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This study considers the solution of a class of linear systems related with the fractional Poisson
equation (FPE) (−∇2)α/2

ϕ = g(x, y) with nonhomogeneous boundary conditions on a bounded
domain. A numerical approximation to FPE is derived using a matrix representation of the
Laplacian to generate a linear system of equations with its matrix A raised to the fractional
power α/2. The solution of the linear system then requires the action of the matrix function
f(A) = A−α/2 on a vector b. For large, sparse, and symmetric positive definite matrices, the Lanczos
approximation generates f(A)b ≈ β0Vmf(Tm)e1. This method works well when both the analytic
grade of A with respect to b and the residual for the linear system are sufficiently small. Memory
constraints often require restarting the Lanczos decomposition; however this is not straightforward
in the context of matrix function approximation. In this paper, we use the idea of thick-restart
and adaptive preconditioning for solving linear systems to improve convergence of the Lanczos
approximation. We give an error bound for the new method and illustrate its role in solving FPE.
Numerical results are provided to gauge the performance of the proposed method relative to exact
analytic solutions.
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1. Introduction

In recent times, the study of the fractional calculus and its applications in science and
engineering has escalated [1–3]. The majority of papers dedicated to this topic discuss
fractional kinetic equations of diffusion, diffusion-advection, and Fokker-Planck type to
describe transport dynamics in complex systems that are governed by anomalous diffusion
and nonexponential relaxation patterns [2, 3]. These papers provide comprehensive reviews
of fractional/anomalous diffusion and an extensive collection of examples from a variety
of application areas. A particular case of interest is the motion of solutes through aquifers
discussed by Benson et al. [4, 5].
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The generally accepted definition for the fractional Laplacian involves an integral
representation (see [6] and the references therein) since the spectral resolution of the
Laplacian operator over infinite domains is continuous; for the whole space, we use the
Fourier transform and for initial value problems we use the Laplace transform in time [7].
However, when dealing with finite domains the fractional Laplacian subject to homogeneous
boundary conditions is usually defined in terms of a summation involving the discrete
spectrum. It is nontrivial to extend the latter definition to accommodate nonhomogeneous
boundary conditions. To the best of our knowledge, there is no evidence in the literature that
suggests this has been done apart from Ilić et al. [8] where the one-dimensional case was
discussed. In this paper, we propose the extension to higher dimensions and illustrate the
idea in the context of solving the fractional Poisson equation subjected to nonhomogeneous
boundary conditions on a bounded domain.

Space fractional diffusion equations have been investigated by West and Seshadri [9]
and more recently by Gorenflo and Mainardi [10, 11]. Numerical methods for these fractional
equations are still under development. Hackbusch and his group [12–14] have developed
the theory of H-matrices and algorithms that they claim to be of N logN complexity for
computing functions of operators that are approximated by a finite difference (or other
Galerkin schemes) discretisation matrix. However, the underlying theory is developed using
integral representations of the matrix for separable coordinate systems and does not include
a discussion of nonhomogeneous boundary conditions, which is essential for the fractional
Poisson equation under investigation in this paper. Recently Ilić et al. [8, 15] proposed
a matrix representation of the fractional-in-space operator to produce a system of linear
ordinary differential equations (ODEs) with a matrix representation of the Laplacian operator
raised to the same fractional power. This approach, which was coined the matrix transfer
technique (MTT), enabled either the standard finite element, finite volume, or finite difference
methods to be exploited for the spatial discretisation of the operator.

In recent years, fractional Brownian motion (FBM) with Hurst index H ∈ (0, 1) has
been used to introduce memory into the dynamics of diffusion processes. A prediction theory
and other analytical results on FBM can be found in [16]. As shown in [17], a Girsanov-type
formula for the Radon-Nikodym derivative of an FBM with drift with respect to the same
FBM is determined by differential equations of fractional order with Dirichlet boundary
conditions:

(−∇2)α/2
h(x) = g(x) if x ∈ (0, T),

h(x) = 0 if x /∈ (0, T),
(1.1)

for a certain integrable function h(x) defined on [0, T], where g : [0, T] → R. In this study, we
extend problem (1.1) and investigate the solution of a steady-state space fractional diffusion
equation with sources, hereafter referred to as the fractional Poisson equation (FPE), on some
bounded domain Ω in two dimensions subject to either one or a combination of the usual
(nonhomogeneous) boundary conditions of types I, II, or III imposed on the boundary ∂Ω.
Although the method we present for solving the FPE is equally applicable to two- and three-
dimensional problems and the various coordinate systems used in the solution by separation
of variables, we consider only the following problem here.

FPE problem

Solve the fractional Poisson equation in a finite rectangle:

(−∇2)
α/2
ϕ = g(x, y), 0 < x < a, 0 < y < b, (1.2)
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subject to

−k1
∂ϕ

∂x
+ h1ϕ = f1(y) at x = 0,

k2
∂ϕ

∂x
+ h2ϕ = f2(y) at x = a,

−k3
∂ϕ

∂y
+ h3ϕ = f3(x) at y = 0,

k4
∂ϕ

∂y
+ h4ϕ = f4(x) at y = b.

(1.3)

We choose such a simple region so that an analytic solution can be found, which can be
used subsequently to verify our numerical approach. Note also that this system captures
type I boundary conditions (ki = 0, hi = 1, i = 1, . . . , 4) and type II boundary conditions
(hi = 0, ki = 1, i = 1, . . . , 4). The latter case has to be analysed separately with care since 0 is
an eigenvalue that introduces singularities.

The use of our matrix transfer technique leads to the matrix representation of the FPE
(1.2), which requires that the matrix function equation

Aα/2Φ = b (1.4)

must be solved. Note that in (1.4), A ∈ R
n×n denotes the matrix representation of the

Laplacian operator obtained using any of the well-documented methods: finite difference,
the finite volume method, or variational methods such as the Galerkin method using finite
element or wavelets and b = b1 + Aα/2−1b2, with b1 ∈ R

n a vector containing the discrete
values of the source/sink term, and b2 ∈ R

n a vector that contains all of the discrete
boundary condition information. We assume further that both the discretisation process and
the implementation of the boundary conditions have been carried out to ensure that A is
symmetric positive definite, that is, A ∈ SPD.

The general solution of (1.4) can be written as

Φ = A−α/2 b = A−α/2b1 +A−1b2, (1.5)

and one notes the need to determine both the action of the matrix function f(A) = A−α/2 on
the vector b1 and the action of the standard inverse on b2, where the matrix A can be large
and sparse.

In the case where α = 2, numerous authors have proposed efficient methods to deal
directly with (1.5) using Krylov subspace methods and in particular, the preconditioned
generalised minimum residual (GMRES) iterative method (see, e.g., the texts by Golub
and Van Loan [18], Saad [19], and van der Vorst [20]). In this paper, we investigate the
use of Krylov subspace methods for computing an approximate solution for a range of
values 0 < α < 2 and indicate how the spectral information gathered from at first solving
AΦ2 = b2 can be recycled to obtain the complete solution Φ = Φ1 + Φ2 in (1.5), where
Φ1 = f(A)b1 = A−α/2 b1.

In literature, a majority of references deal with the extraction of an approximation to
f(A)v for scalar analytic function f(t) : D ⊂ C → C using Krylov subspace methods (see
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[21, Chapter 13] and the references therein). Druskin and Knizhnerman [22], Hochbruck and
Lubich [23], Eiermann and Ernst [24], Lopez and Simoncini [25], van den Eshof et al. [26], as
well as many other researchers use the Lanczos approximation

f(A)v ≈ Vmf(Tm)e1, v = ‖v‖Vme1, (1.6)

where

AVm = VmTm + βmvm+1e
T
m (1.7)

is the usual Lanczos decomposition, and the columns of Vm form an orthonormal basis
for Krylov subspace Km(A, v) = {v,Av, . . . , Am−1v}. However, as noted by Eiermann and
Ernst [24], all basis vectors must be stored to form this approximation, which may prove
costly for large matrices. Restarting the process is by no means as straightforward as for
the case f(t) = 1/t, and the restarted Arnoldi algorithm for computing f(A)v given in
[24] addresses this issue. Another issue worth pointing out is that although preconditioning
linear systems is now well understood and numerous preconditioning strategies exist to
accelerate the convergence of many iterative solvers based on Krylov subspace methods [19],
preconditioning in many cases cannot be applied to f(A)v. For example if AM = B, one can
only deduce f(A) from f(B) in a limited number of special cases for f(t).

In the previous work by the authors [27], we proposed a spectral splitting method
f(A)v = Qf(Λ)QTv + pm(A)(I − QQT )v, where QQT is an orthogonal projector onto the
invariant subspace associated with a set of eigenvalues on the “singular part” of the spectrum
σ(A) with respect to f(t) and I −QQT an orthogonal projector onto the “regular part” of the
spectrum. We refer to that part of the spectral interval where the function to be evaluated
has rapid change with large values of the derivatives as the singular part (see [27] for more
details). The splitting was chosen in such a way that pm(t) was a low-degree polynomial (of
degree at most 5). Thick restarting was used to construct the projector QQT on the singular
part. Unfortunately, the computational overhead associated with constructing the projector
QQT , whilst maintaining the requirement of a low-degree polynomial approximation for
f(t) over the regular part, limits the application of the splitting method to a class of SPD
matrices that had fairly compact spectra. The method appeared to work well for applications
in statistics [27, 28].

In this paper, we build upon the splitting method idea in the manner outlined as
follows to approximate f(A)v for monotone decreasing function f(t) = t−q.

(1) Determine an approximately invariant subspace (AIS), span{q1, . . . , qk} for the set
of eigenvectors associated with the singular part of σ(A) with respect to f(t). Form
Qk = [q1, . . . , qk] and set Λk = diag{λ1, λ2, . . . , λk}, where λi are the eigenvalues
associated with the eigenvectors qi, i = 1, . . . , k. The thick restarted Lanczos method
discussed in [27, 29] or [30] can be used for the AIS generation.

(2) Let ṽ = (I −QkQ
T
k )v and generate orthonormal basis forK�(A, ṽ).

(3) Approximate f(A)(I −QkQ
T
k
)v ≈ V�f(T�)V T

�
ṽ using the Lanczos decomposition to

analytic grade �, AV� = V�T� + β�v�+1e
T
�
[31].

(4) Form f(A)v ≈ Qkf(Λk)QT
k
+ V�f(T�)V T

�
ṽ.
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To avoid components of any eigenvectors associated with the singular part reappearing in
K�(A, ṽ), we show how this splitting strategy can be embedded in an adaptively constructed
preconditioning of the matrix function.

The paper is organised as follows. In Section 2, we use MTT to formulate the matrix
representation of FPE to accommodate nonhomogeneous boundary conditions. We also
consider the approximation of the matrix function f(A) = A−qv using the Lanczos method
with thick restart and adaptive preconditioning. In Section 3, we give an upper bound on
the error cast in terms of the linear system residual. In Section 4, we derive an analytic
solution to the fractional Poisson equation using the spectral representation of the Laplacian,
and in Section 5, we give the results of our algorithm when applied to two different
problems, which highlight the importance of using our adaptively preconditioned Lanczos
method. In Section 6, we give the conclusions of our work and hint at future research
directions.

2. Matrix function approximation and solution strategy

The general numerical solution procedure MTT is implemented as follows. First apply a
standard spatial discretisation process such as the finite volume, finite element, or finite
difference method to the standard Poisson equation (i.e., α = 2 in system (1.2)) in the case of
homogeneous boundary conditions to obtain the following matrix form:

1
h2
AΦ = g̃, (2.1)

where it is assumed that (1/h2)A = m(−∇2) is the finite difference matrix representation
of the Laplacian, and h is the grid spacing. Φ = m(ϕ) is the representation of ϕ, and g̃ =
m(g) is the representation of g. Then, as was discussed in [15], the solution of FPE subject to
homogeneous boundary conditions is approximated by the solution of the following matrix
function equation:

1
hα
Aα/2Φ = g̃. (2.2)

Next, we apply the same finite difference method to the homogeneous Poisson equation (i.e.,
Laplace’s equation) with nonhomogeneous boundary conditions. The resulting equations can
be written in the following matrix form:

1
h2
AΦ − b = 0, (2.3)

where b represents the discretized boundary values, and the matrix A is the same as given
above. In other words, if ϕ does not satisfy homogeneous boundary conditions, then the
modified representation

m
(

(−∇2)ϕ
)

=
1
h2
AΦ − b (2.4)
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is used, where −∇2 denotes the extended definition of the Laplacian (see [8] and also refer
to Section 4 for further details). Thirdly, we follow [8] to write the fractional Laplacian in the
following form:

(−∇2)
α/2

= (−∇2)
α/2−1

(−∇2), (2.5)

and its matrix representation as

m
(

(−∇2)
α/2

)

= m
(

(−∇2)
α/2−1

)

m
(

(−∇2)
)

. (2.6)

Hence, the matrix representation for FPE is

1
hα
Aα/2Φ = g̃ +

1
hα−2

Aα/2−1b. (2.7)

Assuming that A has an inverse, the solution of this equation is

Φ = hαA−α/2g̃ + h2A−1b. (2.8)

Our aim is to devise an efficient algorithm to approximate the solution Φ in (2.8) using
Krylov subspace methods. One notes from (2.8) that the solution comprises two distinct
components, Φ = hαΦ1 + h2Φ2, where Φ1 = A−qg̃, Φ2 = A−1b, and 0 < q = α/2 < 1. We
note further in this context that the scalar function f(t) = t−q is monotone decreasing on
σ(A), where A ∈ R

n×n is symmetric positive definite.
There exists a plethora of Krylov-based methods available in the literature for

approximately solving the linear system AΦ2 = b using, for example, conjugate gradient,
FOM, or MINRES (see [19, 20]). Although preconditioning strategies are often employed to
accelerate the convergence of many of these methods, we prefer not to adopt preconditioning
here so that spectral information gathered about A during this linear system solve can be
recycled and used to aid the approximation of Φ1. As we will see, this recycling is affected
through the use of thick restart [30, 32] and adaptive preconditioning [33, 34]. We emphasise
that even if M is a good preconditioner for A, it may not be useful for f(A) since we cannot
find a relation between f(A) and f(AM−1). Thus, many efficient solvers used for the ordinary
Poisson equation cannot be employed for the FPE. The adaptive preconditioner, however,
can.

We begin our presentation of the numerical algorithm by briefly reviewing the solution
of the linear system AΦ2 = b, where A ∈ R

n×n is a symmetric positive definite using the full
orthogonal method (FOM) [19] together with thick restart [27, 30, 32].

2.1. Stage 1—Thick restarted, adaptively preconditioned, Lanczos procedure

Suppose that the Lanczos decomposition of A is given by

AV� = V�T� + β�v�+1e
T
� = V�+1T�, (2.9)
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where the columns of V� form an orthonormal basis for K�(A, b), and � is the analytic grade
defined in [31]. The analytic grade of order t of the matrix A with respect to b is defined as
the lowest integer � for which ‖u� − P�u�‖/‖u�‖ < 10−t, where P� is the orthogonal projector
onto the lth Krylov subspaceKl and ul = A�b. The grade can be computed from the Lanczos
algorithm using the matrices T1, T2, . . . , T l generated during the process. If t1 is the 1st column
of T1, and ti = Titi−1, for i = 1, . . . , �, then ‖u� − P�u�‖/‖u�‖ = |eTl+1tl|/‖tl‖.

In each restart, or cycle, that follows, the Lanczos decomposition is carried up to
the analytic grade �, which could be different for different cycles. Consequently, for ease
of exposition, the subscript � will be suppressed so that the only subscript that appears
throughout the description below refers to the cycle. Let Φ(0)

2 be some initial approximation
to the solution Φ2 and define r0 = b −AΦ(0)

2 .

Cycle 1

(i) Generate Lanczos decomposition

AV1 = V1T1 + β1u1e
T , (2.10)

where V1 = [v(1)
1 , . . . , v

(1)
�
], v(1)

1 = r0/β0, T1 is tridiagonal, u1 = v
(1)
�+1, β0 = ‖r0‖,

β1 = β(1)
�

, and eT = eT
�

.

(ii) Obtain approximate solution ˜Φ(1)
2 = V1T

−1
1 V T

1 r0, so that

Φ(1)
2 = Φ(0)

2 + V1T
−1
1 V T

1 r0, (2.11)

and residual

r1 = b −AΦ(1)
2 = r0 −A ˜Φ(1)

2 = −β1
(

eTT−1
1 V T

1 r0
)

u1. (2.12)

Test if ‖r1‖ < ε. If yes, stop; otherwise, continue to cycle 2.

Cycle 2

(i) Find eigenvalue decomposition of T1, that is, T1Y = YΛ, where Λ = diag{θ1, . . . , θ�}.
(ii) Select the k orthonormal (ON) eigenvectors, Y1, of T1 corresponding to the k

smallest in magnitude eigenvalues of T1 and form the Ritz vectors

W1 = V1Y1 = [w1, . . . , wk], (2.13)

wherewi are ON, and let the associated Ritz values be stored in the diagonal matrix
Λ1 = diag{θ1, . . . , θk}.

(iii) Set ˜V2 = [W1, u1] and generate the thick-restart Lanczos decomposition

AV2 = V2T2 + β2u2e
T , (2.14)
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where V2 = [w1, . . . , wk, v
(2)
1 , . . . , v

(2)
� ], v(2)

1 = u1, u2 = v(2)
�+1, and

T2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Λ1 β2s1 0 · · ·
β2s

T
1 αk+1 βk+1 0 · · ·

0 βk+1
. . . . . .

. . .
. . . . . .

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, with s1 = YT
1 e. (2.15)

(iv) Obtain approximate solution ˜Φ(2)
2 = V2T

−1
2 V T

2 r1, so that

Φ(2)
2 = Φ(1)

2 + V2T
−1
2 V T

2 r1, (2.16)

and residual

r2 = b −AΦ(2)
2 = r1 −A ˜Φ(2)

2

= −β2
(

eTT−1
2 V T

2 r1
)

u2.
(2.17)

Test if ‖r2‖ < ε. If yes, stop; otherwise, continue to the next cycle.

Cycle (j + 1)

(i) Find eigenvalue decomposition of Tj , that is, TjY = YΛ.

(ii) Select k orthonormal (ON) eigenvectors, Yj , of Tj corresponding to the k smallest
in magnitude eigenvalues of Tj and form the Ritz vectors Wj = VjYj .

(iii) Set ˜Vj+1 = [Wj, uj] and generate thick-restart Lanczos decomposition

AVj+1 = Vj+1Tj+1 + βj+1uj+1e
T , (2.18)

where Tj+1 has similar form as T2.

(iv) Obtain approximate solution ˜Φ(j+1)
2 = Vj+1T

−1
j+1V

T
j+1rj , so that

Φ(j+1)
2 = Φ(j)

2 + ˜Φ(j+1)
2 = Φ(0)

2 +
j+1
∑

i=1

ViT
−1
i V T

i ri−1, (2.19)

and residual

rj+1 = b −AΦ(j+1)
2 = −βj+1

(

eTT−1
j+1V

T
j+1rj

)

uj+1. (2.20)

Test if ‖rj+1‖ < ε. If yes, stop; otherwise, continue cycling.
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2.1.1. Construction of an adaptive preconditioner

Another important ingredient in the algorithm described above is the construction of an
adaptive preconditioner [33, 34]. Let the thick-restart procedure at cycle j produce the k

approximate smallest Ritz pairs {θi,wi}ki=1, where wi = Vjyi. We then check if any of these
Ritz pairs have converged to approximate eigenpairs of A by testing the magnitude of the
upper bound on the eigenpair residual

‖Awi − θiwi‖ ≤ βj |eTyi| < ε2. (2.21)

The eigenpairs deemed to have converged are then locked and used to construct an adaptive
preconditioner that can be employed during the next cycle to ensure that difficulties such as
spuriousness can be avoided.

Suppose we collect the p locked Ritz vectors as columns of the matrix Qj = [q1, q2,
. . . , qp], set Λj = diag{θ1, . . . , θp}, and form

M−1
j = γQjΛ−1

j Q
T
j + I −QjQ

T
j , (2.22)

where γ = (θmin + θmax)/2. θmin, θmax are the current estimates of the smallest and largest
eigenvalues of A, respectively, obtained from the restart process. Then, Aj = AM−1

j has the

same eigenvectors asA; however its eigenvalues {λi}
p

i=1 are shifted to γ [33, 34]. Furthermore,
it should be noted that these preconditioners can be nested. If M1,M2, . . . ,Mj is a sequence
of such preconditioners, then with Q = [Q1, Q2, . . . , Qj] and Λ = diag(Λi, i = 1, . . . , j), we
have

M−1 =M−1
j · · ·M

−1
2 M−1

1 = γQΛ−1QT + I −QQT. (2.23)

Thus, during the cycles (say cycle j + 1) the adaptively preconditioned, thick- restart Lanczos
decomposition

AM−1Vj+1 = Vj+1Tj+1 + βj+1uj+1e
T (2.24)

is employed.

Note. The preconditioner M−1 does not need to be explicitly formed; it can be applied in a
straightforward manner from the stored locked Ritz pairs.

In summary, stage 1 consists of employing the adaptively preconditioned Lanczos
procedure outlined above to approximately solve the linear system AΦ2 = b for Φ2. At the
completion of this process, the residual ‖r‖ = ‖b − AΦ2‖ < ε, and we have the set {θi, qi}ki=1
of locked Ritz pairs. This spectral information is then passed to accelerate the performance of
stage 2 of the solution process.
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2.2. Stage 2—Matrix function approximation using
an adaptively preconditioned Lanczos procedure

At the completion of stage 1, we have generated an approximately invariant eigenspace
V = span{q1, q2, . . . , qk} associated with the smallest in magnitude eigenvalues of A. We
now show how this spectral information can be recycled to aid with the approximation of
Φ1 = f(A)g̃, where f(t) = t−q.

2.2.1. Adaptive preconditioning

Recall from stage 1 that we have available M−1 = γQkΛ−1
k
QT
k
+ I − QkQ

T
k

, where Qk =
[q1, . . . , qk]. The important observation at this point is the following relationship between
f(A) and f(AM−1).

Proposition 2.1. Let span{q1, q2, . . . , qk} be an eigenspace of symmetric matrixA such that AQk =
QkΛk, with Qk = [q1, q2, . . . , qk] and Λk = diag(μ1, . . . , μk). Define M = (1/γ)QkΛkQ

T
k
+ I −

QkQ
T
k , then for v ∈ R

n,

f(A)v =
1

f(γ)
f(AM−1)f(γM)v. (2.25)

Proof. Let WWT = I − QkQ
T
k
, WTAW = B, then MM−1 = QkQ

T
k
+ WWT = I = M−1M.

Furthermore,

M−1A = (QkW)
(

γI 0
0 B

)

(

QT
k

WT

)

= AM−1. (2.26)

Thus,

f(AM−1) = (QkW)
(

f(γ)I 0
0 f(B)

)

(

QT
k

WT

)

. (2.27)

By noting that

f(A) = (QkW)
(

f(Λk) 0
0 f(B)

)

(

QT
k

WT

)

,

f(γM) = (QkW)
(

f(Λk) 0
0 f(γ)I

)

(

QT
k

WT

)

,

(2.28)

we obtain the main result

f(A)f(γ)[f(γM)]−1 = (QkW)
(

f(γ)I 0
0 f(B)

)

(

QT
k

WT

)

= f(AM−1). (2.29)
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The following proposition shows that, as was the case for the solution of the linear
system in stage 1, these preconditioners can be nested in the case of the matrix function
approximation.

Proposition 2.2. LetM1,M2, . . . ,Mj be a sequence of preconditioners as defined in Proposition 2.1,
then

f(A)v =
1

f(γ)
f(AM−1

1 M−1
2 · · ·M

−1
j )f(γM1M2 · · ·Mj)v. (2.30)

Proof. Let Q = [Q1, Q2, . . . , Qk] and Λ = diag(Λi, i = 1, . . . , j), then observe that M =
M1M2 · · ·Mj = (1/γ)QΛQT + I −QQT and f(A) = f(AM−1)(1/f(γ))f(γM).

Corollary 2.3. Under the hypothesis of Proposition 2.1, one notes the equivalent form of (2.25) as

f(A)v = Qkf(Λk)QT
kv + f(AM−1)(I −QkQ

T
k )v, (2.31)

which appears similar to the idea of spectral splitting proposed in [27].

We now turn our attention to the approximation of Φ1 = A−qg̃, which by using
Corollary 2.3 can be expressed as

A−qg̃ =
k
∑

i=1

θ
−q
i qiq

T
i g̃ + (AM−1)

−q
ĝ, (2.32)

where ĝ = (I−QkQ
T
k )g̃. First note that if A ∈ SPD, then AM−1 ∈ SPD. We expand the Lanczos

decomposition AM−1V� = V�T� + β�v�+1e
T
� to the analytic grade � of AM−1 with v1 = ĝ/‖ĝ‖.

Next perform the spectral decomposition of T� = Y�Λ�Y
T
� and set ˜Q� = V�Y� , then compute

the Lanczos approximation

(AM−1)
−q
ĝ ≈ V�T

−q
�
V T
� ĝ = ˜Q�Λ

−q
�

˜QT
� ĝ. (2.33)

Based on the theory presented to this point, we propose the following algorithm to
approximate the solution of the fractional Poisson equation.

Algorithm 2.4 (Computing the solution of the FPE problem).

Stage 1. Solve AΦ2 = b using the thick restarted adaptively preconditioned Lanczos method
and generate the AIS, Qk = span{q1, . . . , qk}. Return the preconditioner M = (1/γ)QkΛkQ

T
k +

I −QkQ
T
k

, where Qk = [q1, . . . , qk].

Stage 2. Compute Φ1 = A−qg̃ using the following strategy.

(1) Set ĝ = (I −QkQ
T
k )g̃.

(2) Compute Lanczos decompositionAM−1V� = V�T�+β�v�+1e
T
� , where � is the analytic

grade of AM−1 and V� = [v1, . . . , v�], with v1 = ĝ/‖ĝ‖.
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(3) Perform the spectral decomposition T� = Y�Λ�Y
T
� .

(4) Compute linear system residual ‖r�‖ = |β�eT� Y�Λ
−1
� Y

T
� V

T
� ĝ| and estimate λmin ≈ μmin

from T� to compute bound (3.9) μ−qmin‖r�‖ derived in Section 3.

(5) If bound is small, then approximate f(AM−1)ĝ ≈ V�T
−q
� V T

� ĝ and exit to step (6),
otherwise continue the Lanczos expansion until bound is satisfied.

(6) Form Φ1 = f(A)g̃ ≈ QkΛ
−q
k
QT
k
g̃ + ˜Q�Λ

−q
�

˜QT
�
ĝ, where ˜Q� = V�Y� .

Finally, compose the approximate solution of FPE as Φ = hαΦ1 + h2Φ2.

Remarks

At stage 2, we monitor the upper bound given in Proposition 3.3 to check if the desired
accuracy is achieved in the matrix function approximation. If the desired level is not attained,
then it may be necessary to repeat the thick-restart procedure to determine the next k smallest
eigenvalues and their corresponding ON eigenvectors. In fact, this process may need to be
repeated until there are no eigenvalues remaining in the “singular” part so that the accuracy
of the approximation is dictated entirely by that of the linear system residual. We leave the
design of this more sophisticated and generic algorithm for future research.

It is natural at this point to ask what is the accuracy of the approximation (2.33) for a
given �? Not knowing (AM−1)−qĝ at the outset makes it impossible to answer this question.
Instead, we opt to provide an upper bound for the error ‖(AM−1)−qĝ − V�T

−q
�
V T
�
ĝ‖, which is

the topic of the following section.

3. Error bounds for the numerical solution

At first, we note that Churchill [35] uses complex integration around a branch point to derive
the following:

∫∞

0

x−q

x + 1
dx =

π

sin(qπ)
. (3.1)

By changing the variable, one can deduce the following expression, for λ−q, λ > 0:

λ−q =
sin(qπ)
(1 − q)π

∫∞

0

dt

t1/(1−q) + λ
. (3.2)

Noting that A = AM−1 ∈ SPD, the spectral decomposition and the usual definition of the
matrix function enable the following expression for computing A

−q
to be obtained:

A
−q

=
sin(qπ)
(1 − q)π

∫∞

0

(

t1/(1−q)I +A
)−1

dt. (3.3)

Recall that the approximate solution of the linear system Ax = v fromK�(A, v) using
the Galerkin approach (FOM or CG) is given by x� = V�T−1

� V T
� v, with residual r� = b −Ax� =

−(β�eT� T
−1
� V T

� v)v�+1. We note the similarity to (2.33); however a key observation is that the
error in the matrix function approximation cannot be determined in such a straightforward
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manner as for the linear system [24]. The following proposition enables the error in the matrix
function approximation to be expressed in terms of the integral expression given above in
(3.3) and the residual of what is called a shifted linear system.

Proposition 3.1. Let r�(t) = v− (A+ t1/(1−q)I)V�(T� + t1/(1−q)I)
−1
V T
�
v be the residual to the shifted

linear system (A + t1/(1−q)I)x = v, then

A
−q
v − V�T

−q
�
V T
� v =

sin(qπ)
(1 − q)π

∫∞

0

(

t1/(1−q)I +A
)−1

r�(t)dt. (3.4)

Proof. It is known that

A
−q
v − V�T

−q
�
V T
� v=

sin(qπ)
(1 − q)π

∫∞

0

{

(

t1/(1−q)I +A
)−1
− V�

(

t1/(1−q)I + T�
)−1

V T
�

}

v dt

=
sin(qπ)
(1 − q)π

∫∞

0

(

t1/(1−q)I +A
)−1{

v −
(

t1/(1−q)I +A
)

V�
(

t1/(1−q)I+ T�
)−1

V T
� v

}

dt.

(3.5)

It is interesting to observe that r�(t) = −(β�eT� (T� + t
1/(1−q)I)−1

V T
�
v)v�+1 for the Lanczos

approximation, so that the vectors r� ≡ r�(0) and r�(t) are aligned; however their magnitudes
are different. Note further that

r�(t) =
eT
�
(T� + tI)

−1e1

eT� T
−1
� e1

r�(0). (3.6)

An even more important result is the following relationship between their norms.

Proposition 3.2. Let T� have eigendecomposition T�Y� = Y�Λ� , where Λ� = diag(μi, i = 1, . . . , �)
with the μi Ritz values for the Lanczos approximation, then for t > 0,

‖r�(t)‖ =
∣

∣

∣

∣

∣

�
∏

i=1

μi

μi + t1/(1−q)

∣

∣

∣

∣

∣

‖r�‖ ≤ ‖r�‖. (3.7)

Proof. The result follows from [26], which gives the following polynomial characterisations
for the residuals:

r� =
π�(A)v
π�(0)

, π�(τ) = det(τI − T�) =
�

∏

i=1

(τ − μi),

r�(t) =
πt
�

(

A + t1/(1−q)I
)

v

πt
�
(0)

, πt
�(τ) = det

(

τI −
(

T� + t1/(1−q)I
))

=
�

∏

i=1

(

τ − (μi + t1/(1−q))
)

,

(3.8)

so that r�(t) = π�(A)v/πt
�(0) = (π�(0)/πt

�(0))r� =
∏�

i=1(μi/(μi+t
1/(1−q)))r� . The result follows

by taking the norm and noting that t > 0.
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We are now in a position to formulate an error bound essential for monitoring the
accuracy of the Lanczos approximation (2.33).

Proposition 3.3. Let λmin be the smallest eigenvalue of A and r� the linear system residual obtained
by solving the linear systemAx = ĝ using FOM on the Krylov subspaceK�(A, ĝ), then for 0 < q < 1,
one has

∥

∥A
−q
ĝ − V�T

−q
�
V T
� ĝ

∥

∥ ≤ λ−qmin

∥

∥r�
∥

∥. (3.9)

Proof. Using the orthogonal diagonalisation A = QΛQT , we obtain from Proposition 3.1 that

A
−q
ĝ − V�T

−q
�
V T
� ĝ =

sin(qπ)
(1 − q)π

∫∞

0
Q
(

t1/(1−q)I + Λ
)−1

QTr�(t)dt. (3.10)

The result follows by taking norms and using Proposition 3.2 to obtain

∥

∥A
−q
ĝ − V�T

−q
� V T

� ĝ
∥

∥ ≤
sin(qπ)
(1 − q)π

∫∞

0

∥

∥

∥

∥

diag
{

1
(

t1/(1−q)I + λi
) , i = 1, . . . , n

}∥

∥

∥

∥

dt‖r�‖. (3.11)

The importance of this result is that it relates the error in the matrix function
approximation to a scalar multiple of the linear system residual. This bound can be monitored
during the Lanczos decomposition to deduce whether a specified tolerance has been reached
in the matrix function approximation. Another key observation from Proposition 3.3 is
that it motivates us to shift the small troublesome eigenvalues of A, via some form of
preconditioning, so that λmin ≈ 1. In this way, the error in the function approximation is
dominated entirely by the residual error.

4. Analytic solution

In this section, we discuss the analytic solution of the fractional Poisson equation, which can
be used to verify the numerical solution strategy outlined in Section 2. The theory depends
on the definition of the operator (−∇2)α/2 via spectral representation. The one-dimensional
case was discussed in Ilić et al. [8], and the salient results for two dimensions are repeated
here for completeness.

4.1. Homogeneous boundary conditions

In operator theory, functions of operators are defined using spectral decomposition. Set Ω =
{(x, y) | 0 < x < a, 0 < y < b}, and let H be the real space L2(Ω) with real inner product
〈u, v〉 =

∫ ∫

Ωuv dS. Consider the operator

Tϕ = −
(

∂2

∂x2
+

∂2

∂y2

)

ϕ = (−Δ)ϕ (4.1)

on D = {ϕ ∈ H | ϕx, ϕy absolutely continuous; ϕx, ϕy, ϕxx, ϕxy, ϕyy ∈ L2(Ω), B(ϕ) = 0},
where B(ϕ) is one of the boundary conditions in the FPE problem with right-hand side equal
to zero.
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It is known that T is a closed self-adjoint operator whose eigenfunctions {ϕij}∞i,j=1 form

an orthonormal basis forH. Thus, Tϕij = λ2
ijϕij , i, j = 1, 2, . . . . For any ϕ ∈ D,

ϕ =
∞
∑

i=1

∞
∑

j=1

cijϕij , cij = 〈ϕ, ϕij〉,

Tϕ =
∞
∑

i=1

∞
∑

j=1

λ2
ijcijϕij .

(4.2)

If ψ is a continuous function on R, then

ψ(T)ϕ =
∞
∑

i=1

∞
∑

j=1

ψ(λ2
ij)cijϕij , (4.3)

provided that
∑∞

i=1
∑∞

j=1|ψ(λ2
ij)cij |2 <∞. Hence, if the eigenvalue problem for T can be solved

for the region Ω, then the FPE problem with homogeneous boundary conditions can be easily
solved to give

ϕ(x, y) =
∞
∑

i=1

∞
∑

j=1

〈g, ϕij〉
λαij

ϕij(x, y). (4.4)

4.2. Nonhomogeneous boundary conditions

Before we proceed further, we need to specify the definition of −(∇2)α/2.

Definition 4.1. Let {ϕij} be a complete set of orthonormal eigenfunctions corresponding to
eigenvalues λ2

ij(/= 0) of the Laplacian (−Δ) on a bounded region Ω with homogeneous BCs
on ∂Ω. Let

Fγ =

{

f ∈ D(Ω) |
∞
∑

i=1

∞
∑

j=1

∣

∣λ
γ

ij

∣

∣

∣

∣cij
∣

∣

2
<∞, cij = 〈f, ϕij〉, γ = max(α, 0)

}

. (4.5)

Then, for any f ∈ Fγ , (−Δ)α/2f is defined by

(−Δ)α/2f =
∞
∑

i=1

∞
∑

j=1

λαijcijϕij . (4.6)

If one of λ2
ij = 0 and ϕ0 is the eigenfunction corresponding to this eigenvalue, then one needs

〈f, ϕ0〉 = 0.

Proposition 4.2.

(1) The operator T = (−Δ)α/2 is linear and self-adjoint, that is, for f, g ∈ Fγ , 〈Tf, g〉 =
〈f, Tg〉.
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(2) If f ∈ Fγ , where γ = max(0, α, β, α + β), then

(−Δ)α/2(−Δ)β/2f = (−Δ)(α+β)/2f = (−Δ)β/2(−Δ)α/2f. (4.7)

For α > 0, Definition 4.1 may be too restrictive, since the functions we are interested in
satisfy nonhomogeneous boundary conditions, and the resulting series may not converge or
not converge uniformly.

Extension of Definition 4.1

(1) For α = 2m, m = 0, 1, 2, . . ., define (−Δ)α/2f = (−Δ)mf for any f ∈ C2m(Ω) (or other
possibilities).

(2) For m − 1 < α/2 < m, m = 1, 2, . . ., define (−Δ)α/2f = Tg, where g = (−Δ)m−1f ∈
C2(m−1)(Ω), and T is the extension of T = (−Δ)α/2+1−m as defined by Proposition 4.3
below.

It suffices to consider 0 < α < 2.

Proposition 4.3. Let ϕij(x, y) be an eigenfunction corresponding to the eigenvalue λ2
ij(/= 0) of the

Laplacian (−Δ) on the rectangle Ω, and let ϕ satisfy the BCs in problem 1. Then, if T is an extension

of T = (−Δ)α/2 (in symbols T ⊂ T ) with adjoint T
∗
⊂ T ∗,

〈ϕij , Tϕ〉 = λαij〈ϕij , ϕ〉 − λ
α−2
ij

{∫b

0

ϕij(0, y)
k1

f1(y)dy +
∫b

0

ϕij(a, y)
k2

f2(y)dy

+
∫a

0

ϕij(x, 0)
k3

f3(x)dx +
∫a

0

ϕij(x, b)
k4

f4(x)dx
}

(4.8)

if ki /= 0, i = 1, . . . , 4. If ki = 0, the second term on the right-hand side becomes

− λα−2
ij

{∫b

0

∂ϕij(0, y)
∂x

f1(y)
h1

dy −
∫b

0

∂ϕij(a, y)
∂x

f2(y)
h2

dy

+
∫a

0

∂ϕij(x, 0)
∂y

f3(x)
h3

dx −
∫a

0

∂ϕij(x, b)
∂y

f4(y)
h4

dx

}

.

(4.9)

Proof.

〈ϕij , Tϕ〉 =
〈

T
∗
ϕij , ϕ

〉

=
〈

T ∗ϕij , ϕ
〉

=
〈

Tϕij , ϕ
〉

=
〈

(−Δ)(−Δ)α/2−1ϕij , ϕ
〉

=
〈

(−Δ)α/2−1ϕij , (−Δ)ϕ
〉

,

(4.10)
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where (−Δ) is the extension of (−Δ) with domain D′(Ω) that is the same as D(Ω) without
B(ϕ) = 0, which is well documented in books on partial differential equations [7]. This is
done by calculating the conjunct (concomitant or boundary form) using the Green’s formula

∫∫

Ω
(v∇2u − u∇2v)dS =

∫

∂Ω

(

v
∂u

∂n
− u∂v

∂n

)

ds. (4.11)

Thus,

〈

ϕij , Tϕ〉 = λα−2
ij

〈

ϕij , (−Δ)ϕ〉

= −λα−2
ij

∫∫

Ω
ϕij∇2ϕdS

= −λα−2
ij

{∫∫

Ω
ϕ∇2ϕij dS +

∫

∂Ω

(

ϕij
∂ϕ

∂n
− ϕ

∂ϕij

∂n

)

ds

}

(4.12)

which gives the result on substitution.

This result can be readily used to write down the analytic solution to the FPE problem.
First, we obtain the spectral representation of the operator T by solving the eigenvalue
problem:

−Δϕ = λ2ϕ, B(ϕ) = 0. (4.13)

Knowing the eigenvalues λij and the corresponding orthonormal (ON) eigenfunctions ϕij ,
we can use the finite-transform method with respect to ϕij and Proposition 4.3 to obtain

λαij〈ϕij , ϕ〉 = 〈g, ϕij〉 + λ
α−2
ij bij , (4.14)

where λα−2
ij bij is the second term on the right hand side in Proposition 4.3. Hence,

ϕ(x, y) =
∞
∑

i=1

∞
∑

j=1

〈g, ϕij〉
λαij

ϕij(x, y) +
∞
∑

i=1

∞
∑

j=1

bij

λ2
ij

ϕij(x, y). (4.15)

5. Results and discussion

In this section, we exhibit the results of applying Algorithm 2.4 to solve two FPE test
problems. To assess the accuracy of our approximation, we compare the numerical solutions
with the exact solution in each case.
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Test problem 1: FPE with Dirichlet boundary conditions

Solve (−∇2)α/2
ϕ = g0/k on the unit square [0, 1] × [0, 1] subject to the type I boundary

conditions ϕ = 0 on boundary ∂Ω. For this problem, the ON eigenfunctions are given by

ϕij = {2 sin(iπx) sin(jπy)}∞i,j=1, (5.1)

and the corresponding eigenvalues λ2
ij = π

2(i2+j2). The analytical solution is then given from
Section 4 as

ϕ(x, y) =
16g0

kπ2

∞
∑

i=0

∞
∑

j=0

sin[(2i + 1)πx] sin[(2j + 1)πy]

(2i + 1)(2j + 1)[(2i + 1)2π2 + (2j + 1)2π2]α/2
. (5.2)

For the numerical solution, a standard five-point finite-difference formula with equal grid
spacing h = 1/n in the x and y directions has been used to generate the block tridiagonal
matrix A ∈ R

(n−1)2×(n−1)2
given in (2.1) as

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

B −I
−I B −I

. . . . . . . . .
−I B −I
−I B

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4 −1
−1 4 −1
−1 4 −1

. . . . . . −1
−1 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
(n−1)×(n−1). (5.3)

The parameters used to test this model are listed in Table 1.

Test problem 2: FPE with mixed boundary conditions

Solve (−∇2)α/2
ϕ = g0/k on the unit square [0, 1]×[0, 1] subject to type III boundary conditions

−
∂ϕ

∂x
+H1ϕ = H1ϕ∞ at x = 0,

∂ϕ

∂x
+H2ϕ = H2ϕ∞ at x = 1,

−
∂ϕ

∂y
+H3ϕ = H3ϕ∞ at y = 0,

∂ϕ

∂y
+H4ϕ = H4ϕ∞ at y = 1,

(5.4)

where Hi = hi/k. The analytical solution to this problem is given by

ϕ(x, y) = ϕ∞ +
g0

k

∞
∑

i=1

∞
∑

j=1

αi,jX(μi, x)Y (νj , y)

(μ2
i + ν

2
j )
α/2
Nx(μi)Ny(νj)

, (5.5)
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Table 1: Physical parameters for test problem 1.

Parameter Description Value
k Thermal conductivity 1 Wm−1 K−1

g0 Source 10 Wm−3

α Fractional index 0.5,1,1.5

where the eigenfunctions are

X(μi, x) = μi cos(μix) +H1 sin(μix), Y (νj , y) = νj cos(νjy) +H3 sin(νjy), (5.6)

with normalisation factors

N2
x(μi) =

1
2

[

(

μ2
i +H

2
1

)

(

1 +
H2

μ2
i +H

2
2

)

+H1

]

,

N2
y(νj) =

1
2

[

(

ν2
j +H

2
3
)

(

1 +
H4

ν2
j +H

2
4

)

+H3

]

.

(5.7)

The eigenvalues μi are determined by finding the roots of the transcendental equation:

tan(μ) =
μ(H1 +H2)
μ2 −H1H2

(5.8)

with νj determined from a similar equation for ν. Finally, αi,j is given by

αi,j =
∫∫1

0

X(μi, ξ)Y (νj , η)
Nx(μi)Ny(νj)

dξ dη . (5.9)

For the numerical solution, a standard five-point finite-difference formula with equal
grid spacing h = 1/nwas again employed in the x and y directions. However in this example,
additional finite-difference equations are required for the boundary nodes as a result of type
III boundary conditions. The block tridiagonal matrix required in (2.8) is then similar to that
exhibited for example 1, however it has dimension A ∈ R

(n+1)2×(n+1)2
and boundary blocks

must be modified to account for the boundary condition contributions.
The parameter values used for this problem are listed in Table 2.

5.1. Discussion of results for test problem 1

A comparison of the numerical and analytical solutions for test problem 1 is exhibited in
Figure 1 for different values of the fractional index α = 0.5, 1.0, 1.5, and 2 (with the value 2
representing the solution of the classical Poisson equation). In all cases, it can be observed
that good agreement is obtained between theory and simulation, with the analytical (solid
contour lines) and numerical (dashed contour lines) solutions almost indistinguishable. In
fact, Algorithm 2.4 consistently produced a numerical solution within approximately 2%
absolute error of the analytical solution.



20 Journal of Applied Mathematics and Stochastic Analysis

Table 2: Physical parameters for test problem 2.

Parameter Description Value
k Thermal conductivity 5 Wm−1 K−1

g0 Source −10 Wm−3

h1, h3 Heat transfer coefficient 0 Wm−2 K−1

h2, h4 Heat transfer coefficient 2 Wm−2 K−1

ϕ∞ External temperature 20 K
α Fractional index 0.5,1,1.5
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Figure 1: Comparisons of numerical (dashed lines) and analytical solutions (solid lines) for test problem
1 computed using Algorithm 2.4: (a) α = 0.5, (b) α = 1.0, (c) α = 1.5, and (d) α = 2 (classical case).

The impact of decreasing the fractional index from α = 2 to 0.5 is particularly evident
in Figure 2 from the shape and magnitude of the computed three-dimensional symmetric
profiles. Low values of α produce a solution exhibiting a pronounced hump-like shape, with
the diffusion rate low, the magnitude of the solution high at the centre, and steep gradients
evident near the boundary of the solution domain. As α increases, the magnitude of the
profile diminishes and the solution is much more diffuse and representative of a Gaussian
process. These observations motivate the following remark.

Remark 5.1. Over R
n, the Riesz operator (−Δ)α/2 as defined by

(−Δ)α/2f(x) =
1

g(α)

∫

Rn

|x − y|α−nf(y)dy, (5.10)
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Figure 2: Numerical solutions for test problem 1: (a) α = 0.5, (b) α = 1.0, (c) α = 1.5, and (d) α = 2 (classical
case).

where f is a C∞- function with rapid decay at infinity, and

g(α) =
πn/22αΓ(α/2)
Γ(n/2 − α/2)

(5.11)

is known to generate α-stable processes. In fact, the Green’s function of the equation

∂p

∂t
= −(−Δ)α/2p(t, x), T > 0, x ∈ R (5.12)

is the probability density function of a symmetric α-stable process. When α = 1, it is the
density function of a Cauchy distribution, and when α = 2 it is the classical Gaussian density.
As α → 0, the tail of the density function is heavier and heavier. These behaviours are
reflected in the numerical results given in the above example; namely, when α → 2, the
plots exhibit the bell shape of the Gaussian density, but when α → 0, the curves are flatter,
indicating very heavy tails as expected.

We now report on the performance of Algorithm 2.4 for computing the solution of the
FPE. The numerical solutions shown in Figures 1 and 2 were generated using a standard five-
point finite difference stencil to construct the matrix representation of the two-dimensional
Laplacian operator. The x- and y-dimensions were divided equally into 31 divisions to
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Figure 3: Residual reduction for test problem 1 computed using the two-stage process outlined in
Algorithm 2.4.

produce the symmetric positive definite matrix A ∈ R
900×900 having its spectrum σ(A) ⊂

[0.0205, 7.9795]. One notes for this problem that the homogeneous boundary conditions
necessitate only the solution Φ = hαA−α/2g̃. Algorithm 2.4 was still employed in this case;
however in stage 1 we at first solve Ax = g̃ by the adaptively preconditioned thick restart
procedure. The gathered spectral information from stage 1 is then used for the efficient
computation of Φ during stage 2.

Figure 3 depicts the reduction in the residual of the linear system and the error
in the matrix function approximation during both stages of the solution process for test
problem 1 for the case α = 1. For this test using FOM(25,10), (subspace size 25 with an
additional 10 approximate Ritz vectors augmented at the front of the Krylov subspace) four
restarts were required to reduce the linear system residual to ≈ 1 × 10−15, which represented
an overall total of 110 matrix-vector products. This low tolerance was enforced to ensure
that as many approximate eigenpairs of A could be computed and then locked during
stage 1 for use in stage 2. An eigenpair was deemed converged when the residual in the
approximate eigenpair was less than θmax × 10−10, where θmax is the current estimate of the
largest eigenvalue of A. This process saw 1 eigenpair locked after 2 restarts, 5 locked after 3
restarts, and finally 9 locked after 4 restarts. From this figure, we also see that when subspace
recycling is used for stage 2 only an additional 30 matrix-vector products are required to
compute the solution Φ to an acceptable accuracy. It is also worth pointing out that the
Lanczos approximation for this preconditioned matrix function reduces much more rapidly
than for the case where preconditioning (dotted line) is not used. Furthermore, the Lanczos
approximation in this example lies almost entirely on the curve that represents the optimal
approximation obtainable from the Krylov subspace [26]. Finally, we see that the bound (3.9)
can be used with confidence as a means for halting stage 2 once the desired accuracy in the
bound is reached.

5.2. Discussion of results for test problem 2

A comparison of the numerical and analytical solutions for test problem 2 is exhibited in
Figure 4, again for the values of the fractional index α = 0.5, 1.0, 1.5, and 2. It can be seen
that the agreement between theory and simulation is more than acceptable for this case, with
Algorithm 2.4 producing a numerical solution within approximately 4% absolute error of the
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Figure 4: Comparisons of numerical (dashed line) and analytical solutions (solid line) for test problem 2
computed using Algorithm 2.4: (a) α = 0.5, (b) α = 1.0, (c) α = 1.5, and (d) α = 2 (classical case).

analytical solution. However, the impact of increasing the fractional index from α = 0.5 to 2
is less dramatic for problem 2.

The numerical solutions shown in Figure 4 were again generated using a standard five-
point finite-difference stencil to construct the matrix representation of the two-dimensional
Laplacian operator. The x- and y-dimensions were divided equally into 30 divisions
resulting in the symmetric positive definite matrix A ∈ R

961×961 having its spectrum
σ(A) ⊂ [0.000758, 7.9795]. One notes for this problem that type II boundary conditions have
produced a small eigenvalue that undoubtedly will hinder the performance of restarted FOM.

Figure 5 depicts the reduction in the residual of the linear system for computing the
solution Φ1 and the error in the matrix function approximation for Φ2 during both stages
of the solution process for test problem 2 with α = 1. Using FOM(25,10), a total of nine
restarts were required to reduce the linear system residual to ≈ 1×10−15, which represented an
overall total of 240 matrix-vector products. One notes that this is much higher than Problem
1 and primarily due to the occurrence of small eigenvalues in σ(A). The thick restart process
saw 1 eigenpair locked after 5 restarts, 4 locked after 6 restarts, and finally 10 locked after
9 restarts. From this figure, we also see that when subspace recycling is used for stage 2
only an additional 25 matrix-vector products are required to compute the solution Φ2 to
an acceptable accuracy, which is clearly much less than the unpreconditioned (dotted line)
case. The Lanczos approximation in this example again lies almost entirely on the curve that
represents the optimal approximation obtainable from the Krylov subspace. Finally, we see
that the bound (3.9) can be used to halt stage 2 once the desired accuracy is reached.
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Figure 5: Residual reduction for test problem 2 computed using the two-stage process outlined in
Algorithm 2.4.

6. Conclusions

In this work, we have shown how the fractional Poisson equation can be approximately
solved using a finite-difference discretisation of the Laplacian to produce an appropriate
matrix representation of the operator. We then derived a matrix equation that involved both
a linear system solution and a matrix function approximation with the matrix A raised to the
same fractional index as the Laplacian. We proposed an algorithm based on Krylov subspace
methods that could be used to efficiently compute the solution of this matrix equation using a
two-stage process. During stage 1, we used an adaptively preconditioned thick restarted FOM
method to approximately solve the linear system and then used recycled spectral information
gathered during this restart process to accelerate the convergence of the matrix function
approximation in stage 2. Two test problems were then presented to assess the accuracy of our
algorithm, and good agreement with the analytical solution was noted in both cases. Future
research will see higher dimensional fractional diffusion equations solved using a similar
approach via the finite volume method.
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