
Hindawi Publishing Corporation
Journal of Applied Mathematics and Stochastic Analysis
Volume 2007, Article ID 72326, 19 pages
doi:10.1155/2007/72326

Research Article
Jump Telegraph Processes and Financial Markets
with Memory

Nikita Ratanov

Received 21 November 2006; Revised 22 April 2007; Accepted 9 August 2007

The paper develops a new class of financial market models. These models are based on
generalized telegraph processes with alternating velocities and jumps occurring at switch-
ing velocities. The model under consideration is arbitrage-free and complete if the direc-
tions of jumps in stock prices are in a certain correspondence with their velocity and with
the behaviour of the interest rate. A risk-neutral measure and arbitrage-free formulae
for a standard call option are constructed. This model has some features of models with
memory, but it is more simple.
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1. Introduction

It is widely recognized that the dynamics of asset returns cannot be adequately described
by geometric Brownian motion with constant volatility. Due to the market efficiency,
alternative models are based on random processes with independent increments (Brow-
nian motion, jump diffusions, and the variance gamma process). The development of
non-semimartingale models is focused mainly on accounting for the dependence of as-
set prices on the past (long-term memory processes, fractional Brownian motion, etc.).
However, till now there is still no commonly accepted theory on this topic, nor adequate
uses of existing theoretical results in practice (see, e.g., [1]).

On the other hand, models which are based on pure jump processes with independent
increments recently were widely proposed (see, e.g., [2–4]). Carr et al. [2] empirically
show that the diffusion component could be ignored, if the pure jump process allows
infinite activity. This means that there are infinitely many small jumps which asymptoti-
cally model a diffusion component. Usually these models are incomplete.
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This paper proposes a different model. As a basis for building, we take a pure jump
process (σ(t), t ≥ 0) with values ±1 and (finite) transition probability intensities λ±. Let
c±, r±, h± be real numbers such that c+ > c−, r± > 0, and h± > −1. We introduce the
processes (cσ(t), t ≥ 0), (hσ(t), t ≥ 0), and (rσ(t), t ≥ 0) and we define Xs = (Xs(t), t ≥ 0)
by Xs(t)=

∫ t
0 cσ(τ) dτ and a pure jump process Js = (Js(t), t ≥ 0) with alternating jumps of

sizes h±. The evolution of the risky asset S(t) is determined by a stochastic exponential of
the sum Xs + Js. The risk-free asset is given by the usual exponential of the process Ys =
(Ys(t), t ≥ 0) = (

∫ t
0 rσ(τ) dτ, t ≥ 0). Here and below the subscript s indicates the starting

value s= σ(0) of σ(t).
In view of such trajectories, the market is set up as a continuous process that evolves

with velocities c+ or c−, changes the direction of movement from c± to c∓, and exhibits
jumps of sizes h± whenever velocity changes. The different parameters for up and down
movements in particular lead to a gain/loss asymmetry.

The interest rate in the market is stochastic with the values r± such that (c± − r±)h± < 0
which means that the current trend of discounted prices and the direction of the next
price jump should be opposite. The processes Xs, s = ± are defined by the pair of states
(c±,λ±) and are called telegraph processes with states (c±,λ±). They describe continuous
price trends (upward or downward) between random instants. Changes in these trends
are accompanied by jumps of sizes h±. Our model uses parameters c± to capture bullish
and bearish trends in a market evolution, and values h± to describe sizes of possible jumps
and spikes. Thus, we study a model that is both realistic and general enough to enable us
to incorporate different trends and extreme events. This model describes adequately the
processes on oversold and overbought markets, when changes on the market tendencies
accumulate in the course of time.

Sections 2 and 3 deal with the properties of such processes and the mathematical
model of the market. Among the relevant results, we construct a unique martingale mea-
sure based on Girsanov’s theorem. This measure guarantees the absence of arbitrage in
our setting and shows that, under some scaling normalization, our model converges to
that of Black-Scholes in distribution. The final short section (Section 4) explains memory
features of the proposed model in terms of historical volatility.

Telegraph processes have been studied before in different probabilistic and financial as-
pects (see, e.g., [5–8]). These processes have been exploited for stochastic volatility mod-
eling [9], in actuarial problems [10], as well as for obtaining a “telegraph analog” of the
Black-Scholes model (see Di Crescenzo and Pellerey [11]). In contrast with the latter pa-
per by Di Crescenzo and Pellerey, we use more complicated and delicate construction of
such a model to avoid arbitrage and to develop an adequate option pricing theory in this
framework.

2. Jump telegraph processes

Let (Ω,�,P) be a complete probability space, and let λ± be positive numbers. We con-
sider two counting Poisson processes N+ = (N+(t), t ≥ 0) and N− = (N−(t), t ≥ 0) with
alternating intensities λ+,λ−,λ+, . . . and λ−,λ+,λ−, . . ., respectively, that is, as Δt→ 0

P
(
N+(t+Δt)= 2n+ 1 |N+(t)= 2n

)= λ+Δt+ o(Δt),
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P
(
N+(t+Δt)= 2n+ 2 |N+(t)= 2n+ 1

)= λ−Δt+ o(Δt),

P
(
N−(t+Δt)= 2n+ 1 |N−(t)= 2n

)= λ−Δt+ o(Δt),

P
(
N−(t+Δt)= 2n+ 2 |N−(t)= 2n+ 1

)= λ+Δt+ o(Δt),

n= 0,1,2, . . . .

(2.1)

Further we will consider all stochastic processes subscribed by + or − to be adapted to
the filtrations F+ = (F+

t )t≥0 and F− = (F−t )t≥0 generated by N+ and N−, respectively. We
denote σ+(t)= (−1)N+(t) and σ−(t)=−(−1)N−(t).

Let h± ∈ (−1,∞) and c± be real numbers. Consider the (right continuous) processes

X+(t)=
∫ t

0
cσ+(τ) dτ, J+(t)=

∫ t

0
hσ+(τ) dN+(τ),

X−(t)=
∫ t

0
cσ−(τ) dτ, J−(t)=

∫ t

0
hσ−(τ) dN−(τ).

(2.2)

The subscripts ± indicate the initial state of the processes.
Introducing the jumping times τ1,τ2, . . . of the processes N± and setting τ0 = 0, we have

the following representation (e.g., for the subscript +):

X+(t)=
N+(t)∑

j=1

cσ+(t j−)
(
τj − τj−1

)
+ cσ+(t)

(
t− τN+(t)

)
, J+(t)=

N+(t)∑

j=1

hσ+(τj−). (2.3)

The processes X± = (X±(t), t ≥ 0) are usually referred to as (integrated) telegraph pro-
cess (see Goldstein [5] and Kac [12, 6]). The processes J± = (J±(t), t ≥ 0) are pure jump
processes with alternating jump sizes h±. Let us introduce the standard telegraph and
jump processes associated with c± = ±1 and h± = ±1:

X0
+(t)=

∫ t

0
σ+(τ)dτ, J0

+(t)= 1{N+(t) is odd} = 1− σ+(t)
2

,

X0
−(t)=

∫ t

0
σ−(τ)dτ, J0

−(t)=−1{N+(t) is odd} = −1− σ−(t)
2

.

(2.4)

Proposition 2.1. The processes X± and J± are linearly connected with X0± and J0±:

X±(t)= aX0
±(t) +At, J±(t)= bJ0

±(t) +BN±(t), (2.5)

where A= (c+ + c−)/2, a= (c+− c−)/2, B = (h+ +h−)/2, and b = (h+−h−)/2.
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Proof. We only consider the case related to the subscript +. The other case is quite similar.
We have

X+(t)= c+

∫ t

0
1{N+(τ) is even}dτ + c−

∫ t

0
1{N+(τ) is odd}dτ

= c+t− (c+− c−)
∫ t

0
1{N+(τ) is odd}dτ

= (A+ a)t− 2a
∫ t

0
1{N+(τ) is odd}dτ.

(2.6)

For c± = ±1, we find that X0
+(t) = t− 2

∫ t
0 1{N+(τ) is odd}dτ. As a byproduct, X+(t) = At +

aX0
+(t).
On the other hand,

J+(t)=
N+(t)∑

j=1

hσ+(τj−)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
h+ +h−

)N+(t)
2

= BN+(t), if N+(t) is even,

(
h+ +h−

)N+(t)− 1
2

+h+ = BN+(t) + b, if N+(t) is odd,

= BN+(t) + b1{N+(t) is odd} = BN+(t) + bJ0
+(t).

(2.7)

�

The next theorem could be considered as a version of the Doob-Meyer decomposition
for telegraph processes.

Theorem 2.2. The jump telegraph processes Z+ := X+ + J+ and Z− := X− + J− are martin-
gales if and only if c+ =−λ+h+ and c− = −λ−h−.

The proof is based on direct calculations of the conditional expectations E(X±(t) +
J±(t) | F±s ) (see Remark 2.10 below).

We can obtain the exact distribution of jump telegraph processes Z± = X± + J± in
terms of generalized probability densities p±(x, t), which are defined by

P
(
X+(t) + J+(t)∈ Δ

)=
∫

Δ
p+(x, t)dx,

P
(
X−(t) + J−(t)∈ Δ

)=
∫

Δ
p−(x, t)dx

(2.8)

for any Borelian set Δ. By generalized densities we mean that the distributions of X± + J±
are made up of an absolutely continuous part (i.e., a genuine density) and a discrete part.
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Theorem 2.3. Functions p± solve the system

∂p+

∂t
(x, t) + c+

∂p+

∂x
(x, t)=−λ+

[
p+(x, t)− p−

(
x−h+, t

)]
,

∂p−
∂t

(x, t) + c−
∂p−
∂x

(x, t)=−λ−
[
p−(x, t)− p+

(
x−h−, t

)]
(2.9)

with initial condition p±(x,0)= δ(x).

Proof. First notice that from the properties of counting Poisson process (see, e.g., [13])
for t2 > t1 ≥ 0 it follows that

Z±
(
t2
)= Z±

(
t1
)

+
∫ t2

t1
cσ±(τ) dτ +

∫ t2

t1
hσ±(τ) dN±(τ)= Z±

(
t1
)

+Z′σ±(t1)

(
t2− t1

)
, (2.10)

where Z′± are copies of the processes Z± which are independent of Z±.
Next, notice that Z±(Δt)= c±Δt, if N±(Δt)= 0, and Z±(Δt)= c±Δt+h± + o(Δt), Δt→

0, if N±(Δt)= 1. Moreover,

N±(Δt)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 with probability 1− λ±Δt+ o(Δt),

1 with probability λ±Δt+ o(Δt),

≥ 2 with probability o(Δt)

Δt −→ 0. (2.11)

Applying (2.10) with the choice t1 = Δt, t2 = t+Δt we have

p+(x, t+Δt)

= P
{
Z+(t+Δt)∈ dx

}

dx

= (1− λ+Δt)
P
{
Z+(t)∈ dx− c+Δt

}

dx

+ λ+Δt
P
{
Z−(t)∈ dx−h+− c+Δt− o(Δt)

}

dx
+ o(Δt)

= (
1− λ+Δt

)
p+

(
x− c+Δt, t

)
+ λ+Δtp−

(
x−h+− c+Δt− o(Δt), t

)
+ o(Δt),

(2.12)

which immediately implies the first equation of (2.9). The second equation can be ob-
tained similarly. �

Remark 2.4. Applying Kac’s trick (see [12]), it is easy to prove that in the particular case
c+ = +1, c− = −1, λ− = λ+ := λ, and h± = 0 the densities p±(x, t) satisfy the so-called
telegraph equation

∂2u

∂t2
+ 2λ

∂u

∂t
= ∂2u

∂x2
, (2.13)

which is a damped wave equation.
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Conditioning on the number of switches one can show that system (2.9) has the fol-
lowing solution:

p±(x, t)= e−Λat−λax
∞∑

n=0

q(n)
±

(
x− j(n)

± , t
)
, (2.14)

where

λa = λ+− λ−
2a

, Λa = λ± − λac± = c+λ− − c−λ+

2a
, 2a= c+− c−,

j(n)
± =

⎧
⎪⎨

⎪⎩

nB, n= 2k,

(n− 1)B+h±, n= 2k+ 1,
k = 0,1,2, . . . .

(2.15)

Here q(0)
± (x, t)= δ(x− c±t) and, setting θ(x, t)= 1{c−t<x<c+t}, for n≥ 1

q(2n)
+ (x, t)= λn+λ

n−
(2a)2n

·
(
c+t− x

)n−1(
x− c−t

)n

(n− 1)!n!
θ(x, t),

q(2n)
− (x, t)= λn+λ

n−
(2a)2n

·
(
c+t− x

)n(
x− c−t

)n−1

n!(n− 1)!
θ(x, t),

(2.16)

and for n≥ 0

q(2n+1)
+ (x, t)= λn+1

+ λn−
(2a)2n+1

·
(
c+t− x

)n(
x− c−t

)n

(n!)2
θ(x, t),

q(2n+1)
− (x, t)= λn+λ

n+1−
(2a)2n+1

·
(
c+t− x

)n(
x− c−t

)n

(n!)2
θ(x, t).

(2.17)

Alternatively one can obtain formulae (2.14)–(2.17) by applying the results of Zacks
[8]. There, the probability densities p±(x, t) are expressed in terms of Poisson and Erlang
densities.

Formulae (2.14)–(2.17) give the following rules of changes in the intensities λ±: if λ+

is changed to λ′+ and λ− is changed to λ′−, the probability densities p± will be changed to

p′±(x, t)= e−Λ
′
at−λ′ax

∞∑

n=0

q′(n)
±

(
x− j(n)

± , t
)

(2.18)

where λ′a = (λ′+− λ′−)/2a, Λ′a = (c+λ′− − c−λ′+)/2a, and q′(n)
± (x, t)= q(n)

± (x, t)× κ(n)
λ′/λ,± with

κ(2n)
λ′/λ,± =

(
λ′+
λ+

)n(λ′−
λ−

)n

,

κ(2n+1)
λ′/λ,+ =

(
λ′+
λ+

)n+1(λ′−
λ−

)n

,

κ(2n+1)
λ′/λ,− =

(
λ′+
λ+

)n(λ′−
λ−

)n+1

,

n= 0,1, . . . . (2.19)
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Remark 2.5. In particular case, if B = h+ +h− = 0, then formulae (2.14)–(2.17) become

p±(x, t)= e−λ±t ·δ(x− c±t
)

+
e−Λt−λx

2a

[
λ±I0

(√
λ+λ−

(
c+t− x+h±

)(
x−h± − c−t

)
/a
)
θ(x−h±, t)

+
√
λ+λ−

(
c+t− x

x− c−t

)∓1/2

I1

(√
λ+λ−

(
c+t− x

)(
x− c−t

)
/a
)
θ(x, t)

]
,

(2.20)

where I0(z) =∑∞
n=0 (z/2)2n/(n!)2 and I1(z) = I′0(z) are usual modified Bessel functions.

Compare with [14].

Using (2.9) one can deduce equations for E[ f (X±(t) + J±(t))]. More precisely, we have
the following corollary.

Corollary 2.6. Let f = ( f (x),x ∈ R) and α± = (α±(t), t ≥ 0) be smooth deterministic
functions. Then

u±(x, t)= E[ f (x−α±(t) +X±(t) + J±(t)
)]

(2.21)

form a solution of the system

∂u+

∂t
(x, t)− (

c+− α̇+(t)
)∂u+

∂x
(x, t)=−λ+

[
u+(x, t)−u−(x+β+(t), t)

]
,

∂u−
∂t

(x, t)− (
c− − α̇−(t)

)∂u−
∂x

(x, t)=−λ−
[
u−(x, t)−u+

(
x+β−(t), t

)]
(2.22)

with β+(t)= h+− (α+(t)−α−(t)), β−(t)= h− − (α−(t)−α+(t)), and α̇± = dα±/d t.

Proof. Notice that by definition u±(x, t)= ∫∞
−∞ f (x−α±(t) + y)p±(y, t)d y. Hence

∂u±
∂t

(x, t)=
∫∞

−∞
f
(
x−α±(t) + y

)∂p±
∂t

(y, t)d y− α̇±(t)
∂u±
∂x

(x, t). (2.23)

Applying (2.9) immediately yields (2.22). �

We apply (2.22) to deduce formulae for the mean value and the variance of the jump
telegraph process:

m±(t)= E(X±(t) + J±(t)
)
, s±(t)=Var

(
X±(t) + J±(t)

)
. (2.24)

Seeking simplicity it will be done only in the symmetric case.

Theorem 2.7. Suppose λ− = λ+ := λ and set γ+ = −2a(a/λ + h+), γ− = −2a(a/λ− h−),
and Φλ(t)= (1− e−2λt)/(2λt). Then

m±(t)= [
A+ λB± (a+ λb)Φλ(t)

]
t, (2.25)

s±(t)=
[
a2

λ
+ λB2 +

(a+ λb)2Φ2λ(t)
λ

+ γ±Φλ(t)± 2B(a+ λb)e−2λt
]
t. (2.26)
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Proof. First, we apply Corollary 2.6 with the choices f (x)= x and α±(t)= 0. Then β±(t)
= h± and u±(x, t)= E(x+X±(t) + J±(t))= x+m±(t). We obviously have (∂u±/∂x)(x, t)=
1, (∂u±/∂t)(x, t)= (dm±/d t)(t), and u±(x, t)−u∓(x+β±(t), t)=m±(t)−m∓(t)−h±. By
(2.22) we obtain the following system for m±:

dm+

dt
=−λ(m+−m−

)
+ c+ + λh+,

dm−
dt

=−λ(m− −m+
)

+ c− + λh−

(2.27)

with zero initial conditions.
Now, with the choices f (x) = x2 and α±(t) =m±(t), we have β±(t) = h± − (m±(t)−

m∓(t)) and u±(x, t) = E[(x − m±(t) + X±(t) + J±(t))2] = x2 + s±(t). Therefore,
(∂u±/∂x)(x, t)= 2x, (∂u±/∂t)(x, t)= (ds±/d t)(t), and u±(x, t)−u∓(x+β±(t), t)= s±(t)−
s∓(t)− 2β±(t)x−β±(t)2. Putting this into (2.22) we get

ds±
d t

(t)= 2x
(
c± + λβ±(t)− dm±

d t
(t)

)
− λ

(
s±(t)− s∓(t)

)
+ λβ±(t)2

=−λ(s±(t)− s∓(t)
)

+ λ
(
h± −

(
m±(t)−m∓(t)

))2
(2.28)

since by (2.27) c± + λβ±(t)− (dm±/d t)(t)= 0. This yields the following system for s±:

ds+

dt
=−λ(s+− s−

)
+ λ

(
h+ +m− −m+

)2
,

ds−
dt

=−λ(s− − s+
)

+ λ
(
h− +m+−m−

)2
(2.29)

with zero initial conditions.
Systems (2.27) and (2.29) can be rewritten in a matrix form. Setting Λ =

(
−λ λ
λ −λ

)
,

m= (m+
m−

)
, s= ( s+

s−
)
, k=

(
c++λh+
c−+λh−

)
, l=

(
λ(h++m−−m+)2

λ(h−+m+−m−)2

)
, we have

dm
d t

(t)=Λm(t) + k,
ds
d t

(t)=Λs(t) + l(t). (2.30)

Hence

m(t)=
∫ t

0
e(t−τ)Λkdτ, s(t)= λ

∫ t

0
e(t−τ)Λl(τ)dτ. (2.31)

Observing the identity Λ2 = −2λΛ which implies Λn = (−2λ)n−1Λ for any n ≥ 1, we
deduce etΛ = I +

∑∞
n=1((−2λ)n−1tn/n!)Λ= I + (1/2λ)(1− e−2λt)Λ and then

∫ t

0
e(t−τ)Λ dτ = tI +

1
2λ

(
t− 1

2λ

(
1− e−2λt )

)
Λ= t

[
I +

1
2λ

(
1−Φλ(t)

)
Λ
]
. (2.32)
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As a result, we get m(t)= t[(I + (1/2λ)Λ)k− (1/2λ)Φλ(t)Λk], where

Λk= (
c+− c− + λ

(
h+−h−

))
(
−λ
λ

)

= (a+ λb)

(
−2λ
2λ

)

,

(
I +

1
2λ

Λ
)

k= 1
2

(
1 1
1 1

)(
c+ + λh+

c− + λh−

)

= 1
2

(
c+ + c− + λ

(
h+ +h−

))
(

1
1

)

= (A+ λB)

(
1
1

)

.

(2.33)

Thus m(t)= t
( (A+λB)+(a+λb)Φλ(t)

(A+λB)−(a+λb)Φλ(t)

)
, from which (2.25) emerges.

Next, in order to determine s, we note that m+(t)−m−(t)= 2(a+ λb)Φλ(t) and then

l(τ)= λ

(
h2

+

h2−

)

+ 4λ(a+ λb)τΦλ(τ)

(
−h+

h−

)

+ 4λ(a+ λb)2τ2Φλ(τ)2

(
1
1

)

. (2.34)

Putting this expression into (2.31), we see that we need to evaluate the integrals
∫ t

0(2λτ)Φλ(τ)e(t−τ)Λ dτ and
∫ t

0(2λτ)2Φλ(τ)2 e(t−τ)Λ
(

1
1

)
dτ.

First, we have

∫ t

0
(2λτ)Φλ(τ)e(t−τ)Λ dτ

=
∫ t

0

(
1− e−2λτ )

(
I +

1
2λ

(
1− e−2λ(t−τ) )Λ

)
dτ

=
[∫ t

0

(
1− e−2λτ )dτ

](
I +

1
2λ

Λ
)
− 1

2λ

[∫ t

0

(
e−2λ(t−τ)−e−2λt )dτ

]
Λ

=
(
t− 1

2λ

(
1− e−2λt )

)(
I +

1
2λ

Λ
)
− 1

2λ

(
1

2λ

(
1− e−2λt )− t e−2λt

)
Λ

= t
(
1−Φλ(t)

)
I +

t

λ

(
1− (1 + λt)Φλ(t)

)
Λ.

(2.35)

Second, we have, since Λ( 1
1 )= (

0
0

)
and then e(t−τ)Λ

(
1
1

)= (
1
1

)
,

∫ t

0
(2λτ)2Φλ(τ)2 e(t−τ)Λ

(
1
1

)

dτ =
[∫ t

0

(
1− 2e−2λτ +e−4λτ )dτ

](
1
1

)

= t
(
1− 2Φλ(t) +Φ2λ(t)

)
(

1
1

)

.

(2.36)
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Now, in view of (2.32)–(2.36), (2.31) becomes

s(t)= λt
[
I +

1
2λ

(
1−Φλ(t)

)
Λ
](

h2
+

h2−

)

+ 2(a+ λb)t
[
(
1−Φλ(t)

)
I +

1
λ

(1− (1 + λt)Φλ(t))Λ
](−h+

h−

)

+
1
λ

(a+ λb)2t
(
1− 2Φλ(t) +Φ2λ(t)

)
(

1
1

)

(2.37)

with Λ
(−h+

h−

)
= λ

(
h++h−

−(h++h−)

)
= 2λB

(
1
−1

)
and Λ

(
h2

+

h2−

)
= λ

(
h2−−h2

+

h2
+−h2−

)
= 4λbB

(−1
1

)
. Thus

s(t)= λt

(
h2

+

h2−

)

+ 2(a+ λb)t
(
1−Φλ(t)

)
(−h+

h−

)

+ 2Bt
[
λb

(
1−Φλ(t)

)− 2(a+ λb)
(
1− (1 + λt)Φλ(t)

)]
(
−1
1

)

+
1
λ

(a+ λb)2t
(
1− 2Φλ(t) +Φ2λ(t)

)
(

1
1

)

(2.38)

from which we derive for instance

s+(t)=
[
λh2

+− 2(a+ λb)h+− 2λbB+ 4(a+ λb)B+
1
λ

(a+ λb)2
]
t

+ 2
[

(a+ λb)h+ + λbB− 2(a+ λb)B(1 + λt)− 1
λ

(a+ λb)2
]
tΦλ(t)

+
1
λ

(a+ λb)2tΦ2λ(t).

(2.39)

Replacing h+ by b+B, the coefficient of t in (2.39) writes

λ(b+B)2− 2(a+ λb)(b+B) + 2(2a+ λb)B+
a2

λ
+ 2ab+ λb2 = a2

λ
+ λB2 + 2(a+ λb)B,

(2.40)

that of 2tΦλ(t) in (2.39) writes

(a+ λb)(b+B)− (2a+ λb)B− a2

λ
− 2ab− λb2− 2(a+ λb)Bλt

=−a
(
a

λ
+B+ b

)
− 2(a+ λb)Bλt

= γ+− 2(a+ λb)Bλt.

(2.41)

Finally, writing the term−4(a+ λb)BλtΦλ(t) as−2(a+ λb)B+ 2(a+ λb)B e−2λt we eas-
ily deduce (2.26) for s+. The case of s− is quite similar. �



Nikita Ratanov 11

Remark 2.8. If the assumption λ+ = λ− is relaxed, the matrix Λ writes Λ=
(−λ+ λ+

λ− −λ−
)

and

Λ2 =−(λ+ + λ−)Λ. In this case etΛ = I + 1/(λ+ + λ−)(1− e−(λ++λ−)t)Λ and the expressions
of m± and s± become much more cumbersome.

Remark 2.9. The function m+ can be directly evaluated. Indeed, since

E
(
cσ+(τ)

)= c+P
{
N+(τ) is even

}
+ c−P

{
N+(τ) is odd

}

= 1
2
c+
(
1 + e−2λτ )+

1
2
c−

(
1− e−2λτ )

= A+ ae−2λτ ,

(2.42)

we have

E
(
X+(t)

)=
∫ t

0
E
(
cσ+(τ)

)
dτ =At+ a

1− e−2λt

2λ
= [

A+ aΦλ(t)
]
t. (2.43)

On the other hand, similarly, E(hσ+(τ))= B+ be−2λτ and since the increments of N+ are
independent, we have

E
(
J+(t)

)=
∫ t

0
E
(
hσ+(τ)

)
d
[
E
(
N+(τ)

)]

= λ
∫ t

0

(
B+ be−2λτ )dτ

= λ
[
B+ bΦλ(t)

]
t.

(2.44)

This confirms (2.25).

Remark 2.10. For the process X+ + J+ being a martingale, it is necessary (but not suffi-
cient) for its expectation to be constant in the course of time. This condition implies,
in view of (2.25), that A+ λB = a+ λb = 0 or, equivalently, that c+ + λh+ = c− + λh− = 0.
Hence, we retrieve the conditions stated in Theorem 2.2 in the symmetric case.

It can be checked that these conditions are sufficient by computing the conditional
expectation E[X+(t2) + J+(t2) | F+

t1 ] for 0≤ t1 ≤ t2. Indeed, we have

E
[(
X+

(
t2
)

+ J+
(
t2
))− (

X+
(
t1
)

+ J+
(
t1
)) | F+

t1

]

= E
[∫ t2

t1
cσ+(τ) dτ +

∫ t2

t1
hσ+(τ) dN+(τ) | F+

t1

]

= E
[∫ t2−t1

0
cσ+(τ+t1) dτ +

∫ t2−t1

0
hσ+(τ+t1) dN+

(
τ + t1

) | F+
t1

]
.

(2.45)

Using the Markov property of the processes σ+ and N+ which can be stated, for τ ≥ 0, as

σ+
(
τ + t1

)= σ ′σ+(t1)(τ), N+
(
τ + t1

)=N
(
t1
)

+N ′
σ+(t1)(τ), (2.46)
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where σ ′± and N ′± are copies of the processes σ± and N± which are independent of F+
t1 , we

obtain

E
[(
X+

(
t2
)

+ J+
(
t2
))− (

X+
(
t1
)

+ J+
(
t1
)) | F+

t1

]

= E′
[∫ t2−t1

0
cσ ′σ+(t1)(τ) dτ +

∫ t2−t1

0
hσ ′σ+(t1)(τ) dN ′

σ+(t1)(τ)
]

= E′[X ′σ+(t1)

(
t2− t1

)
+ J ′σ+(t1)

(
t2− t1

)]

=mσ+(t1)
(
t2− t1

)= [
A+ λB+ σ+

(
t1
)
(a+ λb)Φλ

(
t2− t1

)](
t2− t1

)
.

(2.47)

The prime superscript in E′ above means that the expectation applies to the functionals of
the processN ′. So, we have E(X+(t2) + J+(t2) | Ft1 )= X+(t1) + J+(t1) if and only ifA+ λB =
a+ λb= 0.

3. Market model based on jump telegraph processes

We introduce the following market model. The price of a risky asset S(t) follows the
equation

dS(t)= S(t−)d
(
Xs(t) + Js(t)

)
, t > 0, (3.1)

and the process (S(t), t ≥ 0) is right-continuous. Here Xs = (Xs(t), t ≥ 0) is a telegraph
process with velocity values c±, and Js = (Js(t), t ≥ 0) is a pure jump process with jump
values h± > −1, which are defined in (2.2), in a complete probability space (Ω,�s,Ps).
The initial state of the market is indicated by s=±1.

Integrating (3.1) we obtain

S(t)= S0�t
(
Xs + Js

)
(3.2)

where S0 = S(0), �t(·) denotes the stochastic exponential. It is easy to see that �t(Xs +
Js)= eXs(t) κs(t), where

κs(t)=
∏

τ≤t

(
1 +ΔJs(τ)

)=
Ns(t)∏

j=1

(
1 +hσs(τj−)

)
, s=±. (3.3)

Here the τj , j ≥ 1, are the jumping times of the processes N±.
Indeed,

�t(Z)= eZ(t)−(1/2)〈Z〉cont(t)
∏

0<τ≤t

(
1 +ΔZ(τ)

)
e−ΔZ(τ) (3.4)

(see, e.g., [13, pages 77–78]). Set Z = Xs + Js. As it follows from Theorem 2.2, the tele-
graph process without jumps cannot be a martingale. Hence 〈X + J〉cont = 0 and �t(Xs +
Js)= eXs(t)+Js(t)

∏
0<τ≤t(1 +ΔJs(τ))e−ΔJs(τ) = eXs(t)

∏
0<τ≤t(1 +ΔJs(τ)). Therefore

S(t)= S0 eXs(t) κs(t). (3.5)
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On the other hand, the price of the nonrisky asset (bank account) has the form

B(t)= eYs(t), Ys(t)=
∫ t

0
rσs(τ) dτ, (3.6)

where r+,r− > 0. Here again Ys = (Ys(t), t ≥ 0) is a telegraph process with velocity values
r±.

As usual (see, e.g., [15]), we define a new probability measure P∗s , which is equivalent
to the original measure Ps. Let

dP∗s
dPs

=�t
(
X∗s + J∗s

)= eX
∗
s (t) κ∗s (t), t ≥ 0, s=±, (3.7)

be the density of the new measure with respect to measure Ps. Here the jump values
h∗± are defined as follows: h∗± = −c∗±/λ± > −1. According to Theorem 2.2, for arbitrary
c∗±,c∗± < λ±, the processes X∗s + J∗s and (�t(X∗s + J∗s ), t ≥ 0) are martingales.

The following theorem describes changes in the distributions with respect to the new
measure (see the proof in [16]).

Theorem 3.1 (Girsanov’s theorem). Under the probability measure P∗s ,
(i) the process Ns = (Ns(t), t ≥ 0) is a Poisson process with alternating intensities λ∗+ =

λ+− c∗+ = λ+(1 +h∗+ ) and λ∗− = λ− − c∗− = λ−(1 +h∗−);
(ii) the processXs = (Xs(t), t ≥ 0) is a telegraph process with states (c+,λ∗+ ) and (c−,λ∗−).

We now assume that the parameters of the model (3.1)–(3.6) satisfy the conditions

r+− c+

h+
> 0,

r− − c−
h−

> 0. (3.8)

Using Theorem 2.2, under such conditions we can find a unique martingale measure
in the framework of the market (3.1)–(3.6). Recall that the measure P∗s , which is equiva-
lent to Ps, is a martingale measure if the process (B(t)−1S(t))t≥0 is a P∗s -martingale (see,
e.g., [15]). As before, s=± indicates the initial market state.

Applying Theorem 3.1, we can construct the martingale measure for model (3.5)–
(3.6).

Theorem 3.2. The measure P∗s , defined by the density Zs(t), t ≥ 0, is the martingale mea-
sure if and only if the velocity values c∗± satisfy

c∗+ = λ+− λ∗+ , c∗− = λ− − λ∗−, (3.9)

where

λ∗± =
r± − c±
h±

> 0. (3.10)

Moreover, under the probability measure P∗s , the process Ns is a Poisson process with alter-
nating intensities λ∗±.

Proof. According to Theorem 3.1, the process Xs−Ys is a telegraph process (with respect
to P∗s ) with the velocity values c± − r± and the alternating intensities λ∗± = λ± − c∗±. From
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Theorem 2.2, it follows that (Xs(t)−Ys(t) + Js(t), t ≥ 0) is the P∗s -martingale if and only
if

(
λ+− c∗+

)
h+ =−

(
c+− r+

)
,

(
λ− − c∗−

)
h− = −

(
c− − r−

)
. (3.11)

Hence c∗± = λ± + (c± − r±)/h± and h∗± = −c∗±/λ± = −1 + (r± − c±)/(λ±h±) > −1, and
the theorem is proved. �

In the framework of this model, option pricing formulae and hedging strategies are
completely constructed (see [17, 16]). The arbitrage-free price c of a call option with
expiry payoff (S(T)−K)+ can be calculated by the formula

c= cs = S0us
(
y,T ; λ±,0

)−Kus
(
y,T ; λ∗±,r±

)
, s=±, (3.12)

where λ± = λ∗±(1 +h±), λ∗± = (r± − c±)/h± > 0, y = lnK/S0.
For giving a representation of functions u±, we need several settings. Let us introduce

ρ(n)
± (t)= e−(λ−+r−)tΛ(n)

± P(n)
± (t) (3.13)

with Λ(n)
+ = (λ+)[(n+1)/2](λ−)[n/2], Λ(n)

− = (λ−)[(n+1)/2](λ+)[n/2], and

P(n)
± (t)= tn

n!
· 1F1

(
m(±)

n + 1; n+ 1; −δt),m(+)
n

= [n/2],m(−)
n

= [
(n− 1)/2

]
,δ = λ+− λ− + r+− r−.

(3.14)

Recall that the usual hypergeometric function 1F1(α;β;z) is defined as (see [18])

1F1(α;β;z)= 1 +
∞∑

n=1

α(α+ 1)···(α+n− 1)
n!β(β+ 1)···(β+n− 1)

zn = 1 +
∞∑

n=1

(α)n
n!(β)n

zn. (3.15)

Notice that P(2n+1)
+ ≡ P(2n+1)

− := P(2n+1), n = 0,1,2, . . .. Let us also introduce w(n)
± (p,q) =

e−(λ++r+)q−(λ−+r−)pΛ(n)
± v(n)

± (p,q), where for positive p, q, we define v(0)
− (p,q)≡ 0, v(0)

+ (p,q)

= e−δp, v(1)
± (p,q)= P(1)(p), and for n≥ 1

v(2n+1)
± (p,q)= P(2n+1)(p) +

n∑

k=1

qk

k!

k−1∑

j=0

δk− j−1βk, jP
(2n− j)
− (p),

v(2n)
+ (p,q)= P(2n)

+ (p) +P(2n−1)(p) +
n∑

k=2

qk

k!

k−2∑

j=0

δk− j−2βk−1, jP
(2n− j−2)
− (p),

v(2n)
− (p,q)= P(2n)

− (p) +
n−1∑

k=1

qk

k!

k∑

j=0

δk− jβk+1, jP
(2n− j)
− (p).

(3.16)

In (3.16) the coefficients βk, j , j < k, are defined as follows: βk,0 = βk,1 = βk,k−2 = βk,k−1 = 1,

βk, j =
(k− j)[ j/2]

[ j/2]!
. (3.17)
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With these settings on hand, functions u± can be expressed as

us
(
y,T ; λ±

)=
∞∑

n=0

u(n)
s

(
y− b(n)

s ,T ; λ±,r±
)
, b(n)

± =
n∑

j=0

ln
(
1 +hσ±(τj−)

)
, (3.18)

where u(n)
± is given by

u(n)
± (y, t)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, y > c+t

w(n)
±

(
c+t− y

2a
,
y− c−t

2a

)
, c−t ≤ y ≤ c+t,

ρ(n)
± (t), y < c−t,

n≥ 0. (3.19)

For the detailed proof of (3.12)–(3.16) (if r+ = r−) see [17].
It is interesting to analyze the problem of convergence to the famous Black-Scholes

model. First of all, note that the symmetric telegraph process associated with the param-
eters λ+ = λ− := λ, c+ = a, c− = −a converges to the standard Brownian motion (w(t), t ≥
0) if a,λ→∞, such that a2/λ→ 1 (see [12] or [19]).

The following theorem provides a similar connection under respective scaling be-
tween market model driven by geometric telegraph processes (with jumps) and geometric
Brownian motion.

Suppose that a,λ−,λ+ →∞, and h−,h+ → 0 such that

a2

λ±
−→ σ2,

√
λ±h± −→ α±. (3.20)

Although the jump telegraph process is of finite variation and of finite activity around
the origin, this scaling agrees with empirical observations of Carr et al. [2].

Theorem 3.3. Under scaling (3.20), assume that the following limit exists:

A+
λ+

2
ln
(
1 +h+

)
+
λ−
2

ln
(
1 +h−

)−→ μ. (3.21)

Then model (3.2) converges in distribution to the Black-Scholes model:

S(t)
D−→ S0 evw(t)+μt, (3.22)

where
D−→ denotes convergence in distribution, and v2 = (σ + (α+−α−)/2)2 + (α2

+ +α2−)/2.

Proof. Let f±(z, t) = E[ezX±(t) κ±(t)z] be the moment-generating function of lnS(t) =
X±(t) + lnκ±(t). We prove here the convergence

f±(z, t)−→ exp
(
μzt+

v2z2t

2

)
, (3.23)

which is sufficient for the convergence of pointwise distributions in (3.22).
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Recalling that X±(t)=At+ aX0±(t), where X0±(t)= ∫ t
0 σ±(τ)dτ, we get

f±(z, t)= E[ez(At+aX0±(t)) κ±(t)z
]= eAzt−λt

∞∑

n=0

∫∞

−∞
eazx−Λx κ(n)

± q(n)
±

(
x− j(n)

± , t
)

dx, (3.24)

where λ = (λ+ − λ−)/2, Λ = (λ+ + λ−)/2 and κ(n)
± are defined as in (2.19) with (1 + h±)z

instead of λ′±/λ± (and with a= 1).
Let p0

± be the (generalized) probability densities of the standard telegraph processes

X
0
±, which are controlled by the Poisson process with alternating intensities λ± = λ±(1 +

h±)z, and set Λ= (λ+ + λ−)/2, Λ= (λ+ + λ−)/2, λ= (λ+− λ−)/2, λ= (λ+− λ−)/2.
Using (2.14)–(2.17) (see also (2.18) and (2.19)), one can deduce

f±(z, t)= eAzt−Λt
∞∑

n=0

∫∞

−∞
eazx−λx q′(n)

±
(
x− j(n)

± , t
)

dx

= eAzt+(Λ−Λ)t
∫∞

−∞
eazx+(λ−λ)x p0

±(x, t)dx

= 1
a

eAtz+(Λ−Λ)t
∫∞

−∞
e(z+(λ−λ)/a)x p0

±

(
x

a
, t
)

dx.

(3.25)

Note that under scaling a2/λ± → σ2 we have the convergence to normal distribution
�(0, tσ2):

1
a
p0
±

(
x

a
, t
)
−→ 1

σ
√

2πt
e−x

2/(2σ2t) . (3.26)

Then, it follows from (3.21) that

Atz+ (Λ−Λ)t =Atz+ t
(
λ+

2

[(
1 +h+

)z − 1
]

+
λ−
2

[(
1 +h−

)z− 1
]
)

= tz
(
A+

λ+

2
ln
(
1 +h+

)
+
λ−
2

ln
(
1 +h−

)
)

+
tz2

4

[
λ+ ln

(
1 +h+

)2
+ λ− ln

(
1 +h−

)2]
+ o(1)−→ μtz+

α2
+ +α2−

4
tz2

(3.27)

and one can derive from (3.20)

λ− λ

a
= λ+

2a

[(
1 +h+

)z − 1
]− λ−

2a

[(
1 +h−

)z − 1
]

∼ z
λ+h+− λ−h−

2a
−→ z

α+−α−
2σ

.

(3.28)

Summarizing the above statements, we obtain the convergence (3.23). �

Remark 3.4. Condition (3.21) in this theorem means that the total drift A+ [λ− ln(1 +
h−) + λ+ ln(1 + h+)]/2 is asymptotically finite. Here A = (c+ + c−)/2 is generated by the
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velocities of telegraph process X , and the summand [λ− ln(1 +h−) + λ+ ln(1 +h+)]/2 rep-
resents the drift component (possibly with infinite asymptotics) that is motivated only by
jumps. If in (3.21) the limits of λ± ln(1 +h±) are finite, then A→ const, and α+ = α− = 0.
In this case, the volatility of the limit is v2 = lima2/λ±.

Hence in model (3.1)-(3.6) values a/
√
λ± can be interpreted as “telegraph” compo-

nents of the volatility, and
√
λ± ln(1 +h±) are the volatilities engendered by jumps.

The limiting volatility v =
√

(σ + (α+−α−)/2)2 + (α2
+ +α2−)/2 depends both on “tele-

graph” and jump components. The dependence of the jump components α± has a char-
acter of a “volatility smile” with minimum value v2

min = σ2/2 at α+ =−σ/2, α− = σ/2.

4. Memory effects and historical volatility in the framework of
jump telegraph market model

In this section, we explain how the simple model (3.1) can capture memory effects. Let
us define the historical volatility

HV(t− τ)=
√

Var
{

ln
(
S(t)/S(τ)

)}

t− τ
, t > τ ≥ 0. (4.1)

For models without memory the historical volatility coincides with the implied volatil-
ity. For example, the Black-Scholes model has HV(t)≡ σ . It is interesting to describe the
behavior of HV(t) in our model (3.1).

We introduce the notation HV±(t) = f±(t), where function f± is given by f±(t) =√
s±(t)/t. Here s±(t)=Var(X±(t) + J±(t)). The exact formula for s± is presented by (2.26)

with ln(1 +h±) instead of h±. Hence

f±(t)=
√
a2/λ+ λB2 + (a+ λb)2Φ2λ(t)/λ+ γ±Φλ(t)± 2B(a+ λb)e−2λt. (4.2)

It is interesting to compare model (3.1) with moving-average type models, which are
sometimes explored to capture memory effects. The simplest form of such model is

ln
(
S(t)
S(0)

)
= at+ σw(t)− σ

∫ t

0
dτ

∫ τ

−∞
pe−(q+p)(τ−u) dw(u), (4.3)

where σ ,q, p + q > 0 and w = (w(t), t ≥ 0) is a standard Brownian motion (see [20, ex-
amples 2.12 and 2.14] or [21]). In this case, the historical volatility is described by

f (t)= σ

2λ

√
q2 + p(2q+ p)Φλ(t) (4.4)

with 2λ= p+ q. Expressions (4.2) and (4.4) look similar.
Notice that

lim
t→+0

f±(t)=
√
λ
∣
∣ ln

(
1 +h±

)∣∣, (4.5)

lim
t→+∞ f±(t)=

√
a2/λ+ λ

([
ln
(
1 +h+

)(
1 +h−

)]/
2
)2
. (4.6)
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These limits look reasonable: the limit at 0 is engendered only by jumps, the limit at ∞
contains both the “telegraph” component and a long-term influence of jumps. By the
way, in the case of minimum influence of jumps on volatility, ln(1 +h+)(1 +h−)= 0 (and
α+ =−σ/2, α− = σ/2, see Remark 3.4), the long-term limit contains only the “telegraph”
component: limt→∞ f±(t)= a/

√
λ.
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