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This article aims to give a formula for differentiating, with respect to T , an expression of the form
λ(T, x) := Ex[f(XT )e−

∫T
0V (Xs)ds(det(I +KX,T ))

P ], where p ≥ 0 and X is a diffusion process starting
from x, taking values in a manifold, and the expectation is taken with respect to the law of this
process. KX,T : L2([0, T)→R

N)→L2([0, T)→R
N) is a trace class operator defined by KX,Tf(s) =

∫T
0H(s ∧ t)Γ(X(t))f(t)dt, whereH, Γ are locally Lipschitz, positive N ×N matrices.
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1. Introduction

Suppose we have a differentiable manifold M of dimension d. By the Whitney’s embedding
theorem, there exists an embedding i : M→R

N ′
such that i(M) is a closed subset of R

N ′
. It

turns out thatN ′ = 2d+1 will do. Wewill identifyMwith the image i(M) and assume thatM
itself is a closed submanifold of R

N ′
. We will also assume that M does not have a boundary.

Let M ∪ {∂M} be a one-point compactification ofM.

Definition 1.1. An M-valued path ω with explosion time e = e(ω) > 0 is a continuous map
ω : [0,∞)→M ∪ {∂M} such that ωt ∈ M for 0 ≤ t < e and ωt = ∂M for all t ≥ e if e < ∞. The
space ofM-valued paths with explosion time is called the path space ofM and is denoted by
W(M).

Let (Ω,F∗,P) be a filtered probability space and let L be a smooth second-order elliptic
operator on M. Using the coordinates of the ambient space {x1, . . . , xN ′ }, and extending L

smoothly to L̃ in the ambient space, we may write

L̃ =
1
2

N ′∑

i,j=1

Aij
∂2

∂xi∂xj
+

N ′∑

i=1

bi
∂

∂xi
, (1.1)
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with σ :=
√
A, A a positive matrix. Since A is smooth, its square root is locally Lipschitz.

Construct a time homogeneous Itô diffusion process X : Ω→W(M) which solves the
following stochastic differential equation:

dXs = b
(
Xs

)
ds + σ

(
Xs

)
dBs, s ≥ t; Xt = x (1.2)

in the ambient space R
N ′
, where Bs is N ′-dimensional Euclidean-Brownian motion and b :

R
N ′ →R

N ′
, σ : R

N ′ →R
N ′×N ′

such that

∥
∥b(x) − b(y)

∥
∥ +

∥
∥σ(x) − σ(y)

∥
∥ ≤ D(R)|x − y| (1.3)

for some constant D(R) dependent on an open ball centered at x with radius R. Till the
explosion time e(X), Xs ∈ M for 0 ≤ s < e(X). On M, L̃ = L. Furthermore, μX := P ◦ X−1 is
an L-diffusion measure on W(M). As a result, we use μX to be the probability measure on
W(M). Refer to [1] for a more detailed description.

Fix some positive integerN. LetMN(R) and SN(R) be the spaces ofN×N real-valued
matrices and symmetric N ×N real-valued matrices, respectively. Also let M+

N(R) ⊆ SN(R)
be the space of nonnegative matrices. Suppose that H : [0,∞)→M+

N(R) is locally Lipschitz
with 0 ≤ H(s) < H(t) if s < t, H(0) = 0, and Γ : M→M+

N(R) is locally Lipschitz. Also
assume that supx∈M‖Γ(x)‖ is bounded, where ‖ · ‖ is the operator norm. Define MΓ(X) as the
multiplication operator with Γ(X) and ΥT as the integral operator with kernel H(s ∧ t), that
is, for any f ∈ L2([0, T]→R

N),

(
ΥTf

)
(s) =

∫T

0
H(s ∧ t)f(t)dt, (1.4)

where s∧ t is the minimum of s and t. Note that under the assumptions onH, ΥT is a positive
operator and is trace class (see Proposition 3.1.).

Consider the following integral operator: KX,T : L2([0, T]→R
N)→L2([0, T]→R

N),

(
KX,Tf

)
(s) =

(
ΥMΓ(X)f

)
(s) =

∫T

0
H(s ∧ t)Γ

(
X(t)

)
f(t)dt. (1.5)

It is a fact that for any trace class operator K, if we let ‖K‖1 denote the trace of |K|, then

∥∥KX,T

∥∥
1 ≤ sup

x∈M

∥∥Γ(x)
∥∥‖Υ‖1 ≤ C

∫T

0
trH(s)ds, (1.6)

for some constant C. Here, tr means taking the trace of a matrix. Thus KX,T is trace class.
Therefore,

∣∣det
(
I +KX,T

)∣∣ ≤ exp
(∥∥KX,T

∥∥
1

) ≤ exp
(
C

∫T

0
trH(s)ds

)
. (1.7)

Hence the Fredholm determinant is bounded for each T .
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Let f, V be continuous bounded functions taking x ∈ M ∪ {∂M} �→ R. Fix some
number p ≥ 0. Define a function λ : [0,∞) ×M→R by

λ(T, x) := Ex

[
f
(
XT

)
e−

∫T
0V (Xs)ds

(
det

(
I +KX,T

))p]
, (1.8)

where the expectation is taken with respect to μX and the paths start from x. Note that λ is
finite for any x, T from the above discussion. Let h : [0,∞)×M×MN(R)→MN(R) such that

h(t, x, v) =
(
v −H(t)

)
Γ(x)

(
v −H(t)

)
. (1.9)

The main result is as follows.

Theorem 1.2. Let (t, x, v) ∈ [0,∞) ×M × SN(R). Then

λ(T, x) =
(
eTĤf

)
(0, x, 0), (1.10)

where

Ĥ = L +
∂

∂t
+

N∑

i,j=1

h(t, x, v)ij
∂

∂vij
− V (x) + p tr

(
H(t)Γ(x) − vΓ(x)

)
. (1.11)

Here, h(t, x, v)ij is the i, j component of the matrix h.

Clearly, λ is not in the Feynman-Kac formula form using the process X. The idea is to
construct a diffusion process Ws = (s,Xs, Zs) ∈ [0,∞) ×M × SN(R) such that

det
(
I +KX,T

)
= exp

(∫T

0
G
(
Ws

)
ds

)
, (1.12)

and G is given by

G(t, x, v) = tr
(
H(t)Γ(x) − vΓ(x)

)
. (1.13)

If we can achieve this, then our result follows from a simple application of the Feynman-Kac
formula. Proving (1.12) requires the following 2 steps.

First, we have to prove an essential formula for the derivative of logdet(I + zKX,T )
with respect to T , given by

d

dT
log det

(
I + zKX,T

)
= tr

(
zH(T)Γ

(
XT

) − Zz,TΓ
(
XT

))
, (1.14)

where z is a complex number and Zz,T is some adapted process. For a precise definition of
Zz,T , see (4.1), with KX,s replaced by zKX,s. When z = 1, Z1,T = ZT . The goal is to show that
the formula holds for z = 1 by analytic continuation.
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Fix a time T . By making |z| small such that ‖zKX,T‖ < 1, we can use the perturbation
formula and apply it to the determinant; see (2.3). Differentiating this equation with respect
to T will give us (1.14). By analytic continuation, we can extend the formula in some domain
O ⊆ C containing the origin, provided we avoid the poles of the resolvent of zKX,s for all
s ≤ T . If 1 ∈ O, then (1.14) holds with z = 1. By integrating both sides and raising to the
exponent, we will get (1.12). Note that if ‖KX,T‖ < 1 for some time T , (1.14) and hence (1.12)
hold. The details are given in Sections 2 and 3.

Now assume that (1.14) holds with z = 1. The second step consists of constructing
a diffusion process W from X by using a stochastic differential equation. To do this, we
differentiate ZT with respect to T and show that it satisfies the differential equation

dZT = h
(
T,XT , ZT

)
=
(
ZT −H(T)

)
Γ
(
XT

)(
ZT −H(T)

)
dT, (1.15)

and hence WT = (T,XT , ZT ) satisfies the following stochastic differential equation:

dWT =
(
1, b

(
XT

)
, h
(
WT

))
dT +

(
0, σ

(
XT

)
, 0
)
dBT , (1.16)

with explosion time e(W). From this stochastic differential equation, it is clear that W is a
diffusion process and by replacing the Fredholm determinant by the formula in (1.12), λ(T, x)
can be written as a Feynman-Kac form using this process W . However, if e(W) < T < e(X),
then (1.12) may fail to hold.

The positivity of H and Γ are used to show that Z1,T = ZT exists for all time T and
hence (1.14) holds at z = 1. This will also imply that e(W) = e(X). In particular, only the
positivity of H is required to show that KX,T is a trace class operator. To avoid e(W) < e(X),
we can restrict ourselves to small time T such that (2.24) holds true.

We can weaken our assumptions on H and Γ by not insisting that they are symmetric
matrices. If we only assume that KX,T is trace class, then we can replace SN(R)withMN(R).
Under these weaker assumptions, we have the following result.

Theorem 1.3. Suppose that, for a given locally Lipschitz H and Γ, KX,T is trace class. Assume that
there exists some constant C such that

sup
x∈M

∥∥Γ(x)
∥∥ ≤ C < ∞,

∥∥H(s)
∥∥ ≤ Cs, s ≥ 0.

(1.17)

Let (t, x, v) ∈ [0,∞) ×M ×MN(R). Then for all T < 1/C2,

λ(T, x) =
(
eTĤf

)
(0, x, 0), (1.18)

where

Ĥ = L +
∂

∂t
+

N∑

i,j=1

h(t, x, v)ij
∂

∂vij
− V (x) + p tr

(
H(t)Γ(x) − vΓ(x)

)
. (1.19)
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From Lemma 2.4, using the assumptions on H and Γ, ‖KX,T‖ ≤ C2T . If T < 1/C2, then
the norm is less than 1. Hence (1.14) holds and thus (1.12) holds true.

2. Functional analytic tools

Notation 2.1. Suppose that K is an integral operator, acting on L2([0, T]→R
N) �→ L2([0, T]→

R
N). We will write Kf to mean

(Kf)(s) =
∫T

0
K(s, t)f(t)dt, (2.1)

where T < ∞. To distinguish the operator K from its kernel, we will write K(s, t) to refer to
its kernel. This may be confusing, but it is used to avoid too many symbols. In this article, our
integral operator is always trace class and the kernel is a continuous N × N matrix-valued
function. By abuse of notation, Kn(s, t) refers to the kernel of the integral operator Kn.

Notation 2.2. Wewill use tr to denote the trace of a matrix and Tr to denote taking the trace of
a trace class operator. ‖ · ‖will denote the operator norm.

It is well known that for a trace class operator A and z ∈ C, Tr log(I + zA) is a
meromorphic function and has singularities at points z such that −z−1 ∈ σ(A). Define the
determinant det(I + zA), given by

det(I + zA) = eTr log(I+zA). (2.2)

However, this determinant, also known as the Fredholm determinant of A, is analytic in z
because the singularities z such that −z−1 ∈ σ(A) are removable; see [2, Lemma 16].

We want to differentiate the function logdet(I +KT )with respect to T , where we write
KT to denote the dependence on the domain [0, T]. If the kernel ofKT is given byK(s, t), then
for small z such that ‖zKT‖ < 1, using the perturbation formula,

det
(
I + zKT

)
= exp

( ∞∑

n=1

(−1)n+1
n

Tr
(
zKT

)n
)

. (2.3)

If we let r = ‖KT‖ < 1, then

∞∑

n=1

∣∣∣∣
(−1)n+1

n
TrKn

T

∣∣∣∣ ≤
∞∑

n=1

rn−1

n

∥∥KT

∥∥
1 ≤

∥∥KT

∥∥
1

1 − r
. (2.4)

Thus the series in the exponent converges absolutely.
We will define the resolvent RT by KT (I +KT )

−1. Since we can write KT (I +KT )
−1 =

KT −KT (I +KT )
−1KT , the kernel of RT can be written as

RT (s, t) = K(s, t) −KT

(
I +KT

)−1
KT (s, t). (2.5)
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When we write KT (I +KT )
−1KT (s, t), we mean

KT

(
I +KT

)−1
KT (s, t) =

∫T

0
K(s, u)

((
I +KT

)−1
K(·, t))(u)du. (2.6)

We will also write the resolvent of the operator zKT , z ∈ C as RT,z. One more point to note is
that we assume that K(·, 0) = K(0, ·) = 0.

Now the operator Ks is an operator defined on different Hilbert spaces L2[0, s].
Therefore, we will now think of our operator Ks as acting on L2[0, T], defined as

(
Ksf

)
(u) =

∫T

0
K(u, v)χ[0,s](v)f(v)dv, (2.7)

where χ is the characteristic function. Hence now our operatorKs has a kernelK(u, v)χ[0,s](v)
dependent on the parameter s. Note that our Ks is continuous in the u variable but is
discontinuous at v = s. Thus when we write Ks(u, s), we mean

Ks(u, s) := lim
v↑s

Ks(u, v). (2.8)

Definition 2.3. Let K(·, ·) be a continuous matrix-valued function and let ‖K(·, ·)‖ be the
matrix norm of K(·, ·). Define CT to be the maximum value of ‖K(·, ·)‖ on [0, T] × [0, T].

The next lemma allows us to control the operator norm of the operator by controlling
the sup norm of the kernel.

Lemma 2.4. For 0 ≤ s < s′ ≤ T ,

∥∥Ks′ −Ks

∥∥ ≤ CT

√
T
(
s′ − s

)
. (2.9)

Proof. For f, g ∈ L2 and any s ∈ [0, T],

∣∣〈(Ks −Ks′
)
f, g

〉∣∣ ≤
∫∫T

0

∥∥g(u)Tχ[s,s′](v)K(u, v)f(v)
∥∥dv du

≤
∫∫T

0
χ[s,s′](v)CT

∣∣g(u)
∣∣∣∣f(v)

∣∣dv du

≤ CT

(∫T

0

∣∣g(u)
∣∣du

)(∫T

0
χ[s,s′](u)

∣∣f(u)
∣∣du

)

≤ CT

(∫T

0

∣∣g(u)
∣∣2du ·

∫T

0
1du

)1/2(∫T

0

∣∣f(u)
∣∣2du ·

∫T

0
χ[s,s′](u)du

)1/2

≤ CT

√
T
(
s′ − s

)‖f‖2‖g‖2.
(2.10)
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Hence,

∥
∥Ks′ −Ks

∥
∥ ≤ CT

√
T
(
s′ − s

)
(2.11)

for all 0 ≤ s < s′ ≤ T .

Lemma 2.5. Fix a z ∈ C. For any T such that |zCTT | < 1 and if K(s, t) is continuous, then

d

dT

(
log det

(
I + zKT

))
= tr RT,z(T, T). (2.12)

Proof. Since z is fixed, wewill replace zKT byKT and hence assume that |CTT | < 1. Lemma 2.4
tells us that ‖KT‖ < 1 and thus (2.3) holds true. Taking log on both sides of (2.3), we
have

logdet
(
I +KT

)
=

∞∑

n=1

(−1)n+1
n

TrKn
T . (2.13)

Now

TrKn
T =

∫T

0
· · ·

∫T

0
tr

n∏

i=1

K
(
si, si+1

)
ds1 · · ·dsn, (2.14)

where sn+1 = s1. Differentiate with respect to T and using the fundamental theorem of
calculus, we get

d

dT

∫T

0
· · ·

∫T

0
tr

n∏

i=1

K
(
si, si+1

)
ds1 · · ·dsn

= n tr
∫T

0
· · ·

∫T

0
K
(
T, s2

)
(

n−1∏

i=2

K
(
si, si+1

)
)

K
(
sn, T

)
ds2 · · ·dsn

= n trKn
T (T, T).

(2.15)

Let CTT = α. Thus,

∞∑

n=1

∣∣trKn
T (T, T)

∣∣ ≤ N
∞∑

n=1

∥∥Kn
T (T, T)

∥∥ ≤ N
∞∑

n=1

Cn
TT

n−1 ≤ NCT

∞∑

n=0

αn =
NCT

1 − α
< ∞. (2.16)
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Thus

d

dT

(
log det

(
I +KT

))
=

∞∑

n=1

d

dT

(
(−1)n+1

n
tr
∫T

0
· · ·

∫T

0

n∏

i=1

K
(
si, si+1

)
ds1 · · ·dsn

)

= tr
∞∑

n=1

(−1)n+1Kn
T (T, T)

= trKT (I +KT )
−1(T, T)

= trRT (T, T).

(2.17)

Lemma 2.6. Let K(·, ·) be continuous. For all z ∈ C such that −z−1 /∈ σ(Ks) for all s ∈ [0, T], then
trR·,z(·, ·) is continuous.

Proof. Fix a z and write zKs asKs. By assumption, I +Ks is invertible for all s. By Lemma 2.4,
Ks →Ks0 as s→ s0. Note that

I +Ks = I +Ks0 +Ks −Ks0 =
(
I +Ks0

)(
I +

(
I +Ks0

)−1(
Ks −Ks0

))
, (2.18)

and if we let Gs = Ks −Ks0 , then

(
I +Ks

)−1 =
(
I +

(
I +Kso

)−1
Gs

)−1(
I +Kso

)−1
. (2.19)

By the open mapping theorem, because I + Kso is a surjective continuous map, it is an
open map. Therefore, its inverse is a bounded operator. Since Gs = Ks − Ks0 → 0, thus

(I + (I +Kso)
−1Gs)

−1 → I and hence (I +Ks)
−1 converges to (I +Ks0)

−1 as s→ s0. This shows
that (I +Ks)

−1 is continuous in s. Note that

Rs(s, s) = K(s, s) −Ks

(
I +Ks

)−1
K(s, s). (2.20)

Since K(s, s), Ks and (I +Ks)
−1 are continuous in s, hence Rs(s, s) is continuous in s.

Lemma 2.7. LetK(·, ·) be continuous. If there exists an open-connected setO containing 0 such that
for z ∈ O, (I + zKs)

−1 is analytic for all s ∈ [0, T], then

log det
(
I + zKT

)
=
∫T

0
trRs,z(s, s)ds (2.21)

for all z ∈ O.

Proof. For all z ∈ O, I + zKs is invertible for all s ∈ [0, T] and hence trRs,z(s, s) is analytic in
O. Therefore, it follows that

∫T
0 trRs,z(s, s)ds is analytic in O, because

d

dz

∫T

0
trRs,z(s, s)ds =

∫T

0

d

dz
trRs,z(s, s)ds. (2.22)
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By Lemma 2.4, ‖Ks‖ ≤ TCT for all s ∈ [0, T]. Thus if we choose U := {z | |z| < 1/(TCT )}, then
U is an open set containing 0 and for z ∈ U, ‖zKs‖ < 1 for all s ∈ [0, T]. From Lemma 2.5, for
z ∈ U,

log det
(
I + zKT

)
=
∫T

0
trRs,z(s, s)ds. (2.23)

Since logdet(I + zKT ) is also analytic in O and agrees with
∫T
0 trRs,z(s, s)ds in U, it follows

that both functions are equal for all z ∈ O.

The proof in the previous theorem gives us the existence of a small neighbourhood
containing 0 such that (2.21) holds. Hence we have the following corollary.

Corollary 2.8. Fix T > 0 and CT = sups,t∈[0,T]‖K(s, t)‖. There exists an open set UT := {z | |z| <
1/(TCT )} such that (2.21) holds for all z ∈ UT .

Corollary 2.9. LetO be an open-connected set as in Lemma 2.7 such that 1 ∈ O. Then for s ∈ (0, T),

d

ds
log det

(
I +Ks

)
= trRs(s, s). (2.24)

Proof. The corollary follows from differentiating (2.21). By Lemma 2.6, trRs(s, s) is continu-
ous and hence the fundamental theorem of calculus applies.

3. Fredholm determinant

The kernel we are interested in isKX,T = H(s∧ t)Γ(X(t)), for some processX. More generally,
the kernel we are interested in is of the form KT (s, t) = H(s ∧ t)Λ(t) for some continuous
matrix-valued Λ. The Hilbert space is L2([0, T]→R

N) for some positive number T . Without
any ambiguity, we will in future write this space as L2. We will also use ‖ · ‖2 to denote the L2

norm.

Proposition 3.1. If H is continuous, 0 ≤ H(s) ≤ H(t) for any s ≤ t and Λ continuous, then ΥT as
defined in Section 1 is a trace class operator.

To prove this result, we need the following theorem, which is [3, Theorem 2.12].

Theorem 3.2. Let μ be a Baire measure on a locally compact space X. Let K be a function on X × X
which is continuous and Hermitian positive, that is,

J∑

i,j=1

zizjK
(
xi, xj

) ≥ 0 (3.1)

for any x1, . . . , xJ ∈ X, z1, . . . , zJ ∈ C
J and for any J . Then K(x, x) ≥ 0 for all x. Suppose that, in

addition,

∫
K(x, x)dμ(x) < ∞. (3.2)
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Then there exists a unique trace class integral operator A such that

(Af)(x) =
∫
K(x, y)f(y)dμ(y),

‖A‖1 =
∫
K(x, x)dμ.

(3.3)

Proof of Proposition 3.1. Let X = [0, T] and μ be Lebesgue measure. Using Theorem 3.2, it
suffices to show that H(s ∧ t) is Hermitian positive. Let z1, z2, . . . , zJ be any complex column
vectors. Note that there are N entries in each column and the entries are complex valued.
Let s1, . . . , sJ ∈ [0, T]. The proof is obtained using induction. Clearly, when J = 1, it is trivial.
Suppose it is true for all values from k = 1, 2, . . . , J − 1. By relabelling, we can assume that
s1 ≤ sk, k = 2, . . . , J . Hence s1 ∧ sk = s1 for any k. Let 〈·, ·〉 be the usual dot product. Then

J∑

j=1

〈
H
(
s1 ∧ sj

)
zj , z1

〉
+

J∑

j=1

〈
H
(
sj ∧ s1

)
z1, zj

〉
=

J∑

j=1

〈
H
(
s1
)
zj , z1

〉
+

J∑

j=1

〈
H
(
s1
)
z1, zj

〉

=

〈
J∑

j=1

H
(
s1
)
zj ,

J∑

j=1

zj

〉

−
J∑

i,j=2

〈
H
(
s1
)
zj , zi

〉
.

(3.4)

Therefore,

J∑

i,j=1

〈
H
(
si ∧ sj

)
zj , zi

〉
=

〈
J∑

j=1

H
(
s1
)
zj ,

J∑

j=1

zj

〉

−
J∑

i,j=2

〈
H
(
s1
)
zj , zi

〉
+

J∑

i,j=2

〈
H
(
si ∧ sj

)
zj , zi

〉

=

〈
J∑

j=1

H
(
s1
)
zj ,

J∑

j=1

zj

〉

+
J∑

i,j=2

〈(
H
(
si ∧ sj

) −H
(
s1
))
zj , zi

〉
.

(3.5)

Since si ∧ sj ≥ s1, i = 2, . . . , J and hence H(si ∧ sj) ≥ H(s1) by assumption on H. Thus by
induction hypothesis, (replace H byH(·) −H(s1)),

J∑

i,j=2

〈(
H
(
si ∧ sj

) −H
(
s1
))
zj , zi

〉 ≥ 0 (3.6)

and hence

J∑

i,j=1

〈
H
(
si ∧ sj

)
zj , zi

〉 ≥ 0.
(3.7)
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Notation 3.3. By abuse of notation, 〈·, ·〉T will denote integration over [0, T],

〈f, g〉T :=
∫T

0
f(u) · g(u)du, (3.8)

where · should be interpreted as matrix multiplication or inner product, depending on the
context. To ease the notation, we will write in future K(T) := K(T, T).

Remark 3.4. If we assume that H(s) − H(t) is strictly positive if s > t, which is the case we
are interested in this article, then the proof of Proposition 3.1 shows that the operator ΥT with
kernel H(s ∧ t) is strictly positive, that is, 〈ΥTf, f〉T > 0 if 〈f, f〉T > 0. This follows using a
Riemann lower sum approximation on a double integral and that for any complex vectors
z1, . . . , zJ ,

J∑

i,j=1

〈
H
(
si ∧ sj

)
zj , zi

〉T2

J2
> 0 (3.9)

under the strict positivity assumptions.

The next proposition is a crucial statement. For the time being, we will assume that
(I +KT )

−1 exists for any time T without any further justification. Later on, we will prove that
for our operator KX,T , this is true; (see Proposition 5.2.). Writing in our new notation, we
obtain the next proposition from Corollary 2.9.

Proposition 3.5. Let KT be an integral operator with kernel KT (s, t) = H(s ∧ t)Λ(t) for some
continuous matrix-valued Λ:

d

dT

(
log det

(
I +KT

))
= tr

[
K(T) − 〈

HΛ,
(
I +KT

)−1
H
〉
TΛ(T)

]
. (3.10)

Proof. We will use (2.5). So

RT (T, T) = K(T, T) − 〈
K(T, ·), (I +KT

)−1
K(·, T)〉T

= K(T, T) − 〈
H(·)Λ(·), (I +KT

)−1
H(·)Λ(T)

〉
T

= K(T) − 〈
HΛ,

(
I +KT

)−1
H
〉
TΛ(T).

(3.11)

Taking trace completes the proof.

Definition 3.6. Let

ZT =
〈
HΛ,

(
I +KT

)−1
H
〉
T . (3.12)

To ease the notation, we will now write L := (I + KT )
−1 and L(s, t) to be the kernel

of L. Note that in future we will drop the subscript T from the operator K and it should be
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understood thatK is dependent on T . Operators with a prime will denote its derivative with
respect to T . Our task now is to differentiate ZT .

Define a distributional kernel

ρ(s, t) = R(s, t) − δ(s − t), (3.13)

where δ is the Dirac delta function and R is the resolvent.
For any operator depending smoothly on some parameter T , we have the differentia-

tion formula

L′
T =

d

dT

(
I +KT

)−1 = −(I +KT

)−1
K′

T

(
I +KT

)−1
. (3.14)

For the integral operator K′, its kernel is given, by the fundamental theorem of calculus, by

K′(s, t) = K(s, T)δ(t − T); (3.15)

and hence combining with (3.14), we have

L′(s, t) = −LK′L(s, t)

= −LK′(s, t) − 〈
LK(s, T)δ(· − T),−KL(·, t)〉T

= −LK(s, T)δ(t − T) + LK(s, T)
〈
δ(· − T), KL(·, t)〉T

= −R(s, T)δ(t − T) + R(s, T)R(T, t)

= R(s, T)ρ(T, t).

(3.16)

Notation 3.7. Let K be an integral operator with kernel K(s, t). We define the adjoint K∗ by

(
K∗f)(t

)
=
∫T

0
f(s)K(s, t)dt. (3.17)

Here, f is an N ×N matrix-valued function. We will also write ΛT = Λ(T) and HT = H(T).

The following lemma defines the relationship between R and L.

Lemma 3.8. It holds that

R(s, T) = (LH)(s)ΛT ,

R(T, t) =
(
L∗HΛ

)
(t).

(3.18)
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Proof. We write the identity operator I as If(s) = f(s) =
∫T
0δ(s − t)f(t)dt, where δ is Dirac

delta function. Then

R(s, T) =
〈
L(s, ·), K(·, T)〉T =

〈
L(s, ·),H(· ∧ T)ΛT

〉
T =

〈
L(s, ·),H(·)ΛT

〉
T = (LH)(s)ΛT ,

R(T, t) =
〈
K(T, ·), L(·, t)〉T =

〈
H(T ∧ ·)Λ(·), L(·, t)〉T =

(
L∗HΛ

)
(t).

(3.19)

Theorem 3.9. ZT satisfies the following differential equation:

Z′
T =

(
ZT −HT

)
ΛT

(
ZT −HT

)
. (3.20)

Proof. Now by definition of ZT ,

ZT =
〈
HΛ,

(
I +KT

)−1
H
〉
T = 〈HΛ, LH〉T =

〈
L∗HΛ,H

〉
T . (3.21)

Using (3.16) and from Lemma 3.8,

(
L′H

)
(s) =

〈
R(s, T)ρ(T, ·),H(·)〉T

=
〈
R(s, T)R(T, ·),H(·)〉T − R(s, T)HT

= (LH)(s)ΛT

〈
L∗HΛ,H

〉 − (LH)(s)ΛTHT

= (LH)(s)ΛTZT − (LH)(s)ΛTHT .

(3.22)

Hence differentiating with respect to T , using the fundamental theorem and (3.22), gives

d

dT
ZT = (HΛLH)(T) +

〈
HΛ, L′H〉T

= (HΛLH)(T) +
〈
(HΛ)(·), (LH)(·)ΛTZT − (LH)(·)ΛTHT

〉
T

= (HΛLH)(T) − ZTΛTHT + ZTΛTZT .

(3.23)

But

(KLH)(T) =
(
K(I +K)−1H

)
(T)

=
〈
H(T ∧ ·)Λ(·), (LH)(·)〉T

= 〈HΛ, LH〉T = ZT .

(3.24)

Hence

(HΛLH)(T) = (HΛH)(T) − (HΛKLH)(T)

= (HΛH)(T) − (HΛ)(T)ZT.
(3.25)
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Therefore

d

dT
ZT = (HΛH)(T) − (HΛ)(T)ZT − ZTΛTHT + ZTΛTZT

=
(
ZT −HT

)
ΛT

(
ZT −HT

)
.

(3.26)

This completes the proof.

4. Integral operator driven by a diffusion process

Now back to the integral operator KX,T defined in Section 1. Define a process Zs : Ω →
MN(R),

Zs =
〈
HΓX,

((
I +KX,s

)−1
H
)〉

s, (4.1)

where ΓX := Γ(X) (see Notation 3.3 for the definition of the angle brackets). From the
definition, it is clear that Zs is F∗ adapted. In fact, Zs is a symmetric matrix under the usual
assumptions on H and Γ.

Proposition 4.1. If H and Γ are symmetric matrices, then Z is symmetric as a matrix.

Proof. Since s is fixed, we will drop the subscript s. Also fix anω ∈ Ω, so we will also drop the
subscript X. LetK∗ be the adjoint ofK with kernel Γ(s)H(s ∧ t). By assumption of symmetry
and by definition,

ZT =
〈
H
((
I +K∗)−1), ΓH

〉

= 〈HΓ,H〉 − 〈
HK∗((I +K∗)−1),ΓH

〉

= 〈HΓ,H〉 − 〈
HΓK

(
(I +K)−1

)
,H

〉

=
〈
HΓ

(
(I +K)−1

)
,H

〉

=
〈
HΓ,

(
(I +K)−1

)
H
〉
= Z.

(4.2)

Theorem 4.2. Let Xs be an L-diffusion process satisfying (1.2) and H : [0,∞)→M+
N(R) and let

Γ : M→M+
N(R) be continuous. Further assume that H(s) ≥ H(t) ≥ 0 for s ≥ t. Let KX,s be an

integral operator defined by (1.5) and

Zs =
〈
HΓX,

((
I +KX,s

)−1
H
)〉

s. (4.3)

Let e(Z) be the explosion time of Z. Then for s < e(Z),Ws = (s,Xs, Zs) : Ω→ [0,∞)×M×SN(R)
satisfies the following stochastic differential equation:

dWs =
(
1, b

(
Xs

)
, h
(
Ws

))
ds +

(
0, σ

(
Xs

)
, 0
)
dBs, s ≥ t; Wt = (t, x, v), (4.4)
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where

h(t, x, v) =
(
v −H(t)

)
Γ(x)

(
v −H(t)

)
. (4.5)

Proof. In the ambient space R
N ′
, (s,Xs) is a diffusion satisfying the stochastic differential

equation of the form

d
(
s,Xs

)
=
(
1, b

(
Xs

))
ds +

(
0, σ

(
Xs

))
dBs. (4.6)

Now by Theorem 3.9, Zs satisfies the following differential equation:

dZs = h
(
s,Xs, Zs

)
ds, (4.7)

where h is defined by (4.5) and by Proposition 4.1, Zs ∈ SN(R). Thus we can write

d
(
s,Xs, Zs

)
=
(
1, b

(
Xs

)
, h
(
s,Xs, Zs

))
ds +

(
0, σ

(
Xs

)
, 0
)
dBs, (4.8)

which is (4.4). The existence of Zs for small time is guaranteed by Lemma 2.4.

Lemma 4.3. If Γ is locally Lipschitz, then Ws is the unique solution (path-wise) to (4.4).

Proof. Now by the definition of Xs, b and σ are locally Lipschitz. However, since Γ is locally
Lipschitz on the manifold M with bounded operator norm, it follows that h is locally
Lipschitz. Therefore (4.4) has a unique solution and is given byWs.

5. Long-time existence of Ws

We had addressed the existence and uniqueness of the solution to (4.5), given by Ws =
(s,Xs, Zs), with e(W) ≤ e(X). We will now give sufficient conditions for e(W) = e(X).

Proposition 5.1. Suppose that the integral operator ΥT with kernel H(s ∧ t) is a strictly positive
operator and Γ is a symmetric nonnegative matrix. Then for z ∈ C such that Re(z) ≥ 0, (I + zKX,T )

−1

exists for all T < e(X).

Proof. When z = 0 is trivial. So assume z /= 0. Fix an ω ∈ Ω and any T < e(X(ω)). Since
KX = KX,T is a compact operator, it suffices to show that the kernel of I + zKX is 0. Write
Γ(X(ω)) = Γ and KX(ω) = K. Let 0 /= v ∈ L2 such that 〈v, v〉 > 0 and Γv = 0. Then
(I + zKX)v = v is nonzero. Hence we can assume that 〈Γv,Γv〉 > 0. Note that K = ΥMΓ

and (MΓ + MΓΥMΓ) is a symmetric operator (see Section 1 for definitions of Υ and MΓ.)
Therefore,

〈(
MΓ + zMΓΥMΓ

)
v, v

〉
=
〈
MΓv, v

〉
+ z

〈
MΓΥMΓv, v

〉

= 〈Γv, v〉 + z〈ΥΓv,Γv〉.
(5.1)
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Since Γ is a nonnegative matrix, 〈Γv, v〉 ≥ 0, and because Υ is a strictly positive operator,
〈ΥΓv,Γv〉 > 0. If Re(z) > 0,

Re
(〈
MΓv, v

〉
+ z

〈
ΥMΓv,MΓv

〉)
> 0. (5.2)

Otherwise, Im(z) /= 0 and hence we have

Im(z)
〈
ΥMΓv,MΓv

〉
/= 0. (5.3)

Either way, if Re(z) ≥ 0,

(
MΓ + zMΓΥMΓ

)
v = MΓ

(
I + zΥMΓ

)
v (5.4)

is nonzero, and therefore (I + zΥMΓ)v is nonzero. Thus for any nonzero L2[0, T] function
v, (I + zΥMΓ)v is never zero and since ω is arbitrary, hence I + zKX is invertible for any
ω ∈ Ω.

Proposition 5.2. Suppose that the usual assumptions on Γ and H hold. Then (I +KX,s)
−1 exists for

all 0 ≤ s < e(X). Furthermore, (3.10) holds for all 0 ≤ s < e(X).

Proof. Under the assumptions on Γ and H, Proposition 3.1 and Remark 3.4 will imply
Proposition 5.1. Fix an ω ∈ Ω, a T < e(X(ω)) and let CT be as defined in Lemma 2.4. Then on
U = {z | |z| < 1/CT}, (I +zKX,s) is invertible for all s ∈ [0, T]. HenceO = U∪{z | Re(z) > 0}
is an open-connected set containing 0, and (I + zKX,s)

−1 exists for all s ∈ [0, T]. In particular,
at z = 1. Then the assumptions in Corollary 2.9 are met, and hence (3.10) holds.

6. Proof of main result

The proof of Theorem 1.2 now follows from Theorem 4.2 and Proposition 5.2. Integrating
(3.10), we have for T < e(X),

log det
(
I +KX,T

)
=
∫T

0
tr
(
H(s)Γ

(
Xs

)
ds − ZsΓ

(
Xs

))
ds. (6.1)

For (t, x, v) ∈ [0,∞) ×M × SN(R), define

Ψ(T, t, x, v) = E(t,x,v)

[
f
(
XT

)
exp

(
−
∫T

0
V
(
Xs

) − p tr
(
H(s)Γ

(
Xs) − ZsΓ

(
Xs

))
ds

)]
(6.2)

and observe that

Ψ(T, 0, x, 0) = Ex

[
f
(
XT

)
e−

∫T
0V (Xs)ds

(
det

(
I +KX,T

))p] = λ(T, x). (6.3)
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By the Feynman-Kac formula, Ψ satisfies the following partial differential equation:

∂

∂T
Ψ(T, t, x, v) = ĤΨ(T, s, x, v). (6.4)

Thus

Ψ(T, t, x, v) =
(
eTĤf

)
(t, x, v), (6.5)

and therefore from (6.3),

λ(T, x) = eTĤf(0, x, 0). (6.6)
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