx
(
t,αm

)
+ gx

(
t,βm

))
qm+1 + S1

∥
∥αm−βm

∥
∥qm + S2

∥
∥qm

∥
∥qm

≤ ( fx
(
t,αm

)
+ gx

(
t,βm

))
qm+1 +

1
2
s̃
∥
∥pm

∥
∥2

+
(

3
2
s̃+ m̃

)∥
∥qm

∥
∥2
.

(3.75)

For k = 1,2, . . . , p, from the jump conditions, we have

pm+1
(
τk + 0

)≤ Ik
(
u
(
τk
))− Ik

(
αm
(
τk
))

+Gk
(
u
(
τk
))−Gk

(
αm
(
τk
))

+
(
I′k
(
αm
(
τk
))

+Gk
(
βm
(
τk
)))[

pm+1
(
τk
)− pm

(
τk
)]

≤ (I′k
(
αm
(
τk
))

+G′k
(
βm
(
τk
)))

pm+1
(
τk
)

+μ1
∥
∥pm

(
τk
)∥∥2

+μ2
∥
∥qm

(
τk
)∥∥2

,

(3.76)

qm+1
(
τk + 0

)≤ (I′k
(
αm
(
τk
))

+G′k
(
βm
(
τk
)))

qm+1
(
τk
)

+ μ̃1
∥
∥pm

(
τk
)∥∥2

+ μ̃2
∥
∥qm

(
τk
)∥∥2

,
(3.77)

where μi, μ̃i, i= 1,2 are constant vectors.
The differential inequalities (3.74)–(3.77) and the periodic conditions for the func-

tions p(t) and q(t) can be written in the form

r′m+1 ≤ A(t)rm+1 +P
∥
∥rm

∥
∥2

, t �= τk, (3.78)

rm+1
(
τk + 0

)≤ Bkrm+1
(
τk
)

+Qk

∥
∥rm

(
τk
)∥∥2

, (3.79)

rm+1(0)= rm+1(T), (3.80)

where

rm+1 =
(
pm+1

qm+1

)

, P =
(
s̃+ m̃

s̃+ m̃

)

,

A(t)=
(
fx
(
t,αm

)
+ gx

(
t,βm

)
0

0 fx
(
t,αm

)
+ gx

(
t,βm

)

)

,

Bk =
(
I′k
(
αm
(
τk
))

+G′k
(
βm
(
τk
))

0

0 I′k
(
αm
(
τk
))

+G′k
(
βm
(
τk
))

)

, Qk =
(
μ1 +μ2

μ̃1 + μ̃2

)

.

(3.81)
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According to Lemma 2.10, from the inequalities (3.78)–(3.80), the inequality

rm+1(t)≤W(t,0)x0 +
∫ t

0
W(t,s)P

∥
∥rm

∥
∥2
ds+

∑

0<tk<t

W
(
t, tk +

)
Qk

∥
∥rm

(
τk
)∥∥2

(3.82)

holds for t ∈ [0,T], where

x0 =
(
E−W(T ,0)

)−1
(∫ T

0
W(T ,s)P

∥
∥rm

∥
∥2
ds+

p∑

k=1

W
(
T , tk +

)
Qk

∥
∥rm

(
τk
)∥∥2

)

(3.83)

and W(t,s) is defined by (2.17).
From the inequalities (3.79), (3.83), it follows that there exists a number λ > 0 such that

|||rm+1||| ≤ λ|||rm|||2, where |||r||| = supt∈[0,T]‖r(t)‖. This inequality proves the quadratic
convergence. �

As particular cases of the proved theorems, we can obtain some results for the PBVP
for systems of nonlinear ordinary differential equations.

Consider the PBVP for the system of ordinary differential equations

x′ = f
(
t,x(t)

)
+ g
(
t,x(t)

)
for t ∈ [0,T],

x(0)= x(T),
(3.84)

where x ∈Rn, f ,g : [0,T]×Rn→Rn.
We note that PBVP (3.84) can be considered as special cases of PBVP (2.1)-(2.2) when

Ik = E,Gk = E for k = 1,2, . . . , p.
Let α,β ∈ C([0,T],Rn) be such that α(t)≤ β(t). Consider the set

CS(α,β)= {u∈ C
(
[0,T],Rn

)
: α(t)≤ u(t)≤ β(t) for t ∈ [0,T]

}
. (3.85)

From Theorems 3.1, 3.2, and 3.3, we obtain the following special cases for the system of
periodic boundary value problem (3.84).

Theorem 3.4. Let the following conditions hold.
(1) The functions α0(t),β0(t)∈ C([0,T],Rn), α0(t)≤ β0(t) for t ∈ [0,T], and

α′0(t)≤ f
(
t,α0(t)

)
+ g
(
t,β0(t)

)
,

β′0 ≥ f
(
t,β0(t)

)
+ g
(
t,α0(t)

)
for t ∈ [0,T],

α0(0)≤ α0(T), β0(0)≥ β0(T).

(3.86)

(2) The functions fx, gx exist and are continuous on Ω(α0,β0), fx(t,x) is nondecreasing
in x, gx(t,x) is nonincreasing in x for t ∈ [0,T], fx(t,β0(t))≤ 0, and for x ≥ y,

fx(t,x)− fx(t, y)≤ S1‖x− y‖, gx(t, y)− gx(t,x)≤ S2‖x− y‖, (3.87)

where S1 > 0, S2 > 0 are constant matrices, ‖ · ‖ is a norm in Rn.
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(3) The function fx(t,β0(t))x is quasimonotone nondecreasing in x and the function
( fx(t,β0(t))− gx(t,β0(t)))e@x is strictly decreasing in x on [0,T].

Then there exist two sequences of functions {αm(t)}∞0 and {βm(t)}∞0 such that
(a) the sequences are increasing and decreasing correspondingly;
(b) both sequences uniformly converge on the intervals (τk,τk+1] to the unique solution of

the PBVP (3.84) in CS(α0,β0), k = 0,1,2, . . . , p;
(c) the convergence is quadratic.

Theorem 3.5. Let the following conditions hold.
(1) The functions α0(t),β0(t)∈ C([0,T],Rn), α0(t)≤ β0(t) for t ∈ [0,T], and

α′0(t)≤ f
(
t,β0(t)

)
+ g
(
t,α0(t)

)
,

β′0(t)≥ f
(
t,α0(t)

)
+ g
(
t,β0(t)

)
for t ∈ [0,T],

α0(0)≤ α0(T), β0(0)≥ β0(T).

(3.88)

(2) The functions fx, gx exist and are continuous on Ω(α0,β0), fx(t,x) is nondecreasing
in x, gx(t,x) is nonincreasing in x for t ∈ [0,T], fx(t,β0(t))≤ 0, and for x ≥ y,

fx(t,x)− fx(t, y)≤ S1‖x− y‖, gx(t, y)− gx(t,x)≤ S2‖x− y‖, (3.89)

where S1 > 0, S2 > 0 are constant matrices, ‖ · ‖ is a norm in Rn.
(3) The function gx(t,β0(t))x is quasimonotone nondecreasing in x and the function

(− fx(t,α0) + gx(t,α0))e@x is strictly decreasing in x on [0,T].
Then there exist two sequences of functions {αm(t)}∞0 and {βm(t)}∞0 such that
(a) the sequences are increasing and decreasing correspondingly;
(b) both sequences uniformly converge on the intervals (τk,τk+1] to the unique solution of

the PBVP (3.84) in CS(α0,β0), k = 0,1,2, . . . , p;
(c) the convergence is quadratic.

Theorem 3.6. Let the following conditions hold.
(1) The functions α0(t),β0(t)∈ C([0,T],Rn), α0(t)≤ β0(t) for t ∈ [0,T], are such that

α′0(t)≤ f
(
t,α0(t)

)
+ g
(
t,α0(t)

)
,

β′0(t)≥ f
(
t,β0(t)

)
+ g
(
t,β0(t)

)
for t ∈ [0,T],

α0(0)≤ α0(T), β0(0)≥ β0(T).

(3.90)

(2) The functions fx, gx exist and are continuous on Ω(α0,β0), fx(t,x) is nondecreasing
in x, gx(t,x) is nonincreasing in x for t ∈ [0,T], and for x ≥ y,

fx(t,x)− fx(t, y)≤ S1‖x− y‖, gx(t, y)− gx(t,x)≤ S2‖x− y‖, (3.91)

where S1 > 0, S2 > 0 are constant matrices, ‖ · ‖ is a norm in Rn.
(3) The function ( fx(t,α0(t)) + gx(t,β0(t)))x is quasimonotone nondecreasing in x and

the function ( fx(t,β0) + gx(t,α0))e@x is strictly decreasing in x on [0,T].
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Then there exist two sequences of functions {αm(t)}∞0 and {βm(t)}∞0 such that
(a) the sequences are increasing and decreasing correspondingly;
(b) both sequences uniformly converge on the intervals (τk,τk+1] to the unique solution of

the PBVP (3.84) in CS(α0,β0), k = 0,1,2, . . . , p;
(c) the convergence is quadratic.
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