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1. Introduction

Let X be a real Banach space and let J be the normalized duality mapping from X into 2X
∗

defined by

Jx =
{
j(x) ∈ X∗ : 〈x, j(x)〉 = ‖x‖2, ‖j(x)‖ = ‖x‖}, (1.1)

where X∗ denotes the dual space of X and 〈·, ·〉 the generalized duality pairing between X
and X∗.

Recall that if

lim
t→ 0

‖x + th‖ − ‖x‖
t

(1.2)

exists for each x and h on the unit sphere SX of X, the norm of X is Gâteaux differentiable.
Moreover, if for each h ∈ SX the limit defined by (1.2) is uniformly attained for x ∈ SX , we
say that the norm of X is uniformly Gâteaux differentiable.
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Definition 1.1. A mapping T : D(T) → X is said to be k-pseudocontractive (k ∈ R) if, for every
x, y ∈ D(T), there exist some j(x − y) ∈ J(x − y) such that

〈Tx − Ty, j(x − y)〉 ≤ k‖x − y‖2. (1.3)

In the inequality (1.3), if 0 < k < 1, we say that T is strongly pseudocontractive. For k = 1, T is
called pseudocontractivemapping.

Among classes of nonlinear mappings, the class of pseudocontractions is probably
one of the most important classes of mappings. This happens because of the corresponding
relation between the classes of pseudocontractions and accretive operators. In fact, a mapping
A : D(A) → X is accretive (i.e., 〈Ax − Ay, j(x − y)〉 ≥ 0, for all x, y ∈ D(A)) if and only if
T := I −A is pseudocontractive.

Let T, V be two opportune mappings from C to C, where C is a closed and convex
subset of a Banach space X. Consider the variational inequality problem of finding a fixed
point x∗ of T , with respect to another mapping V , to satisfy the inequality

〈x∗ − Vx∗, j(y − x∗)〉 ≥ 0, ∀y ∈ Fix(T). (1.4)

A particular case occurs when V = f with f a ρ-contraction (i.e., ‖f(x)− f(y)‖ ≤ ρ‖x − y‖ for
all x, y ∈ C). In this case, the method (implicit or explicit) that permits to solve the variational
inequality problem is known as viscosity approximation method. It was first studied by
Moudafi [1] in Hilbert spaces and further developed by Xu [2] in more general setting.

Next results, due to Morales [3] (2007), are the more general results concerning the
convergence of implicit viscosity methods for continuous pseudocontractive mappings.

In particular, the author studies the convergence of the path defined as

xt = tf(xt) + (1 − t)Txt, t ∈ (0, 1), (1.5)

in more setting of Banach spaces and in more large class of mappings f including the ρ-
contraction mappings.

Theorem 1.2 (see [3]). Let C be a nonempty closed convex subset of a reflexive Banach spaceX with
a uniformly Gâteaux differentiable norm. Let T and f : C → C be pseudocontractive and strongly
pseudocontractive continuous mappings, respectively. Suppose that every closed, bounded, and convex
subset of C has the fixed point property for nonexpansive self-mappings. If the sets

E :=
{
x ∈ C : Tx = λx + (1 − λ)f(x) for some λ > 1

}
(1.6)

and f(E) are bounded, then the path (xt)t∈(0,1) described by

xt = (1 − t)Txt + tf(xt) (1.7)
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strongly converges, as t → 0, to a fixed point q of T which is the unique solution of the variational
inequality

〈q − f(q), j(q − z)〉 ≥ 0 ∀z ∈ Fix(T). (1.8)

Corollary 1.3 (see [3]). Let C be a nonempty closed convex subset of a uniformly smooth Banach
space X. Let T, f : C → C be a pseudocontractive and strongly pseudocontractive continuous
mappings. If f is bounded and T admits at least a fixed point, then the path (xt)t∈(0,1) described by

xt = (1 − t)Txt + tf(xt) (1.9)

strongly converges, as t → 0, to a fixed point q of T that is the unique solution of the variational
inequality

〈q − f(q), j(q − z)〉 ≥ 0, ∀z ∈ Fix(T). (1.10)

Also in 2007, H. Zegeye et al. in [4] proved a convergence theorem of viscosity
approximation methods for continuous pseudocontractive mappings in reflexive and strictly
convex Banach spaces.

Theorem 1.4 (see [4]). Let C be a nonempty closed and convex subset of a real Banach space X
reflexive, strictly convex that has uniformly Gâteaux differentiable norm. Let T : C → C be a
continuous pseudocontractive mapping and f : C → C be a ρ-contraction. Suppose further that
Fix(T)/=∅. Then, (xt)t∈(0,1) strongly converges, as t → 0, to a fixed point q of T that is the unique
solution of the variational inequality (1.8).

Another interesting implicit-type Halpern algorithm has been recently introduced by
Yao, Liou, and Chen in uniformly smooth Banach spaces.

Theorem 1.5 (see [5]). Let C be a closed and convex subset of a real uniformly smooth Banach space
X. Let T : C → C be a continuous pseudocontractive mapping. Let (αn)n∈N

, (βn)n∈N
, and (γn)n∈N

be
three real sequences in (0, 1) satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii) limn→+∞(αn/βn) = limn→+∞βn = 0;

(iii)
∑

n∈N
(αn/(βn + αn)) = +∞.

Then, for arbitrary initial value x0 ∈ C and a fixed u ∈ C, the sequence (xn)n∈N
defined by

xn = αnu + βnxn−1 + γnTxn (1.11)

strongly converges to a fixed point of T .

In our first result (Theorem 2.1), we prove the strong convergence of the viscosity
implicit approximation method

xn = αnf(xn) + βnxn−1 + γnTxn, (1.12)
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where f : C → C is a continuous strongly pseudocontractive mapping. This result has as
particular case Theorem 1.5 when f is a constant mapping.

On the other hand, on the idea of the implicit scheme (1.11), Zhou in [6] defines
a Halpern explicit method for suitable continuous pseudocontractive mappings. Fixing an
element u ∈ C and an initial point x0 = x0

0 ∈ C, he constructs elements (xm
n )n∈N as follows:

xm+1
n = αnu + βnxn + γnTx

m
n , m = 0, 1, 2, . . . . (1.13)

If for any n ≥ 0 the continuous pseudocontractive mapping T admits an integer m that
satisfies the following condition:

∥
∥Txm+1

n − Txm
n

∥
∥ ≤ γ−1n (1 − γn)εn, (1.14)

then he defines iteratively a sequence (xn)n≥0 as follows: calledN(n) the least positive integer
m satisfying (1.14),

xn+1 = x0
n+1 = x

N(n)+1
n = αnu + βnxn + γnTx

N(n)
n , (1.15)

and he proves the convergence for this explicit method. Of course if xN(n)
n = x

N(n)+1
n , one

reobtains the implicit method (1.11).
In our second theorem, we improve Zhou’s result [6] to the viscosity setting. In both

proofs, we use Morales’s Theorem 1.2.
Let us conclude this section by two lemmas that are useful in many convergence

results.
Following the proof of Theorem 2.3 in [7], one can show the following.

Lemma 1.6. Let C be a nonempty closed convex subset of a real Banach space X with a uniformly
Gâteaux differentiable norm, let T, f : C → C be a pseudocontractive and strongly pseudocontractive
continuous mappings with Fix(T)/=∅. Let (xn)n∈N

be a bounded sequence such that limn→+∞‖xn −
Txn‖ = 0. Define, for all t ∈ (0, 1),

xt = tf(xt) + (1 − t)Txt, (1.16)

and let us suppose that q = limt→ 0xt exists.
Then,

lim sup
n→+∞

〈f(q) − q, j(xn − q)〉 ≤ 0. (1.17)

The following lemma on real sequences can be found in Liu [8].

Lemma 1.7. Let (an)n∈N
be a sequence of nonnegative real numbers satisfying the following

inequality:

an+1 ≤ (1 − tn)an + o(tn) + sn, ∀n ≥ 0, (1.18)
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where (tn)n∈N is a sequence in ]0, 1[ such that
∑

n≥0tn = +∞ and (sn)n∈N is a summable sequence of
positive numbers.

Then, (an)n∈N
converges to zero.

2. Convergence results

In this section, we prove the convergence’s theorems on implicit and explicit viscosity
method.

Theorem 2.1. Let C be a nonempty closed convex subset of a reflexive Banach space X with a
uniformly Gâteaux differentiable norm. Suppose that every closed, bounded, and convex subset of
C has the fixed point property for nonexpansive self-mappings. Let T : C → C be a continuous
pseudocontractive mapping and let f : C → C be a continuous strongly pseudocontractive mapping
(with constant 0 < k < 1) such that the sets

E := {x ∈ C : Tx = λx + (1 − λ)f(x) for some λ > 1} (2.1)

and f(E) are bounded.
Let (αn)n∈N

, (βn)n∈N
, and (γn)n∈N

be three real sequences in (0, 1) satisfying the following
conditions:

(i) αn + βn + γn = 1;

(ii) limn→+∞αn = limn→+∞βn = 0;

(iii)
∑

n∈N
(αn/(βn + (1 − k)αn)) = +∞.

For arbitrary initial point, x0 ∈ C and a fixed n ≥ 0, we construct elements (xn)n∈N
as follows:

xn = αnf(xn) + βnxn−1 + γnTxn. (2.2)

Then, (xn)n∈N
strongly converges to q, where q ∈ Fix(T) is the unique solution of (1.8)

〈q − f(q), j(q − p)〉 ≥ 0, ∀p ∈ Fix(T). (2.3)

Proof. First of all, from [3], it follows that Fix(T)/=∅.
Now, we verify that the sequence (xn)n∈N

exists.
We prove that, for fixed α, β, γ ∈ (0, 1) with α + β + γ = 1 and z ∈ C, the map

Sx = αf(x) + βz + γTx (2.4)

has a unique fixed point. By Deimling [9], it is enough to show that S : C → C is strongly
pseudocontractive and continuous. Now,

〈Sx − Sy, j(x − y)〉 = 〈α(f(x) − f(y)) + γ(Tx − Ty), j(x − y)〉
= α〈f(x) − f(y), j(x − y)〉 + γ〈Tx − Ty, j(x − y)〉

≤ αk‖x − y‖2 + γ‖x − y‖2 = (αk + γ)‖x − y‖2.

(2.5)
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Since (kα + γ) < 1, then S is a strongly pseudocontractive. To prove the claim of the theorem,
we show firstly that (xn)n∈N

is bounded.
Picking p ∈ Fix(T), we have

‖xn − p‖2 = αn〈f(xn) − p, j(xn − p)〉 + βn〈xn−1 − p, j(xn − p)〉 + γn〈Txn − p, j(xn − p)〉
= αn〈f(xn) − f(p), j(xn − p)〉 + αn〈f(p) − p, j(xn − p)〉
+ βn〈xn−1 − p, j(xn − p)〉 + γn〈Txn − p, j(xn − p)〉

≤ [kαn + (1 − αn − βn)]‖xn − p‖2 + αn‖f(p) − p‖‖xn − p‖
+ βn‖xn−1 − p‖‖xn − p‖

(2.6)

which implies that

‖xn − p‖ ≤ αn

αn(1 − k) + βn
‖f(p) − p‖ + βn

αn(1 − k) + βn
‖xn−1 − p‖. (2.7)

By a simple induction, we get that

‖xn − p‖ ≤ max
{‖f(p) − p‖

1 − k
, ‖x0 − p‖

}
. (2.8)

Moreover, we have that limn→+∞‖xn − Txn‖ = 0.
In fact,

‖xn − Txn‖ = ‖αnf(xn) + βnxn−1 − (αn + βn)Txn‖
≤ αn‖f(xn) − Txn‖ + βn‖xn−1 − Txn‖,

(2.9)

and by boundedness of (xn)n∈N
and condition (ii), it follows the statement.

Let, for every t ∈ (0, 1),

xt = tf(xt) + (1 − t)Txt. (2.10)

By Morales’s Theorem 1.2, this implicit method converges to a unique point q ∈ Fix(T) that
is the unique solution of (1.8). Next, we show that xn → q.

By Lemma 1.6, we obtain

lim sup
n→∞

〈f(q) − q, j(xn − q)〉 ≤ 0; (2.11)

then, if we define the real sequence

σn := max{0, 〈f(q) − q, j(xn − q)〉}, (2.12)

we can show that σn ≥ 0 and limn→+∞σn = 0.
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So we conclude

‖xn − q‖2 = αn〈f(xn) − q, j(xn − q)〉 + βn〈xn−1 − q, j(xn − q)〉 + γn〈Txn − q, j(xn − q)〉
≤ αn〈f(xn) − f(q), j(xn − q)〉 + αn〈f(q) − q, j(xn − q)〉

+ βn‖xn−1 − q‖‖xn − q‖ + +γn‖xn − q‖2

≤
(
kαn +

βn
2

+ γn

)
‖xn − q‖2 + βn

2
‖xn−1 − q‖2 + αnσn

=
[
(k − 1)αn −

βn
2

+ 1
]
‖xn − q‖2 + βn

2
‖xn−1 − q‖2 + αnσn

≤
[
(k − 1)

αn

2
− βn

2
+ 1

]
‖xn − q‖2 + βn

2
‖xn−1 − q‖2 + αnσn,

(2.13)

which implies that

‖xn − q‖2 ≤ βn
(1 − k)αn + βn

‖xn−1 − q‖2 + 2αnσn

(1 − k)αn + βn

=
[
1 − (1 − k)αn

(1 − k)αn + βn

]
‖xn−1 − q‖2 + 2αnσn

(1 − k)αn + βn
.

(2.14)

By Liu’s Lemma 1.7 and condition (iii), we obtain that xn → q, as n → ∞.

In the next theorem, we consider a viscosity explicit method which extends (1.15)
substituting the constant u with a ρ-contraction f , and we establish a convergence’s result
for this scheme.

Theorem 2.2. Let C be a nonempty closed convex subset of a reflexive Banach space X with a
uniformly Gâteaux differentiable norm. Suppose that every closed, bounded, and convex subset of
C has the fixed point property for nonexpansive self-mappings. Let T : C → C be a continuous
pseudocontractive mapping and let f : C → C be a ρ-contraction such that the set

E := {x ∈ C : Tx = λx + (1 − λ)f(x) for some λ > 1} (2.15)

is bounded.
Let (αn)n∈N, (βn)n∈N , and (γn)n∈N be three real sequences in (0, 1) satisfying the following

conditions:

(i) αn + βn + γn = 1;

(ii) limn→+∞αn = limn→+∞βn = 0;

(iii)
∑

n∈N
(αn/(1 − γn)) = +∞.

Let (εn)n≥0 be a summable sequence of positive numbers.
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For arbitrary initial point x0 = x0
0 ∈ C and a fixed n ≥ 0, we construct elements (xm

n )n∈N as
follows:

xm+1
n = αnf(xn) + βnxn + γnTx

m
n , m = 0, 1, 2, . . . . (2.16)

Suppose that there existsN(n), the least positive integer satisfying the following condition:

∥
∥TxN(n)+1

n − Tx
N(n)
n

∥
∥ ≤ γ−1n (1 − γn)εn. (2.17)

Then, (xn)n∈N
defined as

xn+1 = x0
n+1 = x

N(n)+1
n = αnf(xn) + βnxn + γnTx

N(n)
n (2.18)

strongly converges to q, where q ∈ Fix(T) is the unique solution of (1.8),

〈q − f(q), j(q − p)〉 ≥ 0 ∀p ∈ Fix(T). (2.19)

Proof. We divide the proof into three steps.

Step 1. (xn)n∈N
is bounded.

Proof of Step 1. Picking p ∈ Fix(T), we have

∥∥xn+1 − p
∥∥2 = αn

〈
f(xn) − p, j(xn+1 − p)

〉
+ βn

〈
xn − p, j(xn+1 − p)

〉

+ γn
〈
Tx

N(n)
n − p, j(xn+1 − p)

〉

= αn

〈
f(xn) − f(p), j(xn+1 − p)

〉
+ αn

〈
f(p) − p, j(xn+1 − p)

〉

+ βn
〈
xn − p, j(xn+1 − p)

〉
+ γn

〈
Tx

N(n)
n − Tx

N(n)+1
n , j(xn+1 − p)

〉

+ γn
〈
Txn+1 − p, j(xn+1 − p)

〉

≤ (ραn + βn)‖xn − p‖‖xn+1 − p‖ + αn‖f(p) − p‖‖xn+1 − p‖

+ (1 − γn)εn‖xn+1 − p‖ + γn‖xn+1 − p‖2,

(2.20)

which implies that

‖xn+1 − p‖ ≤ ραn + βn
1 − γn

‖xn − p‖ + αn

1 − γn
‖f(p) − p‖ + εn. (2.21)

By a simple induction, we get that

‖xn − p‖ ≤ max
{
‖x0 − p‖, ‖f(p) − p‖

1 − ρ

}
+

n−1∑

k=0

εk. (2.22)
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Step 2. limn→+∞‖xn+1 − Txn+1‖ = 0.

Proof of Step 2. Since

∥
∥xn+1 − Txn+1

∥
∥ ≤ αn

∥
∥f(xn) − Txn+1

∥
∥ + βn

∥
∥xn − Txn+1

∥
∥ + γn

∥
∥TxN(n)

n − Tx
N(n)+1
n

∥
∥

≤ αn

∥
∥f(xn) − Txn+1

∥
∥ + βn

∥
∥xn − Txn+1

∥
∥ + εn,

(2.23)

by the boundedness of (xn)n∈N
, condition (ii), and the summability of (εn)n∈N

, we obtain the
claim.

Step 3. limn→+∞xn = q.

Proof of Step 3. As in Theorem 2.1, set

q := lim
t→ 0

xt, (2.24)

where xt = tf(xt) + (1 − t)Txt, and

σn := max{0, 〈f(q) − q, j(xn+1 − q)〉}. (2.25)

We known that limn→+∞σn = 0; now we show that xn → q. In fact,

‖xn+1 − q‖2 = αn

〈
f(xn) − q, j(xn+1 − q)

〉
+ βn

〈
xn − q, j(xn+1 − q)

〉
+ γn

〈
Tx

N(n)
n − q, j(xn+1 − q)

〉

≤ αn

〈
f(xn) − f(q), j(xn+1 − q)

〉
+ αn

〈
f(q) − q, j(xn+1 − q)

〉

+ βn
〈
xn − q, j(xn+1 − q)

〉
+ γn

〈
Tx

N(n)
n − Tx

N(n)+1
n , j(xn+1 − q)

〉
+ γn‖xn+1 − q‖2

≤ (ραn + βn)‖xn − q‖‖xn+1 − q‖ + αnσn + (1 − γn)εn‖xn+1 − q‖ + γn‖xn+1 − q‖2

≤ ραn + βn
2

‖xn − q‖2 + αn + βn
2

‖xn+1 − q‖2 + αnσn

+ (1 − γn)εn‖xn+1 − q‖ + γn‖xn+1 − q‖2

=
ραn + βn

2
‖xn − q‖2 + 1 + γn

2
‖xn+1 − q‖2 + αnσn + (1 − γn)εn‖xn+1 − q‖2

(2.26)

which implies that

‖xn+1 − q‖2 ≤ (1 − γn) − (1 − ρ)αn

1 − γn
‖xn − q‖2 + 2αnσn

1 − γn
+ 2dεn, d := sup

n∈N

‖xn − q‖

=
(
1 − (1 − ρ)αn

1 − γn

)
‖xn − q‖2 + 2αnσn

1 − γn
+ 2dεn.

(2.27)

By Liu’s Lemma 1.7, we obtain that xn → q, as n → ∞.
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Remark 2.3. We can prove that if T is a nonexpansive mapping and xm
n is defined as (2.32) of

Theorem 2.2, then there always exists a positive integer N(n) satisfying

∥
∥TxN(n)+1

n − Tx
N(n)
n

∥
∥ ≤ (1 − γn)

γn
εn. (2.28)

In fact, fixed n ∈ N ∪ {0}, for every k ∈ N ∪ {0}, we have

∥
∥Txk+1

n − Txk
n

∥
∥ ≤ γkn

∥
∥x1

n − x0
n

∥
∥. (2.29)

If x1
n = x0

n, we are done. Otherwise, since 0 < γn < 1, it follows that there exists a sufficiently
large k = N(n) ∈ N ∪ {0} such that

γkn ≤ (1 − γn)εn
γn‖x1

n − x0
n‖

. (2.30)

It is also well known [3, 5, 10] that if T : C → C is a continuous pseudocontractive
mapping, defining the mapping g : C → C as g(x) = (2I − T)−1(x), we can observe that the
following hold:

(1) g is a nonexpansive mapping;

(2) Fix(T) = Fix(g);

(3) ‖x − g(x)‖ ≤ ‖x − Tx‖, for all x ∈ C.

By Remark 2.3 and Theorem 2.2, we have the following.

Corollary 2.4. Let C be a nonempty closed convex subset of a real reflexive Banach space X with
a uniformly Gâteaux differentiable norm. Suppose that every closed, bounded, and convex subset of
C has the fixed point property for nonexpansive self-mappings. Let T : C → C be a continuous
pseudocontractive mapping and let f : C → C be a ρ-contraction such that the set

E := {x ∈ C : Tx = λx + (1 − λ)f(x) for some λ > 1} (2.31)

is bounded.
Let (αn)n∈N, (βn)n∈N , and (γn)n∈N be three real sequences in (0, 1) satisfying the following

conditions:

(i) αn + βn + γn = 1;

(ii) limn→+∞αn = limn→+∞βn = 0;

(iii)
∑

n∈N
(αn/(1 − γn)) = +∞.

Let (εn)n≥0 be a summable sequence of positive numbers.
For arbitrary initial point x0 = x0

0 ∈ C and a fixed n ≥ 0, we construct elements (xm
n )n∈N as

follows (here, as above, g = (2I − T)−1):

xm+1
n = αnf(xn) + βnxn + γng(xm

n ), m = 0, 1, 2, . . . ,N(n), (2.32)
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and we define (xn)n∈N
as

xn+1 = x0
n+1 = αnf(xn) + βnxn + γng

(
x
N(n)
n

)
, (2.33)

where for every n ∈ N, N(n) is the positive integer such that

∥
∥g

(
x
N(n)+1
n

) − g
(
x
N(n)
n

)∥∥ ≤ (1 − γn)
γn

εn. (2.34)

Then, (xn)n∈N
converges strongly to q ∈ Fix(T), where q is the unique solution of (1.8),

〈q − f(q), j(q − p)〉 ≥ 0 ∀p ∈ Fix(T). (2.35)
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References

[1] A. Moudafi, “Viscosity approximation methods for fixed-points problems,” Journal of Mathematical
Analysis and Applications, vol. 241, no. 1, pp. 46–55, 2000.

[2] H.-K. Xu, “Viscosity approximation methods for nonexpansive mappings,” Journal of Mathematical
Analysis and Applications, vol. 298, no. 1, pp. 279–291, 2004.

[3] C. H. Morales, “Strong convergence of path for continuous pseudo-contractive mappings,”
Proceedings of the American Mathematical Society, vol. 135, no. 9, pp. 2831–2838, 2007.

[4] H. Zegeye, N. Shahzad, and T. Mekonen, “Viscosity approximation methods for pseudocontractive
mappings in Banach spaces,” Applied Mathematics and Computation, vol. 185, no. 1, pp. 538–546, 2007.

[5] Y. Yao, Y.-C. Liou, and R. Chen, “Strong convergence of an iterative algorithm for pseudocontractive
mapping in Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 67, no. 12, pp.
3311–3317, 2007.

[6] H. Zhou, “Viscosity approximation methods for pseudocontractive mappings in Banach spaces,”
Nonlinear Analysis, 2008.

[7] Y. Song and R. Chen, “Convergence theorems of iterative algorithms for continuous pseudocontrac-
tive mappings,” Nonlinear Analysis: Theory, Methods & Applications, vol. 67, no. 2, pp. 486–497, 2007.

[8] L. S. Liu, “Ishikawa andMann iterative process with errors for nonlinear strongly accretive mappings
in Banach spaces,” Journal of Mathematical Analysis and Applications, vol. 194, no. 1, pp. 114–125, 1995.

[9] K. Deimling, “Zeros of accretive operators,”Manuscripta Mathematica, vol. 13, no. 4, pp. 365–374, 1974.
[10] W. Takahashi, Nonlinear Functional Analysis. Fixed Point Theory and Its Applications, Yokohama

Publishers, Yokohama, Japan, 2000.


