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We generalize the Cauchy distribution so that we can have asymmetrical tails. This allows
us to obtain unusual laws of large numbers involving weighted sums of these random
variables. Unusual in the sense that even though in every case E|X| = ∞, we can still
obtain a nonzero limit for these weighted sums.
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1. Introduction

In this paper, we observe weighted sums of what we call asymmetrical Cauchy random
variables. They are the usual Cauchy random variables with a slight twist. If our random
variables were symmetrical, then the limit to all of our theorems would be zero, which
certainly holds true in the case where our two parameters p and q are equal, but is of
minor interest. The density we use is

f (x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p

π
(
1 + x2

) , if x ≥ 0,

q

π
(
1 + x2

) , if x < 0,
(1.1)

where p+ q = 2. If we let p = q = 1, we get the usual Cauchy distribution.
Our goal is to establish laws of large numbers for weighted sums of these random

variables. It should be noted that E|X| =∞ in every case. We will show which sequences
of constants {an, n ≥ 1} and {bn, n ≥ 1} will allow our partial sums

∑N
n=1 anXn/bN to

converge to a nonzero constant.
As usual, we define lgx = log(max{e,x}) and lg2 x = lg(lgx). We use the constant C to

denote a generic real number that is not necessarily the same in each appearance. Before
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we present our theorems there is a crucial lemma that all our results hinge upon. The
proof follows directly from L’Hopital’s Rule, so we will omit it.

Lemma 1.1.

lim
x→∞

π− 2arctanx
x−1

= 2. (1.2)

2. Strong law

From past results we know that only certain types of coefficients will allow us to establish
a strong law. It turns out that an must be of the order n−1. Naturally we can multiply this
weight by a slowly varying function such as our logarithms, but we must be careful how
far we go with that.

Theorem 2.1. If {Xn, n≥ 1} are i.i.d. asymmetrical Cauchy random variables, then for all
β > 0 one has

lim
N→∞

∑N
n=1

(
(lgn)β−2/n

)
Xn

(lgN)β
= p− q

πβ
almost surely. (2.1)

Proof. Let an = (lgn)β−2/n, bn = (lgn)β, and cn = bn/an = n(lgn)2. We use the partition

1
bN

N∑

n=1

anXn = 1
bN

N∑

n=1

an
[
XnI

(∣
∣Xn

∣
∣≤ cn

)−EXI
(|X| ≤ cn

)]

+
1
bN

N∑

n=1

anXnI
(∣
∣Xn

∣
∣ > cn

)
+

1
bN

N∑

n=1

anEXI
(|X| ≤ cn

)
.

(2.2)

The first term vanishes almost surely by the Khintchine-Kolmogorov convergence the-
orem, see [1, page 113], and Kronecker’s lemma since

∞∑

n=1

1
c2
n
EX2I

(|X| ≤ cn
)=

∞∑

n=1

1
c2
n

[∫ 0

−cn

qx2dx

π
(
1 + x2

) +
∫ cn

0

px2dx

π
(
1 + x2

)

]

≤ C
∞∑

n=1

1
c2
n

[∫ 0

−cn
dx+

∫ cn

0
dx

]

≤ C
∞∑

n=1

1
cn
= C

∞∑

n=1

1
n(lgn)2

<∞.

(2.3)
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The second term vanishes, with probability one, by the Borel-Cantelli lemma and our
lemma since

∞∑

n=1

P
{|X| > cn

}=
∞∑

n=1

[∫ −cn

−∞
qdx

π
(
1 + x2

) +
∫∞

cn

pdx

π
(
1 + x2

)

]

= 1
π

∞∑

n=1

[

− qarctancn +
qπ

2
+
pπ

2
− parctancn

]

= p+ q

2π

∞∑

n=1

[
π− 2arctancn

]≤ C
∞∑

n=1

1
cn
= C

∞∑

n=1

1
n(lgn)2

<∞.

(2.4)

The truncated first moment is

EXI
(|X| ≤ cn

)=
[∫ 0

−cn

qxdx

π
(
1 + x2

) +
∫ cn

0

pxdx

π
(
1 + x2

)

]

= 1
2π

[− q lg
(
1 + c2

n

)
+ p lg

(
1 + c2

n

)]

= p− q

2π
lg
(
1 + c2

n

)
∼

p− q

π
lgcn ∼

p− q

π
lgn.

(2.5)

Therefore

∑N
n=1 anEXI

(|X| ≤ cn
)

bN
∼

(p− q)
∑N

n=1 (lgn)β−1/n

π(lgN)β
−→ p− q

πβ
, (2.6)

which completes the proof. �

3. Weak law

In order to establish a strong law, with nonzero limit, for these types of random variables
one is forced to set an to be some slowly varying function divided by n, while bn must also
be slowly varying. If one wants to try more conventional constants such as an = 1 and
bn = n, we will have to set our sights a bit lower and settle for a weak law.

Theorem 3.1. If {Xn, n≥ 1} are i.i.d. asymmetrical Cauchy random variables, then for all
α >−1 and any slowly varying function L(·) one has as N →∞

∑N
n=1n

αL(n)Xn

Nα+1L(N) lgN
P−→ p− q

π(α+ 1)
. (3.1)

Proof. This proof is a consequence of the degenerate convergence theorem which can be
found on [1, page 356]. As usual, set an = nαL(n) and bn = nα+1L(n) lgn. By choosing N
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sufficiently large, we have bN/an as large as we wish, thus for all ε > 0, we have via our
lemma

N∑

n=1

P
{

|X| ≥ εbN
an

}

=
N∑

n=1

[∫ −εbN /an

−∞
qdx

π
(
1 + x2

) +
∫∞

εbN /an

pdx

π
(
1 + x2

)

]

= 1
π

N∑

n=1

[

− qarctan
εbN
an

+
qπ

2
+
pπ

2
− parctan

εbN
an

]

= 1
π

N∑

n=1

[

(p+ q)
π

2
− (p+ q)arctan

εbN
an

]

= 1
π

N∑

n=1

[

π− 2arctan
εbN
an

]

<
C
∑N

n=1 an
bN

= C
∑N

n=1n
αL(n)

Nα+1L(N) lgN
<

C

lgN
−→ 0,

(3.2)

and

N∑

n=1

a2
n

b2
N

EX2I
(

|X| ≤ bN
an

)

=
N∑

n=1

a2
n

b2
N

[∫ 0

−bN /an

qx2dx

π
(
1 + x2

) +
∫ bN /an

0

px2dx

π
(
1 + x2

)

]

<
C

b2
N

N∑

n=1

a2
n

[∫ 0

−bN /an
dx+

∫ bN /an

0
dx

]

<
C

b2
N

N∑

n=1

a2
n

[
bN
an

]

= C
∑N

n=1 an
bN

<
C

lgN
−→ 0

(3.3)

as in the previous calculation.
As for our truncated expectation, using our work from the proof of Theorem 2.1, we

have

N∑

n=1

an
bN

EXI
(

|X| ≤ bN
an

)

∼

p− q

π

N∑

n=1

an
bN

lg
bN
an
= p− q

πbN

N∑

n=1

an
[

lg
(
bN
)− lg

(
an
)]

= p− q

πNα+1L(N) lgN

N∑

n=1

nαL(n)
[

lg
(
Nα+1L(N) lgN

)− lg
(
nαL(n)

)]

= p− q

π

[
(α+ 1)

∑N
n=1n

αL(n)
Nα+1L(N)

+

∑N
n=1n

αL(n) lg
(
L(N)

)

Nα+1L(N) lgN

+

∑N
n=1n

αL(n) lg2N

Nα+1L(N) lgN
− α

∑N
n=1n

αL(n) lgn
Nα+1L(N) lgN

−
∑N

n=1n
αL(n) lg

(
L(n)

)

Nα+1L(N) lgN

]

.

(3.4)
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The first term converges to one since

(α+ 1)
∑N

n=1n
αL(n)

Nα+1L(N)
−→ α+ 1

α+ 1
= 1. (3.5)

The second term converges to zero since

∑N
n=1n

αL(n) lg
(
L(N)

)

Nα+1L(N) lgN
<
C lg

(
L(N)

)

lgN
−→ 0 (3.6)

using the fact that L(·) is slowly varying. Similarly the third term is bounded above by

C lg2N

lgN
−→ 0. (3.7)

However, the fourth term

−α∑N
n=1n

αL(n) lg(n)
Nα+1L(N) lgN

−→ −α
α+ 1

. (3.8)

Lastly, we have

∑N
n=1n

αL(n) lg
(
L(n)

)

Nα+1L(N) lgN
<
C lg

(
L(N)

)

lgN
−→ 0. (3.9)

Collecting all our terms we have

N∑

n=1

an
bN

EXI
(

|X| ≤ bN
an

)

−→ p− q

π

[

1− α

α+ 1

]

= p− q

π(α+ 1)
(3.10)

which completes this proof. �

4. Discussion

It is important to note here that there is not a comparable strong law to Theorem 3.1. We
see that in the ensuing result.

Theorem 4.1. If {Xn, n≥ 1} are i.i.d. asymmetrical Cauchy random variables, then for all
α >−1 and any slowly varying function L(·) one has

limsup
N→∞

∣
∣
∣
∣
∣

∑N
n=1n

αL(n)Xn

Nα+1L(N) lgN

∣
∣
∣
∣
∣
=∞ almost surely. (4.1)
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Proof. We once again use our lemma, but now in the opposite direction. Here an =
nαL(n), bn = nα+1L(n) lgn, and cn = n lgn. If M > 0, then

∞∑

n=1

P
{|X| >Mcn

}=
∞∑

n=1

[∫ −Mcn

−∞
qdx

π
(
1 + x2

) +
∫∞

Mcn

pdx

π(1 + x2)

]

= 1
π

∞∑

n=1

[

− qarctan
(
Mcn

)
+
qπ

2
+
pπ

2
− parctan

(
Mcn

)
]

= 1
π

∞∑

n=1

[

(p+ q)
π

2
− (p+ q)arctan

(
Mcn

)
]

= 1
π

∞∑

n=1

[
π− 2arctan

(
Mcn

)]≥ C
∞∑

n=1

1
cn
= C

∞∑

n=1

1
n lgn

=∞.

(4.2)

Thus

limsup
n→∞

∣
∣
∣
∣
anXn

bn

∣
∣
∣
∣=∞ almost surely, (4.3)

which implies that

limsup
N→∞

∣
∣
∣
∣
∣

∑N
n=1n

αL(n)Xn

Nα+1L(N) lgN

∣
∣
∣
∣
∣
=∞ almost surely, (4.4)

and thus the proof is complete. �
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