
Hindawi Publishing Corporation
Journal of Applied Mathematics and Stochastic Analysis
Volume 2007, Article ID 43091, 7 pages
doi:10.1155/2007/43091

Research Article
On Zeros of Self-Reciprocal Random Algebraic Polynomials

K. Farahmand

Received 21 June 2007; Accepted 31 October 2007

This paper provides an asymptotic estimate for the expected number of level crossings
of a trigonometric polynomial TN (θ)=∑N−1

j=0 {αN− j cos( j + 1/2)θ + βN− j sin( j + 1/2)θ},
where αj and βj , j = 0,1,2, . . . ,N − 1, are sequences of independent identically distributed
normal standard random variables. This type of random polynomial is produced in the
study of random algebraic polynomials with complex variables and complex random co-
efficients, with a self-reciprocal property. We establish the relation between this type of
random algebraic polynomials and the above random trigonometric polynomials, and
we show that the required level crossings have the functionality form of cos(N + θ/2).
We also discuss the relationship which exists and can be explored further between our
random polynomials and random matrix theory.

Copyright © 2007 K. Farahmand. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
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1. Introduction

Let {αj}n−1
j=1 and {βj}n−1

j=1
be sequences of independently normally distributed random

variables with means zero and variances σ2. For a sequence of complex numbers ηj =
αj + iβ j , j = 1,2, . . . ,n− 1, with ηn ≡ η0 ≡ 1, we define a (complex) random algebraic
polynomial as

Pn(z)=
n∑

j=0

ηjz
j . (1.1)

Although there have been many results concerning real and complex roots of Pn(z), most
of them assume identical distributions for αj ’s and βj ’s, and therefore ηj ’s. These re-
sults, for the real case, are initiated by fundamental works of Kac [3] and Rice [1, 2], and
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recently they are re-examined in an interesting work by Wilkins [4]. The study of the
mathematical behavior of Pn(z), later generalized to the complex case first described by
Ibragimov and Zeitouni [5] and then by Farahmand and Jahangiri [6], is reviewed in [7].
For physical applications and developments, we refer interested readers to [8] and the ref-
erences therein. Further for the case of identical coefficients, Farahmand and Grigorash
[9] study a case of nonzero means.

However, in the study of random matrix theory, it turns out that a special form of
Pn(z), known as self-reciprocal random algebraic polynomial, is of interest in which the
polynomial required, for all n and z, satisfies the relation Pn(z)= znPn(1/z). This yields a
polynomial where ηn ≡ η0 ≡ 1, and ηn− j is the complex conjugate of ηj , j = 1,2, . . . ,n− 1.
The assumption of ηn ≡ η0 ≡ 1 is motivated by the requirement that in the random ma-
trix theory we are interested in polynomials whose (complex) zeros are located in the unit
circle. Our above form of Pn(z) satisfies this requirement when ηn−1z

n−1 + ηn−2z
n−2 +

··· +η1z ≡ 0. The properties of zeros of reciprocal polynomials with deterministic coef-
ficients are also discussed by Lakatos and Losonczi [10].

2. Random trigonometric polynomials

With simple transformation, for z = r exp(iθ), we can rewrite Pn(z) in (1.1) as

einθ/2pn
(
eiθ
)= 2cos

(
nθ

2

)

+ 2α1 cos
(
n− 2

2

)

θ + 2β1 sin
(
n− 2

2

)

θ

+ 2α2 cos
(
n− 4

2

)

θ + 2β2 sin
(
n− 4

2

)

θ

...

+ fn(θ),

(2.1)

where

Fn(θ)=
⎧
⎨

⎩

2α(n/2−1) cosθ + 2β(n/2−1) sinθ +αn/2 + iβn/2 for n even,

2α(n−1)/2 cosθ + 2β(n−1)/2 sinθ for n odd.
(2.2)

For the above regrouping of terms, we used the self-reciprocating property of ηj ≡ ηn− j .
Indeed, since for n even not all the coefficients ηj in (1.1) can have a matching conjugate,
the main interest, as far as random matrix theory is concerned, is for the case of n odd.
The latter case, therefore, would be our main interest. However, in order to be complete,
at this stage we present Pn(z) for both n odd and n even. To this end, for n odd we have

Pn(θ)= 2
(n−1)/2∑

j=1

{

αj cos
(
n− 2 j

2

)

θ +βj sin
(
n− 2 j

2

)

θ
}

+ 2cos
(
nθ

2

)

, (2.3)

and for n even

Pn(θ)= 2
n/2−1∑

j=1

{

αj cos
(
n− 2 j

2

)

θ +βj sin
(
n− 2 j

2

)

θ}+ 2cos
(
nθ

2

)

+αn/2 + iβn/2. (2.4)
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Now from (2.3), that is, for n odd, the polynomial of interest has the form

Pn(θ)= TN (θ) + cos(N + θ/2), (2.5)

where N = (n− 1)/2 and

TN (θ)=
N−1∑

j=0

{
αN− j cos( j + 1/2)θ +βN− j sin( j + 1/2)θ

}
. (2.6)

The classical form of random trigonometric polynomials is defined as

QN (θ)=
N∑

j=1

αj cos jθ. (2.7)

The study of these types of random polynomials is initiated by Dunnage [11]. Although
Dunnage studied the actual number of real zeros, his work showed that, for N large,
the expected number of real zeros of QN (θ) is asymptotic to 2N/

√
3. This result is later

generalized to the case of a constant level crossing in [12] and to the case of nonstandard
normal in [13, 14]. The other results concerning QN (θ) can be found in [7]. Further,
as reported by Bharucha-Reid and Sambandham [15], Das [16] considered the expected
number of zeros of a random trigonometric polynomial similar to (2.6). These types of
random trigonometric polynomials, as we will see, have the advantage of being stationary
with respect to θ. However, since we are interested in the expected number of zeros of
Pn(z) given in (2.3), we need to generalize the result to the number of level crossings of
TN (θ).

In what follows, we therefore study the number of level crossings of TN (θ) with
cos(N + θ/2). As this level is a function of θ, it can be seen as a moving level crossing
case, where there is no known formula for its expected number of crossings with TN (θ).
We will develop this in the following section. Denote this number in the interval (a,b) by
�(a,b) and its expected value by E�(a,b). We prove the following theorem.

Theorem 2.1. With the above assumption on the distributions of αjs and βjs and for all
sufficiently large N ,

E�(0,2π)∼2N√
3
. (2.8)

3. Expected number of crossings

In what follows, we generalize the known result from constant level crossing to this mov-
ing level for the special form of TN (θ) given in (2.6). We use a formula known as the
Kac-Rice formula which is originally derived for the expected number of real zeros (axes
crossings) of a random algebraic polynomial. It is known (see, e.g., [7, page 12]) that the
expected number of real zeros of polynomial TN (θ) in (2.3) in the interval (a,b) is given
by

E�(a,b)=
∫ b

a
dθ
∫∞

−∞
|y|ϕ(0, y) dy, (3.1)
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where ϕ(x1,x2) is the joint probability density function of TN (θ) + cos(N + θ/2) and its
derivative T′N (θ)− (1/2)sin(N + θ/2). Let

A2
N (θ)≡A2 = var

(
TN (θ)

)
, B2

N (θ)≡ B2 = var
(
T′N (θ)

)
, (3.2)

and let CN (θ) ≡ C be the covariance of TN (θ) and T′N (θ). Since αj ’s and βj ’s are inde-
pendent in themselves and from each other, we can easily show that C = 0. Using the
assumption of normality of the coefficients of the polynomial, we therefore obtain the
required joint probability density function as

ϕ
(
x1,x2

)= 1
2πAB

exp
(

− B2
(
x1− cos(N + θ/2)

)2
+A2

(
x2 +

(
sin(N + θ/2)

)
/2
)2

2A2B2

)

.

(3.3)

This will enable us to evaluate a part of the Kac-Rice formula given in (3.1) as

∫∞

−∞
|y|ϕ(0, y) dy

= 1
2π

∫∞

−∞
|y|
AB

exp

(−B2cos2(N + θ/2) +A2
(
y +

(
sin(N + θ/2)

)
/2
)2

2A2B2

)

dy

= 1
2πAB

exp
(

− cos2(N + θ/2)
2A2

)∫∞

−∞
|y|exp

(

− y +
(

sin(N + θ/2)/2
)2

2B2

)

dy

= 1
2πAB

exp
(

− cos2(N + θ/2)
2A2

− sin2(N + θ/2)
8B2

)

×
∫∞

−∞
|y|exp

(

− sin(N + θ/2)
2B2

y− y2

2B2

)

dy.

(3.4)

Now we let t = y/(B
√

2), which enables us to proceed with the above integration as

∫∞

−∞
|y|ϕ(0, y) dy = B

πA
exp

(

− cos2(N + θ/2)
2A2

− sin2(N + θ/2)
8B2

)

×
∫∞

−∞
|t|exp

(

− sin(N + θ)√
2B

t− t2
)

dt.

(3.5)

Now we let λ(N ,θ)≡ λ=−(sin(N + θ/2))/
√

2B and J(λ)= ∫∞0 t exp(λt− t2) dt. Then the
last integral that appears in (3.5) can be written as

∫∞

−∞
|t|exp

(
λt− t2) dt =

∫∞

0
t
(
eλt + e−λt

)
e−t

2
dt = J(λ) + J(−λ). (3.6)
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However, from the above definition of J(λ), it is easy to see that

J(λ)=−1
2

∫∞

0
eλtd

(
e−t

2)= 1
2

+
λ

2
exp

(
λ2

4

)∫∞

0
exp

(

−
(

t− λ

2

)2
)

dt

= 1
2

+
λ
√
π

4
exp

(
λ2

4

)

+
λ

2
exp

(
λ2

4

)

erf
(
λ

2

)

,

(3.7)

where erf(x) = ∫ x0 exp(−u2)du. In the derivation of (3.7), use has been made of the fol-
lowing:

∫∞

0
exp

(

−
(

t− λ

2

)2)

=
∫ 0

−λ/2
e−u

2
du+

∫∞

0
e−u

2
du=

√
π

2
+ erf

(
λ

2

)

. (3.8)

Therefore, from (3.6) and (3.7) we have

∫∞

−∞
|t|exp

(
λt− t2) dt = 1 + |λ|exp

(
λ2

4

)

erf
( |λ|

2

)

. (3.9)

This together with (3.5) gives

∫∞

−∞
|y|ϕ(0, y) dy = B

πA
exp

{

− cos2(N + θ/2)
2A2

− sin2(N + θ/2)
8B2

}

+

∣
∣sin(N + θ/2)

∣
∣

πA
√

2
exp

{

− cos2(N + θ/2)
2A2

}

erf
{∣
∣
∣
∣

sin(N + θ/2)
2
√

2B

∣
∣
∣
∣

}

.

(3.10)

Therefore, E�(a,b) can be obtained by integrating (3.10) with respect to θ in the interval
(a,b). To this end, we need the following characteristics of the polynomial TN (θ) and its
derivative T′N (θ). As mentioned above, cov(TN (θ),T′N (θ))= 0. Also,

A2 = var
(
PN (θ)

)= var
(
TN (θ)

)= σ2N ,

B2 = var
(
P′N (θ)

)= var
(
T′N (θ)

)= σ2
N−1∑

j=0

( j + 1/2)2

= σ2
{
N(N − 1)(2N − 1)

6
+
N(N − 1)

2
+
N

4

}

= Nσ2

3

(

N2− 1
4

)

.

(3.11)
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Therefore, from the Kac-Rice formula, (3.1), (3.6), (3.11), and for all sufficiently large N ,
we obtain

E�(0,2π)=
∫ 2π

0

{
B

πA
exp

(

− cos2(N + θ/2)
2A2

− sin2(N + θ/2)
8B2

)

+

∣
∣sin(N + θ)

∣
∣

πA
√

2
exp

(

− cos2(N + θ/2)
2A2

)

erf
(∣
∣
∣
∣

sin(N + θ/2)
2
√

2B

∣
∣
∣
∣

)}

dθ

∼2N√
3
.

(3.12)

Note that the first equality for E�(0,2π) in the above formula as well as (3.11) is valid for
all N , which is a much stronger result than the one we stated here. However, the gain in
stating such an untidy result does not justify the advantage of the generalization.
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