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We consider a model for a single link in a circuit-switched network. The link has C circuits, and
the input consists of offered calls of two types, that we call primary and secondary traffic. Of the C
links, R are reserved for primary traffic. We assume that both traffic types arrive as Poisson arrival
streams. Assuming that C is large and R = O(1), the arrival rate of primary traffic is O(C), while
that of secondary traffic is smaller, of the order O(

√
C). The holding times of the primary calls are

assumed to be exponentially distributed with unit mean. Those of the secondary calls are exponen-
tially distributed with a large mean, that is, O(

√
C). Thus, the primary calls have fast arrivals and

fast service, compared to the secondary calls. The loads for both traffic types are comparable (O(C)),
and we assume that the system is “critically loaded”; that is, the system’s capacity is approximately
equal to the total load. We analyze asymptotically the steady state probability that n1 (resp., n2) cir-
cuits are occupied by primary (resp., secondary) calls. In particular, we obtain two-term asymptotic
approximations to the blocking probabilities for both traffic types.

Copyright q 2008 J. A. Morrison and C. Knessl. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

A classic model in teletraffic is the Erlang loss model. Here, we have C servers (or circuits),
and customers (telephone calls) arrive as a Poisson process with rate parameter λ. The arriv-
ing customer takes one of the circuits if one is available, and if they are all occupied then
the call is blocked and lost. When occupying a circuit, the customer has an exponentially
distributed holding time whose mean we take as the unit of time. It is well known that the
steady state probability that n circuits are occupied is the truncated Poisson distribution, that
is, Kλne−λ/n!, 0 ≤ n ≤ C, with 1/K =

∑ C
n=0λ

ne−λ/n!. This model dates back to circa 1918
[1]. When n = C, we obtain the steady state blocking probability. The transient probability
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distribution is much more complicated, but it can be computed in terms of special functions
(see [2]).

Over the years, many generalizations of the basic model have been analyzed, including
networks of such loss models (see [3, 4]). One important extension is that of trunk reservation,
which is fundamental in the analysis of circuit-switched communication networks. Here, we
consider a model with C circuits that are used by the two types of customers (or offered calls).
We refer to these as primary (or high-priority) calls and secondary (or low-priority) calls. They
arrive as Poisson arrival streams with respective rates λ and ν. Of the C circuits, R are reserved
for primary calls. Thus, if a high-priority call arrives, it is blocked if allC circuits are busy, while
a low-priority call is blocked if at least C − R circuits are busy. All calls are assumed to have
independent and exponentially distributed holding times, with respective means 1 and 1/κ.
The total load on the system is λ + ν/κ. If this exceeds C, then typically all the circuits are busy
(an overloaded link), while if λ + ν/κ < C, typically some circuits are free (an underloaded
link). An interesting situation is when C is large and λ + ν/κ ≈ C; we refer to this as “critical
loading.”

Previous work on this and related models includes Mitra and Gibbens [5] who consid-
ered the asymptotic regime λ,C→∞ with C = λ − O(

√
λ), R = O(

√
λ), and ν = O(

√
λ) (thus,

secondary calls are less frequent than primary calls). We thus have C/λ = 1 +O(1/
√
λ); so this

is an example of critical loading. They analyzed a single link and used their results to obtain
approximations for more complicated loss networks with a distributed, state-dependent, dy-
namic routing strategy. Related work appears in [6, 7], and optimization and control policies
for such problems were analyzed by Hunt and Laws [8].

Of fundamental importance in this model is the probability B1 (resp., B2) that a pri-
mary (resp., secondary) call is blocked and lost in the steady state. Roberts [9, 10] obtained
approximations to these blocking probabilities, which are based on a certain recursion which
is exact for special cases of the model parameters, but not for all cases. Morrison [11] inves-
tigated this model for R = O(

√
λ) and R = O(1), and obtained the blocking probabilities

as asymptotic series in powers of 1/
√
λ. This led to a better understanding of the asymp-

totic validity of Roberts’ approximation(s). However, the coefficients in the asymptotic se-
ries in [11] were not explicit, as their calculation still involves recursively solving an infi-
nite system of differential equations. But, if it is further assumed that γ = ν/

√
λ is small, the

blocking probabilities were obtained more explicitly in terms of parabolic cylinder functions.
Also, if R = O(1) rather than R = O(

√
λ), explicit results are obtained without the small γ

assumption.
In [12], we analyzed the case R = O(1), with κ = O(1), and with the arrival rates

λ and ν both O(C). Expressions for the blocking probabilities were obtained for the over-
loaded and underloaded cases. In the first case, both blocking probabilities remain O(1) as
λ → ∞, while in the second case they are exponentially small. In this paper, we investi-
gate the case of critical loading, where again C, λ → ∞ but now with λ + ν/κ ∼ C. We
will also assume that ν = O(

√
λ) (secondary calls are less frequent than primary ones) but

now with κ = O(1/
√
λ); that is, secondary calls have large holding times. Thus, primary

calls have faster arrivals and faster service. Note that the loads due to the primary and sec-
ondary calls remain asymptotically comparable with this scaling. In this asymptotic regime,
we are able to obtain explicit analytic expressions for the first two terms in the expansions
in powers of 1/

√
λ for the blocking probabilities, which involve readily evaluated definite

integrals.
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We are currently investigating situations where the secondary calls are the ones with fast
arrivals and service [13]. Here, the asymptotic structure of the problem turns out to be quite
different.

We comment that the basic problem to be solved is a two-dimensional difference equa-
tion (cf. (2.1)), with discontinuities of the coefficient functions at various boundaries and an
interface. Such a problem appears to be very difficult or impossible to solve exactly. From a nu-
merical point of view, the problem corresponds to solving roughlyN = C2/2 linear equations.
A good general method such as Gaussian elimination has computational complexity O(N3)
or O(C6). Some methods that use the sparseness of the system and some iteration procedures
may improve this to O(N2) or O(C4). The purpose of our asymptotic analysis is to obtain
reasonable approximations whose numerical evaluation has computational complexity that is
independent ofC, and also to obtain explicit formulas that show the dependence of the station-
ary distribution and blocking probabilities on the model parameters (i.e., C, R, and the arrival
and service rates).

The paper is organized as follows. In Section 2, the problem is stated more precisely and
the basic equations are obtained. Here, we summarize our main results, which are derived in
detail in Sections 3 and 5. In Section 3, we obtain the leading terms for the blocking probabili-
ties. In Section 4, we relate the present results to the ones in [11, 12] using asymptotic matching.
The first-order correction terms to the blocking probabilities are derived in Section 5, while in
Section 6 we present some numerical studies to assess the accuracy of the asymptotics.

2. Statement of the problem and summary of results

We denote by N1(t) the number of servers serving high-priority customers, and by N2(t) the
number of servers serving low-priority ones. The total number of servers (circuits) is C of
which R are reserved for the high-priority customers. Thus, if N1 +N2 = C, a newly arriving
high-priority customer (call) is lost; ifN1 +N2 ≥ C −R, then a newly arriving low-priority call
is lost. The high- and low-priority customers arrive as independent Poisson processes, with
respective rates λ and ν. The service times are exponentially distributed with respective means
1 and 1/κ. Thus, the unit of time is taken as the service rate of the high-priority customers.

We denote the steady state joint distribution of the numbers of servers used by the two
priority classes by p(n1, n2) = lim t→∞ Pr [N1(t) = n1,N2(t) = n2]. We let I{A} be the indicator
function on the event A. Then, from the description of the model, we obtain the following
balance equation:

[
λI
{
n1 + n2 + 1 ≤ C} + νI{n1 + n2 + 1 ≤ C − R} + n1 + κn2

]
p
(
n1, n2

)

= λI
{
n1 ≥ 1

}
p
(
n1 − 1, n2

)
+ νI

{
n1 + n2 ≤ C − R}I{n2 ≥ 1

}
p
(
n1, n2 − 1

)

+ I
{
n1 + n2 + 1 ≤ C}(n1 + 1

)
p
(
n1 + 1, n2

)

+ κI
{
n1 + n2 + 1 ≤ C}I{n2 + 1 ≤ C − R}(n2 + 1

)
p
(
n1, n2 + 1

)
.

(2.1)

This applies over the domain

{
n1 ≥ 0, 0 ≤ n2 ≤ C − R, n1 + n2 ≤ C

}
. (2.2)
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Thus, wemay view the problem as solving a second-order difference equation in two variables,
over the triangle {(n1, n2) : 0 ≤ n1 + n2 ≤ C − R} and the oblique strip {(n1, n2) : C − R ≤
n1 + n2 ≤ C, 0 ≤ n2 ≤ C − R}, with the two subdomains separated by the “interface” {(n1, n2) :
n1 + n2 = C − R}. There are also boundary conditions inherent in (2.1), along n2 = 0, n1 = 0,
n1 + n2 = C (n2 ≤ C − R), and n2 = C − R (n1 ≤ R). The normalization condition is

C−R∑

n2=0

C−n2∑

n1=0

p
(
n1, n2

)
= 1. (2.3)

Of particular interest are the blocking probabilities for the high-priority customers, defined by

B1 =
C∑

n1=R

p
(
n1, C − n1

)
, (2.4)

and for the low-priority ones, defined by

B2 =
R∑

�=0

C−R+�∑

n1=�

p
(
n1, C − R + � − n1

)
. (2.5)

Note that we clearly have 0 < B1 < B2 < 1.
We analyze the problem in the asymptotic limit where

C −→ ∞, R = O(1). (2.6)

We furthermore assume that the arrival rate λ of high-priority customers is large, of the same
magnitude as C, and then scale the other rate parameters as

ν = γ
√
λ, κ =

μ√
λ
, C − R =

(

1 +
γ

μ

)

λ −ω
√
λ. (2.7)

Thus, the arrival rate of low-priority customers is large, but only of the order O(
√
λ). The

service times of these customers however are also large, and the total load due to low-priority
customers is ν/κ = γλ/μ. Also, we have λ + ν/κ ∼ C so that the total load due to all customers
is roughly equal to the capacity of the system. Hence, this asymptotic limit may certainly be
considered as “heavy traffic” or “critical loading.”

Once we input the model parameters λ, ν, κ, C, and R, we can compute γ , μ, and ω from
(2.7). For some of our numerical studies, it is desirable to fix C, R, γ , μ, and ω and then vary
the original rate parameters, which are computed by inverting (2.7) using

λ =

(
ω +

√
ω2 + 4(1 + γ/μ)(C − R)

)2

4(1 + γ/μ)2
, (2.8)

and ν and κ are obtained from (2.7) once λ is known.
We next scale n1 and n2 as

n1 = λ + x
√
λ, n1 + n2 = C − R + � (2.9)
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with

p
(
n1, n2

)
=

1
λ
p�(x) (2.10)

and x and � are taken as O(1). We consider the scaled state space with (X,Y ) =
C−1(n1, n2). Then, since C is large and R is O(1), the domain in the (X,Y ) plane is the trian-
gle 0 ≤ X + Y ≤ 1; X,Y ≥ 0. The scaling (2.9) corresponds to a small neighborhood of the
point

X =
μ

μ + γ
, Y =

γ

μ + γ
. (2.11)

However, this is where most of the probability mass accumulates in this asymptotic limit, and
the analysis of this range is sufficient to obtain the blocking probabilities Bj . We will obtain
these as asymptotic series in powers of 1/

√
λ.

Using (2.9) and (2.10) in (2.1), we obtain
[

I{� ≤ R − 1} + 1 +
γ√
λ
I{� ≤ − 1} + x + γ√

λ
− μ

λ
(x +ω) +

μ�

λ3/2

]

p�(x)

= p�−1
(

x − 1√
λ

)

+
γ√
λ
I{� ≤ 0}p�−1(x)

+ I{� ≤ R − 1}
(

1 +
x√
λ
+
1
λ

)

p�+1

(

x +
1√
λ

)

+ I{� ≤ R − 1}
(

γ√
λ
− μ

λ
(x +ω) +

μ(� + 1)

λ3/2

)

p�+1(x), � ≤ R.

(2.12)

Note that in this asymptotic scaling, the indicator functions I{n1 ≥ 1}, I{n2 ≥ 1}, and I{n2 +1 ≤
C−R}may be replaced by one, since these correspond to boundaries that are far from the point
in (2.11). However, the interface n1 + n2 = C − R and the boundary n1 + n2 = C are evident in
(2.12) and will play a large part in the analysis. In Section 3, we will analyze (2.12), and then
also consider a second scale where � is large and negative. This second scale will lead to a
diffusion equation in two variables.

The main results are as follows. For � = n1 + n2 − (C − R) = O(1) and n1 = λ + x
√
λ, we

obtain the approximation p(n1, n2) = λ
−1p�(x), with

p�(x) = F0(x) +
1√
λ
p
(1)
�
(x) +O

(
λ−1
)
, � ≤ R, (2.13)

where

F0(x) = e−x
2/2A0 exp

[

− μ

2γ
(ω + x)2

](∫∞

−x
e−u

2/2du

)R
= e−x

2/2g0(x), (2.14)

A−1
0 =

∫∞

−∞
exp
[

− μ

2γ
(ω + x)2

](∫∞

−x
e−u

2/2du

)R+1
dx. (2.15)

The correction term in (2.13) takes the form p
(1)
�
(x) = F1(x) − �[xF0(x) + F ′

0(x)] for � ≤ 0 and
the form p

(1)
�
(x) = F1(x) − �[(x + γ)F0(x) + F ′

0(x)] for 0 ≤ � ≤ R, where F1(x) = φ(1)(x, 0). For
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the latter function, we have φ(1)(x, y) = ψ(1)(x, x + y), where ψ(1) is given by (5.5) in terms of
g0 and g1. Then, g1 is given by (5.66)–(5.68) (with Λ(ξ) and E(x) defined in (5.6) and (5.56)),
and the constant A1 in (5.66) can be obtained by using (5.78) in (5.83).

On the (x, y) scale, where x = (n1 − λ)/
√
λ and y = (C − R − n1 − n2)/

√
λ, we find that

p
(
n1, n2

)
=

1
λ

[

φ(0)(x, y) +
1√
λ
φ(1)(x, y) +O

(
λ−1
)
]

, (2.16)

where φ(0)(x, y) = e−x
2/2g0(x + y) and φ(1) is as above.

The analysis of these two scales leads to two-term approximations to the blocking prob-
abilities in (2.4) and (2.5). To leading order, these are

(
B1

B2

)

∼ 1√
λ

[ ∫∞

−∞
F0(x)dx

](
1

R + 1

)

, (2.17)

where the integral is evaluated using (2.14) and (2.15) (see also (3.49)). The O(λ−1) correction
terms follow from (5.80) and (5.81), using also (5.74).

We note that the numerical evaluation of the leading order asymptotic results involves
only the integrals in (2.15) and (2.17). The correction terms involve numerically evaluating
some double or triple integrals (cf. (5.78)), but the computational complexity of evaluating the
asymptotic results is independent of C (or λ).

3. Asymptotic analysis: leading terms

We consider (2.12) and assume that for λ→ ∞ the probabilities have the expansion

p�(x) = p
(0)
�
(x) +

1√
λ
p
(1)
�
(x) +

1
λ
p
(2)
�
(x) +O

(
λ−3/2

)
. (3.1)

In this section, we focus on the leading term, but its calculation will necessitate that we also
analyze the problem for p(1)

�
(x). This correction term is calculated completely in Section 5. We

will also need to couple the analysis of the scale � = O(1) to that where � is large and negative,
with −� = O(

√
λ).

Using (3.1) in (2.12) and equating coefficients of powers of 1/
√
λ, we obtain to leading

order
[
I{� ≤ R − 1} + 1

]
p
(0)
�
(x) = p(0)

�−1(x) + I{� ≤ R − 1}p(0)
�+1(x), (3.2)

and this applies for all � ≤ R. This is a simple difference equation with a boundary condition
at � = R. Its most general solution is

p
(0)
�
(x) = F0(x), � ≤ R, (3.3)

where F0(x) is to be determined.
For 1 ≤ � ≤ R, we obtain from (3.1), (3.3), and (2.12) the problem

[
I{� ≤ R − 1} + 1

]
p
(1)
�
(x) + (x + γ)F0(x)

= p(1)
�−1(x) − F ′

0(x) + I{� ≤ R − 1}[p(1)
�+1(x) + F

′
0(x) + (x + γ)F0(x)

] (3.4)
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whose solution is

p
(1)
�
(x) = F1(x) − �

[
(x + γ)F0(x) + F ′

0(x)
]
, 0 ≤ � ≤ R. (3.5)

Here, F1(x) is not yet determined. For � ≤ − 1, the O(1/
√
λ) terms in (2.12) yield

2p(1)
�
(x) + (x + 2γ)F0(x) = p

(1)
�−1(x) − F ′

0(x) + γF0(x) + p
(1)
�+1(x) + F

′
0(x) + (x + γ)F0(x), � ≤ −1,

(3.6)

which simplifies to 2p(1)
�
(x) = p(1)

�−1(x) + p
(1)
�+1(x) and hence

p
(1)
�
(x) = F1(x) + �J1(x), � ≤ 0. (3.7)

Here, we imposed continuity between (3.5) and (3.7) along � = 0, and J1(x) is another function
not yet determined. By setting � = 0 in (2.12) and comparing terms of order O(1/

√
λ), we

obtain

[
I{R ≥ 1} + 1

]
p
(1)
0 (x) + (x + γ)F0(x)

= p(1)−1 (x) − F ′
0(x) + γF0(x) + I{R ≥ 1}[p(1)1 (x) + F ′

0(x) + (x + γ)F0(x)
]
.

(3.8)

Using (3.7) to compute p(1)−1 and (3.5) for p(1)1 and p(1)0 , we obtain

J1(x) = −xF0(x) − F ′
0(x) (3.9)

so that (3.7) becomes

p
(1)
�
(x) = F1(x) − �

[
xF0(x) + F ′

0(x)
]
], � ≤ 0. (3.10)

We next consider the problem (2.12) for � → −∞, with the scaling

n1 = λ + x
√
λ, n1 + n2 = C − R − y

√
λ. (3.11)

Note that this still corresponds to a local approximation near the point in (2.11). In terms of
(x, y), we let

p�(x) = φ(x, y), −∞ < x <∞, y > 0, (3.12)

and (2.12), upon multiplying by λ, becomes

[
2λ +

√
λ(x + 2γ) − μ(x + y +ω)

]
φ(x, y)

= λφ
(

x − 1√
λ
, y +

1√
λ

)

+ γ
√
λφ

(

x, y +
1√
λ

)

+ (λ + x
√
λ + 1)φ

(

x +
1√
λ
, y − 1√

λ

)

+
(

γ
√
λ − μ(x + y +ω) +

μ√
λ

)

φ

(

x, y − 1√
λ

)

.

(3.13)
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We note that � ± 1 corresponds to y ∓ 1/
√
λ, and that for y > 0 the indicator functions in (2.12)

can all be replaced by one.
We assume that φ has an expansion in the form

φ(x, y) = φ(0)(x, y) +
1√
λ
φ(1)(x, y) +

1
λ
φ(2)(x, y) +O

(
λ−3/2

)
. (3.14)

Using (3.14) in (3.13), we obtain to leading order the PDE

φ(0)
xx − 2φ(0)

xy + φ(0)
yy + x

(
φ(0)
x − φ(0)

y

)
+ φ(0) = 0. (3.15)

This is a parabolic PDE whose solution is facilitated by the change of variables

x = ξ, x + y = η, φ(0)(x, y) = ψ(0)(ξ, η). (3.16)

Using (3.16), (3.15) becomes

ψ
(0)
ξξ

+ ξψ(0)
ξ

+ ψ(0) = 0, −∞ < ξ <∞, η > ξ. (3.17)

The most general solution, that decays exponentially as ξ → ±∞, is

ψ(0)(ξ, η) = e−ξ
2/2g0(η), (3.18)

and hence

φ(0)(x, y) = e−x
2/2g0(x + y). (3.19)

We will determine g0 shortly.
We observe that on the � scale, with y = −�/

√
λ, expansion (3.14) becomes

φ

(

x,− �√
λ

)

= φ(0)(x, 0) +
1√
λ

[
φ(1)(x, 0) − �φ(0)

y (x, 0)
]

+
1
λ

[

φ(2)(x, 0) − �φ(1)
y (x, 0) +

1
2
�2φ(0)

yy(x, 0)
]

+O
(
λ−3/2

)
.

(3.20)

Comparing this to (3.1), for � < 0 we conclude from (3.3) that

φ(0)(x, 0) = p(0)
�
(x) = F0(x) = e−x

2/2g0(x) (3.21)

and, from (3.10) that

φ(1)(x, 0) = F1(x), φ(0)
y (x, 0) = xF0(x) + F ′

0(x). (3.22)

It follows that

φ(0)
y (x, 0) = φ(0)

x (x, 0) + xφ(0)(x, 0) (3.23)
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which is a boundary condition for the PDE (3.15) along y = 0. In terms of (ξ, η), this becomes
ψ
(0)
ξ
(ξ, ξ) + ξψ(0)(ξ, ξ) = 0, but this holds automatically (for any g0) in view of (3.18). To deter-

mine g0, we must analyze the correction term in (3.14).
From (3.13) and (3.14), we find that the first correction term φ(1) satisfies the PDE

φ(1)
xx − 2φ(1)

xy + φ(1)
yy + x

(
φ(1)
x − φ(1)

y

)
+ φ(1)

= −
[
x

2
(
φ(0)
xx − 2φ(0)

xy + φ(0)
yy

)
+ γφ(0)

yy + φ(0)
x − φ(0)

y + μ(ω + x + y)φ(0)
y + μφ(0)

]

.
(3.24)

Switching to the (ξ, η) variables and then using (3.18), we get

ψ
(1)
ξξ

+ ξψ(1)
ξ

+ ψ(1)

=
d

dξ

[
ψ
(1)
ξ

+ ξψ(1)] = −
[
ξ

2
ψ
(0)
ξξ

+ γψ(0)
ηη + ψ(0)

ξ
+ μ(ω + η)ψ(0)

η + μψ(0)
]

= −1
2
ξψ

(0)
ξξ

− ψ(0)
ξ

− e−ξ2/2[μg0(η) + μ(ω + η)g ′
0(η) + γg

′′
0(η)

]
.

(3.25)

Integrating (3.25) with respect to ξ yields

ψ
(1)
ξ

+ ξψ(1) = −1
2
[
ξψ

(0)
ξ

+ ψ(0)] −
(∫∞

−ξ
e−u

2/2du

)
[
γg ′′

0(η) + μ(ω + η)g ′
0(η) + μg0(η)

]
. (3.26)

Setting ξ = η = x in (3.26), we obtain

φ(1)
x (x, 0) + xφ(1)(x, 0) − φ(1)

y (x, 0)

= F ′
1(x) + xF1(x) − φ(1)

y (x, 0) = −1
2
(
1 − x2)e−x

2/2g0(x)

−
(∫∞

−x
e−u

2/2du

)
[
γg ′′

0(x) + μ(ω + x)g ′
0(x) + μg0(x)

]
.

(3.27)

We will show that (3.27) leads to a differential equation for g0(x). But, we must first consider
φ(1)
y (x, 0). In view of (3.20), this term arises as a part of the O(1/λ) term in the expansion on

the � scale. We therefore return to (3.1) and (2.12).
For 1 ≤ � ≤ R, we obtain from (2.12) and (3.1), at order O(1/λ), the equation

[
I{� ≤ R − 1} + 1

]
p
(2)
�
(x) + (x + γ)p(1)

�
(x) − μ(x +ω)p(0)

�
(x)

= p(2)
�−1(x) −

d

dx
p
(1)
�−1(x) +

1
2
d2

dx2
p
(0)
�−1(x)

+ I{� ≤ R − 1}
[

p
(2)
�+1(x) +

d

dx
p
(1)
�+1(x) +

1
2
d2

dx2
p
(0)
�+1(x) + xp

(1)
�+1(x)

+ x
d

dx
p
(0)
�+1(x) + p

(0)
�+1(x) + γp

(1)
�+1(x) − μ(x +ω)p(0)

�+1(x)
]

.

(3.28)
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Using (3.3) and (3.5), we find that (3.28) has a solution in the form

p
(2)
�
(x) = F2(x) + �G2(x) + �

2H2(x), 0 ≤ � ≤ R, (3.29)

where

2H2(x) =
[
(x + γ)2 + 1

]
F0(x) + (2x + 3γ)F ′

0(x) + F
′′
0(x), (3.30)

G2(x) + (2R − 1)H2(x) = R
[
F ′′
0(x) + 2(x + γ)F ′

0(x) +
(
(x + γ)2 + 1

)
F0(x)

]

+
[
μ(x +ω) − 1

]
F0(x) − (x + γ)F ′

0(x) −
1
2
F ′′
0(x) − (x + γ)F1(x) − F ′

1(x).

(3.31)

It follows that

G2(x) +H2(x) =
1
2
F ′′
0(x) +

[
x + (2 − R)γ]F ′

0(x)

+
[
(x + γ)2 + μ(x +ω)

]
F0(x) − (x + γ)F1(x) − F ′

1(x).
(3.32)

We note that p(2)0 (x) = F2(x) and

p
(2)
1 (x) = F2(x) − (x + γ)F1(x) − F ′

1(x)

+
1
2
F ′′
0(x) +

[
x + (2 − R)γ]F ′

0(x) +
[
(x + γ)2 + μ(x +ω)

]
F0(x).

(3.33)

For � ≤ − 1, the O(1/λ) terms in (2.12), with (3.1), yield

2p(2)
�
(x) + (x + 2γ)p(1)

�
(x) − μ(x +ω)p(0)

�
(x)

= p(2)
�−1(x) −

d

dx
p
(1)
�−1(x) +

1
2
d2

dx2
p
(0)
�−1(x) + γp

(1)
�−1(x)

+ p(2)
�+1(x) +

d

dx
p
(1)
�+1(x) +

1
2
d2

dx2
p
(0)
�+1(x) + xp

(1)
�+1(x)

+ x
d

dx
p
(0)
�+1(x) + p

(0)
�+1(x) + γp

(1)
�+1(x) − μ(x +ω)p(0)

�+1(x).

(3.34)

Using (3.3) and (3.10), we find after some calculation that (3.34) simplifies to

2p(2)
�
(x) − p(2)

�−1(x) − p
(2)
�+1(x) = −[F ′′

0(x) + 2xF ′
0(x) +

(
x2 + 1

)
F0(x)

]
, (3.35)

and hence

p
(2)
�
(x) = F2(x) + �J2(x) +

1
2
�2
[
F ′′
0(x) + 2xF ′

0(x) +
(
x2 + 1

)
F0(x)

]
, � ≤ 0. (3.36)
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Setting � = 0 in (2.12), we obtain at order O(1/λ) the interface relation

[
1 + I{R ≥ 1}]p(2)0 (x) + (x + γ)p(1)0 (x) − μ(x +ω)p(0)0 (x)

= p(2)−1 (x) −
d

dx
p
(1)
−1 (x) +

1
2
d2

dx2
p
(0)
−1 (x) + γp

(1)
−1 (x)

+ I{R ≥ 1}
[

p
(2)
1 (x) +

d

dx
p
(1)
1 (x) +

1
2
d2

dx2
p
(0)
1 (x) + xp(1)1 (x)

+ x
d

dx
p
(0)
1 (x) + p(0)1 (x) + γp(1)1 (x) − μ(x +ω)p(0)1 (x)

]

.

(3.37)

Using (3.36), with � = 0 and � = −1, and (3.33), we obtain from (3.37) after some calculation

J2(x) = −[F ′
1(x) + xF1(x)

]
+
1
2
(
x2 + 1

)
F0(x) − RγF ′

0(x) + γ
[
F ′
0(x) + xF0(x)

]
+ μ(x +ω)F0(x).

(3.38)

Now, comparing the −�/λ terms in (3.20) and (3.1) with (3.36), we conclude that

−φ(1)
y (x, 0) = J2(x). (3.39)

But then F ′
1(x) + xF1(x) − φ(1)

y (x, 0) (cf. (3.27)) involves F ′
0(x) only, and since F0 and g0 are

related via (3.21), we obtain from (3.27) the following ODE for g0(x):

e−x
2/2[γg ′

0(x) + μ(ω + x)g0(x)
] − Rγ d

dx

[
e−x

2/2g0(x)
]

+
(∫∞

−x
e−u

2/2du

)
[
γg ′′

0(x) + μ(ω + x)g ′
0(x) + μg0(x)

]
= 0.

(3.40)

This equation may be written as a perfect derivative as

d

dx

[∫∞

−x
e−u

2/2du
[
γg ′

0(x) + μ(ω + x)g0(x)
] − Rγe−x2/2g0(x)

]

= 0. (3.41)

Integrating once and requiring g0 to vanish as x → ∞ yield

g ′
0(x)
g0(x)

= −μ
γ
(ω + x) +

Re−x
2/2

∫∞
−x e

−u2/2du
, (3.42)

and hence

g0(x) = A0 exp
[

− μ

2γ
(ω + x)2

](∫∞

−x
e−u

2/2du

)R
, (3.43)

where A0 is a constant, which will be fixed by normalization.
We use (2.10) and (3.12) in the normalization sum (2.3), and then use the Euler-

MacLaurin formula to approximate sums by integrals. To leading order, this yields

C−R∑

n2=0

C−n2∑

n1=0

p
(
n1, n2

) ∼
∫∞

0

∫∞

−∞
φ(0)(x, y)dx dy = 1. (3.44)
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We use (3.19) and (3.43) and evaluate one of the two integrals in (3.44) using integration by
parts, with the result

A0 =
[ ∫∞

−∞
exp
[

− μ

2γ
(ω + x)2

](∫∞

−x
e−u

2/2du

)R+1
dx

]−1
. (3.45)

To summarize the calculation, we have shown that on the (x, y) scale in (3.11) we have

p
(
n1, n2

) ∼ A0

λ
e−x

2/2 exp
[

− μ

2γ
(ω + x + y)2

](∫∞

−x−y
e−u

2/2du

)R
(3.46)

withA0 given by (3.45). Note that p(n1, n2) isO(1/λ), but the probabilities are spread out over
an O(

√
λ) ×O(

√
λ) range near the point (CX,CY ) given by (2.11). On the (x, �) scale in (2.9),

we have obtained

p
(
n1, n2

) ∼ A0

λ
e−x

2/2 exp
[

− μ

2γ
(ω + x)2

](∫∞

−x
e−u

2/2du

)R
, (3.47)

which applies for −∞ < � ≤ R and is independent of �. To calculate correction terms to (3.46)
and (3.47), we would need to find F1(x) in (3.5) and (3.10), and solve (3.24) for φ(1)(x, y). This
ultimately involves calculating the O(1/λ) and O(1/λ3/2) terms in (3.1) and the O(1/λ) term
in (3.14); this is done in Section 5.

We next calculate the blocking probabilities in (2.4) and (2.5). Evaluating these sums
requires the expansion on the (x, �) scale. Again, approximating sums by integrals and using
the scaling (2.9), we obtain

B1 ∼ 1√
λ

∫∞

−∞
p
(0)
R (x)dx =

1√
λ

∫∞

−∞
F0(x)dx,

B2 ∼ 1√
λ

∫∞

−∞

R∑

�=0

p
(0)
�
(x)dx ∼ R + 1√

λ

∫∞

−∞
F0(x)dx

(3.48)

as p(0)
�
(x) = F0(x). From (3.21), (3.43), and (3.45), we then obtain

∫∞

−∞
F0(x)dx =

∫∞
−∞ e−x

2/2 exp
[ − (μ/2γ)(ω + x)2

]( ∫∞
−x e

−u2/2du
)R
dx

∫∞
−∞ exp

[ − (μ/2γ)(ω + x)2
]( ∫∞

−x e
−u2/2du

)R+1
dx

. (3.49)

The numerical accuracy of (3.48) is investigated in Section 6. This completes the analysis of the
leading terms.

4. Consistency with previous results

In [11], Morrison studied the current model with the scaling C = λ−O(
√
λ) and R being either

O(
√
λ) or O(1). For the latter case, we define β from C − R = λ − β

√
λ (see [11, equations

(7.16)–(7.18)]) and then
(
B1

B2

)

∼ 1√
λ

(
1

R + 1

)
1

W0(β + γ/κ)
, (4.1)
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where

W0(Z) =
∫∞

0
e−u

2/2e−Zudu. (4.2)

We show that (4.1) matches asymptotically to (3.48), in the limit where μ → ∞. When
μ → ∞, we can simplify the integrals in both the numerator and denominator in (3.49), as the
factor exp [−μ(ω + x)2/2γ] has the effect of freezing the remaining integrands at x = −ω. Thus,
by the Laplace method, we obtain

∫∞

−∞
F0(x)dx ∼ e−ω

2/2
∫∞
ω e−u2/2du

. (4.3)

But, in view of (2.7), C − R = λ +
√
λ(γ/κ − ω) so that β = ω − γ/κ. Since W0(ω) =

eω
2/2
∫∞
ω e−u

2/2du, (4.1) agrees with (3.48)-(3.49) and (4.3).
In [12], Knessl and Morrison analyzed the model in the limit λ→ ∞ with ν = (ρ − κ)λ =

O(λ) and C−R = σλ/κ = O(λ). The total load is thus λ+ν/κ = ρλ/κ and the cases ρ < σ (resp.,
ρ > σ) correspond to an underloaded (resp., overloaded) link. The case of critical loading was
not considered in [12].

We consider first the asymptotic matching of (3.48)-(3.49) to the underloaded case in
[12]. We note that the parameters ρ and σ are related to the current ones by

σ =
γ + μ√
λ

− μω

λ
, ρ =

γ + μ√
λ
, κ =

μ√
λ
. (4.4)

For the matching, we must thus let ω → −∞ with |ω| �
√
λ, and ρ/σ ↑ 1. The results in [12]

for B1 and B2 were as follows:

(
B1

B2

)

∼
√

κ

2πσλ
e(σ−ρ)λ/κ

(
ρ

σ

)σλ/κ
⎛

⎝
ãR

1 − ãR+1
1 − ã

⎞

⎠ , (4.5)

where

ã =
ρ

σ(1 + ρ − κ) < 1. (4.6)

In view of (4.4), we have, in the matching region, ρ ∼ σ, ã ∼ 1, κ/σ ∼ μ/(μ + γ), and

1 − ρ

σ
∼ − μω

(γ + μ)
√
λ
. (4.7)

Hence,

λ

κ

[

σ − ρ + σ log
(
ρ

σ

)]

∼ − μω2

2(γ + μ)
(4.8)

and (4.5) becomes
(
B1

B2

)

∼
√

μ

2πλ(γ + μ)
exp
[

− μω2

2(γ + μ)

](
1

R + 1

)

. (4.9)
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We show that (4.9) agrees with (3.48)-(3.49)when the latter is expanded for ω → −∞. In
(3.49), the main contribution to the integral in the denominator comes from x = −ω = |ω|, and
in the numerator from x = μ|ω|/(γ + μ), where (d/dx)[x2/2 + (μ/2γ)(ω + x)2] = 0. Thus, we
can approximate

∫∞
−x e

−u2/2du by
√
2π everywhere, and obtain

∫∞

−∞
F0(x)dx ∼ 1√

2π

∫∞
−∞ e−x

2/2 exp
[ − (μ/(2γ))(ω + x)2

]
dx

∫∞
−∞ exp

[ − (μ/(2γ))(ω + x)2
]
dx

=

√
μ

2π(γ + μ)
exp
[

− μω2

2(γ + μ)

]

.

(4.10)

With (4.10), (3.48) agrees with (4.9).
Next, we consider the overloaded case in [12], for which we obtained

(
B1

B2

)

∼
[

1
b − 1

+
1 − aR+1
1 − a

]−1
⎛

⎝
aR

1 − aR+1
1 − a

⎞

⎠ , (4.11)

where

a =
1

σ + ζ − κζ , b =
1 + ρ − κ
σ + ζ − κζ > a, (4.12)

and ζ is the solution of

ζ

[
1

b − 1
+
1 − aR+1
1 − a

]

=
1

b − 1
+
1 − aR
1 − a . (4.13)

We note that by using (4.12) in (4.13), ζ is a particular root of a polynomial. For the matching,
we will take ρ/σ ↓ 1 in (4.11) and ω → +∞ in (3.48)-(3.49). As ρ/σ → 1, we will have ζ → 1
and this will allow us to simplify (4.11). Let us set

ζ = 1 − θ√
λ

(4.14)

with which a−1 = σ + ζ − κζ = 1 + (γ − θ)/
√
λ + μ(θ −ω)/λ, and thus

a = 1 +
θ − γ√
λ

+
1
λ

[
(θ − γ)2 + μ(ω − θ)] +O(λ−3/2). (4.15)

Furthermore,

b = (1 + ρ − κ)a =
(

1 +
γ√
λ

)

a = 1 +
θ√
λ
+
1
λ

[
θ(θ − γ) + μ(ω − θ)] +O(λ−3/2). (4.16)

Using (4.14)–(4.16) in (4.13), we find after some calculation that

θ ∼ μω

(R + 1)γ + μ
(4.17)
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and then (4.11), for ρ/σ ↓ 1, simplify to
(
B1

B2

)

∼ θ√
λ

(
1

R + 1

)

. (4.18)

We expand (3.49) for ω → +∞. Scaling x = ωt, we obtain

∫∞

−∞
F0(x)dx =

∫∞
−∞ exp

{ − (ω2/2
)[
t2 + (μ/γ)(t − 1)2

]}( ∫∞
ωt e

−u2/2du
)R
dt

∫∞
−∞ exp

[ − (ω2μ/(2γ)
)
(t − 1)2

]( ∫∞
ωt e

−u2/2du
)R+1

dt
. (4.19)

For t > 0, we use the asymptotic approximation
∫∞

ωt

e−u
2/2du ∼ 1

ωt
e−ω

2t2/2, ω −→ ∞, (4.20)

and conclude that both integrals in (4.19) have their major contribution from where

d

dt

[

(R + 1)
t2

2
+
μ

2γ
(t − 1)2

]

= 0 =⇒ t = t∗ =
μ

(R + 1)γ + μ
. (4.21)

But then by the Laplace method, we have
∫∞

−∞
F0(x)dx ∼ ωt∗ ∼ θ, (4.22)

and (3.48) agrees with (4.18).
This completes the matching verifications.

5. Correction terms

We will compute the O(1/
√
λ) terms in expansions (3.1) and (3.14), and then obtain O(1/λ)

corrections to the blocking probabilities.
We first consider (3.13). Using the relations φ(x, y ± 1/

√
λ) = ψ(ξ, η ± 1/

√
λ) and φ(x ±

1/
√
λ, y ∓ 1/

√
λ) = ψ(ξ ± 1/

√
λ, η), we rewrite (3.13) in terms of (ξ, η). Defining

φ(x, y) = ψ(ξ, η) = ψ(0)(ξ, η) +
1√
λ
ψ(1)(ξ, η) +

1
λ
ψ(2)(ξ, η) +O

(
λ3/2
)
, (5.1)

we obtain from (3.13)

ψξξ + (ξψ)ξ +
1√
λ

[
1
2
ξψξξ + ψξ + γψηη + μ(ω + η)ψη + μψ

]

+
1
λ

[
1
12
ψξξξξ +

1
6
ξψξξξ +

1
2
ψξξ −

1
2
μ(ω + η)ψηη − μψη

]

= O
(
λ−3/2

)
(5.2)

so that ψ(2) satisfies

ψ
(2)
ξξ

+ ξψ(2)
ξ

+ ψ(2) = −L1ψ
(1) − L2ψ

(0), (5.3)
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where Li are the operators

L1 =
1
2
ξ∂2ξ + ∂ξ + γ∂

2
η + μ(ω + η)∂η + μ,

L2 =
1
12
∂4ξ +

1
6
ξ∂3ξ +

1
2
∂2ξ −

1
2
μ(ω + η)∂2η − μ∂η.

(5.4)

Before analyzing (5.3), we obtain a more complete description of ψ(1). We recall that ψ(0)

is known completely, in view of (3.18), (3.43), and (3.45). But, we computed ψ(1) only partially
as the combination ψ(1)

ξ
+ ξψ(1) in (3.26). We integrate (3.26) to get

ψ(1)(ξ, η) = e−ξ
2/2
[
1
6
ξ
(
ξ2 − 3

)
g0(η) + g1(η)

]

+ e−ξ
2/2Λ(ξ)

[
γg ′′

0(η) + μ(ω + η)g ′
0(η) + μg0(η)

]
,

(5.5)

where

Λ(ξ) =
∫−ξ

0
ev

2/2
∫∞

v

e−u
2/2dudv =

∫∞

0
e−t

2/2 1 − eξt
t

dt. (5.6)

We observe that Λ(ξ) satisfies

Λ′′(ξ) − ξΛ′(ξ) = −1 (5.7)

and Λ′(ξ) decays as ξ → −∞. We also have

d

dξ

[
e−ξ

2/2Λ′(ξ)
]
= e−ξ

2/2. (5.8)

The function g1 will be determined shortly (actually, not very shortly, but only after a lengthy
calculation).

We evaluate the right side of (5.3) more explicitly. Some terms are expressible as deriva-
tives with respect to ξ, while the ones involving derivatives in ηmay be evaluated using (3.18)
and (5.5). Then, (5.3) becomes

(
ψ
(2)
ξ

+ ξψ(2))

ξ

= −
[
1
2
(
ξψ

(1)
ξ

+ ψ(1)) +
1
12
ψ
(0)
ξξξ

+
ξ

6
ψ
(0)
ξξ

+
1
3
ψ
(0)
ξ

]

ξ

− e−ξ2/2[γg ′′
1(η) + μ(ω + η)g ′

1(η) + μg1(η)
]

− e−ξ2/2 1
6
ξ
(
ξ2 − 3

)[
γg ′′

0(η) + μ(ω + η)g ′
0(η) + μg0(η)

]

− e−ξ2/2Λ(ξ)
[
γ∂2η + μ(ω + η)∂η + μ

]2
g0(η) + e−ξ

2/2
[
1
2
μ(ω + η)g ′′

0(η) + μg
′
0(η)
]

.

(5.9)

From (3.18), we have

1
12
ψ
(0)
ξξξ

+
1
6
ξψ

(0)
ξξ

+
1
3
ψ
(0)
ξ

=
1
12
(
ξ3 − 3ξ

)
e−ξ

2/2g0(η) (5.10)
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and by direct calculation

(
ξ∂ξ + 1

)[(
ξ3 − 3ξ

)
e−ξ

2/2] = −e−ξ2/2[ξ5 − 7ξ3 + 6ξ
]
,

(
ξ∂ξ + 1

)[
e−ξ

2/2Λ(ξ)
]
= −ξ

∫∞

−ξ
e−u

2/2du − (ξ2 − 1
)
e−ξ

2/2Λ(ξ),

(
ξ∂ξ + 1

)[
e−ξ

2/2] = −e−ξ2/2(ξ2 − 1
)
.

(5.11)

With the above, we integrate (5.9) to get

ψ
(2)
ξ

+ ξψ(2)

= e−ξ
2/2
{

1
12
(
ξ5 − 8ξ3 + 9ξ

)
g0(η) +

1
2
(
ξ2 − 1

)
g1(η) +

1
2
(
ξ2 − 1

)
[

Λ(ξ) +
1
3

]

Dg0(η)
}

−
[∫ ξ

−∞
e−u

2/2Λ(u)du
]

D2g0(η) +
[∫∞

−ξ
e−u

2/2du

]

·
{
ξ

2
Dg0(η) − Dg1(η) + μ

[
1
2
(ω + η)g ′′

0(η) + g
′
0(η)
]}

,

(5.12)

where

D = γ∂2η + μ(ω + η)∂η + μ. (5.13)

We will show that the calculation of g1 will require only that we evaluate (5.12) along η = ξ.
However, we must first reconsider the scale � = O(1) and analyze at least partly the term
p
(3)
�
(x) in (3.1) (i.e., the coefficient of λ−3/2 in the series).

Returning to (2.12)with the expansion (3.1), we find that for 1 ≤ � ≤ R, p(3)
�

satisfies

[
I{� ≤ R − 1} + 1

]
p
(3)
�
(x) + (x + γ)p(2)

�
(x) − μ(x +ω)p(1)

�
(x) + μ�p(0)

�
(x)

= p(3)
�−1(x) −

d

dx
p
(2)
�−1(x) +

1
2
d2

dx2
p
(1)
�−1(x) −

1
6
d3

dx3
p
(0)
�−1(x)

+ I{� ≤ R − 1}
[

p
(3)
�+1(x) +

d

dx
p
(2)
�+1(x) +

1
2
d2

dx2
p
(1)
�+1(x) +

1
6
d3

dx3
p
(0)
�+1(x)

]

+ I{� ≤ R − 1}
[

xp
(2)
�+1(x) + x

d

dx
p
(1)
�+1(x) +

1
2
x
d2

dx2
p
(0)
�+1(x) + p

(1)
�+1(x)

+
d

dx
p
(0)
�+1(x) + γp

(2)
�+1(x) − μ(x +ω)p(1)

�+1(x) + μ(� + 1)p(0)
�+1(x)

]

.

(5.14)

We recall that for 0 ≤ � ≤ R, p(0)
�

is given by (3.3), p(1)
�

by (3.5), and p(2)
�

by (3.29). Let us write

p
(1)
� (x) = F1(x) + �G1(x), G1(x) = −(x + γ)F0(x) − F ′

0(x), 0 ≤ � ≤ R. (5.15)
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We then rewrite (5.14) as

p
(3)
�
(x) − p(3)

�−1(x) − I{� ≤ R − 1}[p(3)
�+1(x) − p

(3)
�
(x)
]

= I{� ≤ R − 1}[(x + γ)p(2)
�+1(x) − μ(x +ω)p(1)

�+1(x) + μp
(0)
�+1(x)

]

− [(x + γ)p(2)
�
(x) − μ(x +ω)p(1)

�
(x) + μ�p(0)

�
(x)
]

− 1
6
F ′′′
0 (x) +

1
2
[
F ′′
1(x) + (� − 1)G′′

1(x)
] − F ′

2(x) − (� − 1)G′
2(x) − (� − 1)2H ′

2(x)

+ I{� ≤ R − 1}
{
1
6
F ′′′
0 (x) +

1
2
xF ′′

0(x) + F
′
0(x) +

1
2
[
F ′′
1(x) + (� + 1)G′′

1(x)
]

+ x
[
F ′
1(x) + (� + 1)G′

1(x)
]
+ F1(x) + (� + 1)G1(x) + F ′

2(x)

+ (� + 1)G′
2(x) + (� + 1)2H ′

2(x)
}

,

(5.16)

which holds for 1 ≤ � ≤ R. We sum (5.16) for � = 1, 2, . . . , R and use the identities

R∑

�=1

I{� ≤ R − 1}(� + 1) =
R−1∑

�=1

(� + 1) =
1
2
(R − 1)(R + 2),

R∑

�=1

[
I{� ≤ R − 1}(� + 1)2 − (� − 1)2

]
= R2 − 1.

(5.17)

After some rearrangement, we obtain

p
(3)
1 (x) − p(3)0 (x) + (x + γ)p(2)1 (x) − μ(x +ω)p(1)1 (x) + μp(0)1 (x)

= −1
6
F ′′′
0 + (R − 1)

[
1
2
xF ′′

0 + F
′
0

]

+
(

R − 1
2

)

F ′′
1 + (R − 1)

[
xF ′

1 + F1
] − F ′

2 +
1
2
(
R2 − 1

)
G′′

1

+
1
2
(R − 1)(R + 2)

[
xG′

1 +G1
]
+ (R − 1)G′

2 +
(
R2 − 1

)
H ′

2,

(5.18)

where all derivatives are with respect to x.
Setting � = 0 in (2.12) and using again expansion (3.1), we obtain atO(λ−3/2) the relation

[
I{R ≥ 1} + 1

]
p
(3)
0 (x) + (x + γ)p(2)0 (x) − μ(x +ω)p(1)0 (x)

= p(3)−1 (x) −
d

dx
p
(2)
−1 (x) +

1
2
d2

dx2
p
(1)
−1 (x) −

1
6
d3

dx3
p
(0)
−1 (x) + γp

(2)
−1 (x)

+ I{R ≥ 1}
[

p
(3)
1 (x) +

d

dx
p
(2)
1 (x) +

1
2
d2

dx2
p
(1)
1 (x) +

1
6
d3

dx3
p
(0)
1 (x)

]

+ xp(2)1 (x) + x
d

dx
p
(1)
1 (x) +

1
2
x
d2

dx2
p
(0)
1 (x) + p(1)1 (x)

+
d

dx
p
(0)
1 (x) + γp(2)1 (x) − μ(x +ω)p(1)1 (x) + μp(0)1 (x).

(5.19)
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Next, we consider (2.12) for � < 0, and recall that p(0)
�

is given by (3.3) for all �, p(1)
�

is
given by (3.7) or (3.10), and

p
(2)
�
(x) = F2(x) + �J2(x) + �

2K2(x), � ≤ 0, (5.20)

where J2 is in (3.27), and (3.36) yields

K2(x) =
1
2
[
F ′′
0(x) + 2xF ′

0(x) +
(
x2 + 1

)
F0(x)

]
. (5.21)

We subtract I{R ≥ 1}p(3)0 +p(3)−1 + γp
(2)
−1 from both sides of (5.19) and substitute (5.18) into the re-

sulting equation. We then use (3.3), (3.10), (5.20), (5.15), and (3.29), and after some calculation,
obtain

p
(3)
0 (x) − p(3)−1 (x) + (x + γ)p(2)0 (x) − μ(x +ω)p(1)0 (x) − γp(2)−1 (x)

= −1
6
F ′′′
0 +

1
2
(
F ′′
1 − J ′′1

) − F ′
2 + J

′
2 −K′

2

+ R
{
1
2
xF ′′

0 + F
′
0 + F

′′
1 + xF

′
1 + F1 +

1
2
(R + 1)

(
xG′

1 +G1
)
+
1
2
RG′′

1 +G
′
2 + RH

′
2

}

.

(5.22)

From (2.12), for � ≤ − 1, we obtain the following problem for p(3)
�
:

2p(3)
�

+ (x + 2γ)p(2)
�

− μ(x +ω)p(1)
�

+ μ�p(0)
�

= p(3)
�−1 −

d

dx
p
(2)
�−1 +

1
2
d2

dx2
p
(1)
�−1 −

1
6
d3

dx3
p
(0)
�−1 + γp

(2)
�−1 + p

(3)
�+1 +

d

dx
p
(2)
�+1 +

1
2
d2

dx2
p
(1)
�+1 +

1
6
d3

dx3
p
(0)
�+1

+ xp(2)
�+1 + x

d

dx
p
(1)
�+1 +

1
2
x
d2

dx2
p
(0)
�+1 + p

(1)
�+1 +

d

dx
p
(0)
�+1 + γp

(2)
�+1 − μ(x +ω)p(1)

�+1 + μ(� + 1)p(0)
�+1.

(5.23)

Here, we used I{� ≤ R − 1} = 1 in this range of �, and all functions in (5.23) are evaluated at x.
After rearranging (5.23) and using (5.20), (3.3), and (3.7) to evaluate p(j)

�
for j = 0, 1, 2, we are

led to
p
(3)
�

− p(3)
�−1 −

[
p
(3)
�+1 − p

(3)
�

]

= (x + γ)p(2)
�+1 − μ(x +ω)p(1)

�+1 + μ(� + 1)p(0)
�+1 − γp

(2)
�

− [(x + γ)p(2)
�

− μ(x +ω)p(1)
�

+ μ�p(0)
�

− γp(2)
�−1
]
+
1
2
xF ′′

0 + F
′
0 + F

′′
1 + xF

′
1 + F1

+ �J ′′1 + (� + 1)
[
xJ ′1 + J1

]
+ 2J ′2 + 4�K′

2, � ≤ − 1.

(5.24)

We sum (5.24) from � = −m to � = −1 (withm ≥ 1) to obtain

p
(3)
−m − p(3)−m−1 −

[
p
(3)
0 − p(3)−1

]
+ (x + γ)p(2)−m − μ(x +ω)p(1)−m

− μmp(0)−m − γp(2)−m−1 − (x + γ)p(2)0 + μ(x +ω)p(1)0 − γp(2)−1

= m
{
1
2
xF ′′

0 + F
′
0 + F

′′
1 + xF

′
1 + F1 + 2J ′2

− 1
2
(m + 1)

(
J ′′1 + 4K′

2

) − 1
2
(m − 1)

(
xJ ′1 + J1

)
}

, m ≥ 1.

(5.25)
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Note that (5.25) remains true ifm = 0. Using (5.22) in (5.25) gives us

p
(3)
−m − p(3)−m−1 + (x + γ)p(2)−m − μ(x +ω)p(1)−m − μmp(0)−m − γp(2)−m−1

= −1
6
F ′′′
0 +

1
2
(
F ′′
1 − J ′′1

) − F ′
2 + J

′
2 −K′

2

+ R
{
1
2
xF ′′

0 + F
′
0 + F

′′
1 + xF

′
1 + F1 +

1
2
(R + 1)

[
xG′

1 +G1
]
+
1
2
RG′′

1 +G
′
2 + RH

′
2

}

+m
{
1
2
xF ′′

0+F
′
0+F

′′
1+xF

′
1+F1+2J ′2−

1
2
(m+1)

[
J ′′1+4K

′
2

] − 1
2
(m−1)[xJ ′1 + J1

]
}

.

(5.26)

Using our previous results for p(0)−m, p
(1)
−m, and p

(2)
−m, we have

μmp
(0)
−m + μ(x +ω)p(1)−m + γp(2)−m−1 − (x + γ)p(2)−m

= μmF0 + μ(x +ω)
[
F1 −mJ1

] − xF2 + (mx − γ)J2 +
[
(2m + 1)γ −m2x

]
K2.

(5.27)

Adding (5.26) and (5.27), we obtain an explicit expression for p(3)−m − p(3)−m−1 (in terms of F0, F1,
J1, F2, J2, and K2)which is quadratic inm. By summing fromm = 0 tom = n − 1, we get

p
(3)
0 − p(3)−n = −1

6
nF ′′′

0 +
1
2
n
(
F ′′
1 − J ′′1

) − n(F ′
2 − J ′2 +K′

2
)

+ nR
{
1
2
xF ′′

0 + F
′
0 + F

′′
1 + xF

′
1 + F1 +

1
2
(R + 1)

[
xG′

1 +G1
]
+
1
2
RG′′

1 +G
′
2 + RH

′
2

}

+
1
2
n(n − 1)

[
1
2
xF ′′

0 + F
′
0 + F

′′
1 + xF

′
1 + F1 + 2J ′2

]

− 1
6
(
n3 − n)[J ′′1 + 4K′

2
]

− 1
6
(
n3 − 3n2 + 2n

)[
xJ ′1 + J1

]
+ n
[
μ(x +ω)F1 − xF2

]
+
1
2
μn(n − 1)

[
F0 − (x +ω)J1

]

+
[
1
2
(
n2 − n)x − nγ

]

J2 +
[

n2γ − 1
6
(
2n3 − 3n2 + n

)
x

]

K2.

(5.28)

This holds for all n ≥ 0. We write (5.28) as

p
(3)
−n (x) = F3(x) − nJ3(x) + n2K3(x) − n3L3(x), (5.29)

where F3(x) = p
(3)
0 (x), and J3, K3, and L3 may be identified from (5.28).

We recall that p−n(x) = φ(x, n/
√
λ) for n ≥ 0, and the coefficient of λ−3/2 in the expansion

(3.20) is

φ(3)(x, 0) + nφ(2)
y (x, 0) +

1
2
n2φ(1)

yy(x, 0) +
1
6
n3φ(0)

yyy(x, 0). (5.30)

Comparing (5.29) to (5.30) yields

L3(x) = −1
6
φ(0)
yyy(x, 0), K3(x) =

1
2
φ(1)
yy(x, 0), J3(x) = −φ(2)

y (x, 0). (5.31)
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In view of (3.19), we have

L3(x) = −1
6
e−x

2/2g ′′′
0 (x), (5.32)

while (5.28) shows that

L3(x) = −1
6
[
J ′′1 (x) + xJ

′
1(x) + J1(x)

] − 1
3
[
2K′

2 + xK2(x)
]
. (5.33)

But, from (5.21) and (3.21), we get K2(x) = (1/2)e−x
2/2g ′′

0(x), and from (3.9), J1(x) =
−e−x2/2g ′

0(x). Then, we can easily verify that (5.32) is consistent with (5.33). Also, from (5.28),
we find that

−2K3(x) =
1
2
xF ′′

0 + F
′
0 + xF

′
1 + F1 + F ′′

1 + μF0 − μ(x +ω)J1 + xJ ′1 + J1 + xJ2 + 2J ′2 + (x + 2γ)K2

=
d

dx

[
1
2
xF ′

0 +
1
2
F0 + F ′

1 + xF1 + xJ1 + J2
]

+ μF0 − μ(x +ω)J1 + J ′2 + xJ2 + (x + 2γ)K2.

(5.34)

We show that this is the same as −φ(1)
yy(x, 0). We recall that φ(1)(x, y) = ψ(1)(x, x + y) is given by

(5.5) and J2 is expressed in terms of F1 in (3.38). From (3.38) and (3.21), it follows that

F ′
1 + xF1 + J2 = e−x

2/2
{
1
2
(
x2 − 1

)
g0(x) +

[
γx + μ(x +ω)

]
g0(x) − (R − 1)γ

[
g ′
0(x) − xg0(x)

]
}

= e−x
2/2
{
1
2
(
x2 − 1

)
g0(x) + Λ′(x)Dxg0(x)

}

,

(5.35)

where Dx is the operator in (5.13), with η replaced by x. The second equality in (5.35) follows
from (3.40) and (5.6). Using (3.9), we obtain

1
2
xF ′

0 +
1
2
F0 + xJ1 =

1
2
e−x

2/2[(1 − x2)g0(x) − xg ′
0(x)
]

(5.36)

which when combined with (5.35) gives

1
2
xF ′

0 +
1
2
F0 + xJ1 + F ′

1 + xF1 + J2 = e−x
2/2
[

Λ′(x)Dxg0(x) − 1
2
xg ′

0(x)
]

. (5.37)

We use (5.37) in (5.34), also noting that

J2(x) = −φ(1)
y (x, 0) = −e−x2/2

{
1
6
x
(
x2 − 3

)
g ′
0(x) + g

′
1(x) + Λ(x)

[Dxg
′
0(x) + μg

′
0(x)
]
}

, (5.38)

which follows from (5.5). Then, (5.34) becomes

−2K3(x) = e−x
2/2
{

− Dxg0(x) +
1
2
(
x2 − 1

)
g ′
0(x) −

1
2
xg ′′

0(x) + Λ′(x)
[Dxg

′
0(x) + μg

′
0(x)
]
}

+ μF0 − μ(x +ω)J1 + J ′2 + xJ2 + (x + 2γ)K2.

(5.39)
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Here, we also used Λ′′(x) = xΛ′(x) − 1. Now, from (5.21) and (3.9), we obtain

μF0 − μ(x +ω)J1 + (x + 2γ)K2

=
(
x

2
+ γ
)

F ′′
0 +
[
x(x + 2γ) + μ(x +ω)

]
F ′
0 +
[

μ + μx(x +ω) +
1
2
(
x2 + 1

)
(x + 2γ)

]

F0

= e−x
2/2
[

μg0(x) + μ(x +ω)g ′
0(x) +

(
1
2
x + γ

)

g ′′
0(x)

]

.

(5.40)

Using (5.38) to compute J ′2 + xJ2 and (5.40), we get

−2K3(x) = e−x
2/2
{
1
6
x
(
x2 − 3

)
g ′′
0(x) + g

′′
1(x) + Λ(x)

[Dxg
′′
0(x) + 2μg ′′

0(x)
]
}

. (5.41)

In view of (5.5), the above is the same as 2K3(x) = φ
(1)
yy(x, 0) = ψ

(1)
ηη (ξ, ξ).

We next examine the relation J3(x) = −φ(2)
y (x, 0) = −ψ(2)

η (ξ, ξ). We will use this to ulti-

mately obtain g1(η) in (5.5), which will complete the determination of theO(1/
√
λ) correction

terms in (3.1) and (3.14). We first note from (5.28) and (5.29) that

J3(x) = −1
6
F ′′′
0 +

1
2
(
F ′′
1 − J ′′1

) − F ′
2 + J

′
2 −K′

2

+ R
{
1
2
xF ′′

0 + F
′
0 + F

′′
1 + xF

′
1 + F1 +

1
2
(R + 1)

[
xG′

1 +G1
]
+
1
2
RG′′

1 +G
′
2 + RH

′
2

}

− 1
2

[
1
2
xF ′′

0 + F
′
0 + F

′′
1 + xF

′
1 + F1 + 2J ′2

]

+
1
6
[
J ′′1 + 4K′

2
] − 1

3
[xJ ′1 + J1]

+ μ(x +ω)F1 − xF2 − 1
2
μ
[
F0 − (x +ω)J1

] −
(
1
2
x + γ

)

J2 − 1
6
xK2.

(5.42)

We solve (5.42) for the combination J3 + F ′
2 + xF2, that we rewrite as

J3 + F ′
2 + xF2 =W(x) + Z̃(x) + RŨ(x), (5.43)

where

W(x) = −1
2
[
xF ′

1 + F1
]
+ μ(x +ω)F1 − 1

2
μF0 +

1
2
μ(x +ω)J1 −

(
1
2
x + γ

)

J2 − 1
6
xK2,

Z̃(x) = −1
6
F ′′′
0 − 1

4
xF ′′

0 −
1
2
F ′
0 −

1
3
[
J ′′1 + xJ

′
1 + J1 +K

′
2
]
,

Ũ(x) =
1
2
xF ′′

0 + F
′
0 + F

′′
1 + xF

′
1 + F1 +

1
2
(R + 1)

[
xG′

1 +G1
]
+
1
2
RG′′

1 +G
′
2 + RH

′
2.

(5.44)

Next we note that Z̃ and Ũ may be integrated explicitly and we write

Ũ(x) =
d

dx
U(x), Z̃(x) =

d

dx
Z(x), (5.45)
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where

U(x) =
1
2
xF ′

0 +
1
2
F0 + F ′

1 + xF1 +
1
2
(R + 1)xG1 +

1
2
RG′

1 +G2 + RH2, (5.46)

Z(x) = −1
6
F ′′
0 −

1
4
xF ′

0 −
1
4
F0 − 1

3
[
J ′1 + xJ1 +K2

]
. (5.47)

It follows that

W(x) + Z′(x) + RU′(x) = −φ(2)
y (x, 0) + φ(2)

x (x, 0) + xφ(2)(x, 0) = ψ(2)
ξ
(x, x) + xψ(2)(x, x).

(5.48)

The right side of (5.48)was computed in (5.12).
Using F1(x) = ψ(1)(x, x), (5.38), and the identities F0(x) = e−x

2/2g0(x), J1(x) = −
e−x

2/2g ′
0(x), and K2(x) = (1/2)e−x

2/2g ′′
0(x), we evaluate W(x) in terms of g0(x), and then use

(5.12). After some simplification, this leads to

W(x) − ψ(1)
ξ
(x, x) − xψ(2)(x, x)

= e−x
2/2[γg ′

1(x) + μ(ω + x)g1(x)
]
+
[ ∫∞

−x
e−u

2/2du

]
d

dx

[
γg ′

1(x) + μ(ω + x)g1(x)
]

+ e−x
2/2Λ(x)

[

γ
d

dx
+ μ(ω + x)

]

Dxg0(x)

+
[ ∫x

−∞
e−u

2/2Λ(u)du
]
d

dx

{[

γ
d

dx
+ μ(ω + x)

]

Dxg0(x)
}

−μ
2
e−x

2/2[(ω + x)g ′
0(x) + g0(x)

]

− μ

2

∫∞

−x
e−u

2/2du
d

dx

[
(ω + x)g ′

0(x) + g0(x)
]
+
γ

6
e−x

2/2[(1 − x2)g ′′
0(x) +

(
x3 − 3x

)
g ′
0(x)
]

+
μ

6
e−x

2/2{(1 − x2)[(ω + x)g ′
0(x) + g0(x)

]
+
(
x3 − 3x

)
(ω + x)g0(x)

}

+
x

12
e−x

2/2[(x2 − 3
)
g0(x) − g ′′

0(x)
]
.

(5.49)

Since this must be equal to −[Z′ + RU′], we try to write the right side of (5.49) as a perfect
derivative. To this end, we note that

d

dx

[
e−x

2/2((1 − x2)g0 − xg ′
0
)]

= e−x
2/2x
[(
x2 − 3

)
g0 − g ′′

0
]
. (5.50)

Adding Z′ + RU′ to (5.49), we rewrite that equation as

d

dx

{(∫∞

−x
e−u

2/2du

)
[
γg ′

1(x)+μ(ω + x)g1(x)
]
+
(∫x

−∞
e−u

2/2Λ(u)du
)[

γ
d

dx
+ μ(ω + x)

]

Dxg0(x)

− 1
2
μ

(∫∞

−x
e−u

2/2du

)
[
(ω + x)g ′

0(x) + g0(x)
]
+
1
6
e−x

2/2(1 − x2)[γg ′
0(x) + μ(ω + x)g0(x)

]

+
1
12
e−x

2/2[(1 − x2)g0(x) − xg ′
0(x)
]
+ Z(x) + RU(x)

}

= 0.

(5.51)
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We next evaluate Z in terms of g0, and U in terms of g0 and g1, and then we integrate
(5.51) (and thus explicitly obtain g1). Since J1 = −xF0 − F ′

0 and K2 is in (5.21), we have

Z(x) =
1
12
[
xF ′

0 +
(
2x2 − 1

)
F0
]
=

1
12
e−x

2/2[xg ′
0(x) +

(
x2 − 1

)
g0(x)

]
. (5.52)

We thus note that Z(x) is canceled by the bracketed term that precedes it in (5.51).
Using (5.46), we explicitly calculate U(x), recalling that G1 is given by (5.15), and G2 +

RH2 = (G2 + H2) + (1/2)(R − 1)(2H2) can be computed from (3.30) and (3.32). After some
cancellation of terms, we obtain

U(x) =
[
1
2
γ(R + 1)(x + γ) + μ(ω + x)

]

F0(x) +
1
2
γF ′

0(x) − γF1(x)

= e−x
2/2
[{

1
2
γ
[
Rx + (R + 1)γ

]
+ μ(ω + x)

}

g0(x) +
1
2
γg ′

0(x)
]

− γe−x2/2
{
1
6
x
(
x2 − 3

)
g0(x) + g1(x) + Λ(x)Dxg0(x)

}

.

(5.53)

Using (5.52) and (5.53), we integrate (5.51), subject to the condition that the solution decays
exponentially as x → +∞. Hence,

(∫∞

−x
e−u

2/2du

)[

γg ′
1(x) + μ(ω + x)g1(x) − 1

2
μ(ω + x)g ′

0(x) −
1
2
μg0(x)

]

+
(∫x

−∞
e−u

2/2Λ(u)du
)[

γ
d

dx
+ μ(ω + x)

]

Dxg0(x)

+
1
6
e−x

2/2(1 − x2)[γg ′
0(x) + μ(ω + x)g0(x)

]

+
1
2
Re−x

2/2{γ
[
Rx + (R + 1)γ

]
g0(x) + 2μ(ω + x)g0(x) + γg ′

0(x)
}

− Rγe−x2/2
[
1
6
x
(
x2 − 3

)
g0(x) + g1(x) + Λ(x)Dxg0(x)

]

= 0.

(5.54)

What remains is a linear first-order ordinary differential equation for g1, which is readily solved
by multiplying by the integrating factor:

exp
[
(μ/(2γ))(ω + x)2

]

( ∫∞
−x e

−u2/2du
)R+1 . (5.55)

We introduce the notation

E(x) =
∫∞

−x
e−u

2/2du (5.56)

and note that

E′(x) = e−x
2/2, E(∞) =

√
2π, E(x) ∼ e−x

2/2

−x , x −→ −∞. (5.57)
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Then, we have
∫
exp
[
(μ/(2γ))(ω + x)2

]

[
E(x)

]R

{

γg ′
1(x) + μ(ω + x)g1(x) −

Rγe−x
2/2

E(x)
g1(x)

}

dx

=
γ exp

[
(μ/2γ)(ω + x)2

]

[
E(x)

]R g1(x).

(5.58)

From (3.43), we have

g0(x) = A0 exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R (5.59)

and thus

γg ′
0(x) + u(ω + x)g0(x) = A0Rγe

−x2/2 exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R−1
. (5.60)

With (5.60), we have
∫
e−x

2/2 exp
[
(μ/(2γ))(ω + x)2

]

[
E(x)

]R+1

{(
1−x2)[γg ′

0(x)+μ(ω+x)g0(x)
] − Rγ(x3 − 3x

)
g0(x)

}
dx

= A0Rγ

∫

e−x
2/2
{(1 − x2)e−x

2/2

[
E(x)

]2 − x3 − 3x
E(x)

}

dx = −A0Rγe
−x2/2

(
1 − x2)

E(x)
,

∫
e−x

2/2 exp
[
(μ/(2γ))(ω + x)2

]

[
E(x)

]R+1

{
γg ′

0(x) + μ(ω + x)g0(x) + Rγxg0(x)
}
dx =

−A0Rγe
−x2/2

E(x)
.

(5.61)

Furthermore,
∫
exp
[
(μ/(2γ))(ω + x)2

]

[
E(x)

]R

{
R(ω + x)e−x

2/2

E(x)
g0(x) − (ω + x)g ′

0(x) − g0(x)
}

dx

= −A0

∫[
μ

γ
(ω + x)2 − 1

]

dx = A0

[
μ

3γ
(ω + x)3 −ω − x

]

,

(5.62)

∫
e−x

2/2 exp
[
(μ/2γ)(ω + x)2

]

[
E(x)

]R+1 g0(x)dx = A0 log
[
E(x)

]
, (5.63)

∫
exp
[
(μ/(2γ))(ω + x)2

]

[
E(x)

]R+1

{(∫x

−∞
e−u

2/2Λ(u)du
)[

γ
d

dx
+ μ(ω + x)

]

Dxg0(x)

− Rγe−x2/2Λ(x)Dxg0(x)
}

dx

= γ
(∫x

−∞
e−u

2/2Λ(u)du
)

exp
[
μ

2γ
(ω + x)2

]
[Dxg0(x)

][
E(x)

]−R−1

+ (R+1)γ
∫{

e−x
2/2
∫x
−∞ e−u

2/2Λ(u)du
[
E(x)

]R+2 − e
−x2/2Λ(x)
[
E(x)

]R+1

}

exp
[
μ

2γ
(ω+x)2

]

Dxg0(x)dx.

(5.64)
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To obtain (5.64), we used exp [(μ/(2γ))(ω + x)2][γ(d/dx)+μ(ω+x)]F(x) = γ(d/dx){exp [(μ/
(2γ))(ω + x)2]F(x)} and integrated by parts. Combining (5.58) and (5.61)–(5.64), we integrate
(5.54) to get

exp
[
μ

2γ
(ω + x)2

]
[
E(x)

]−R
g1(x)

= A1 +
A0μ

2γ

[

ω + x − μ

3γ
(ω + x)3

]

+
A0R

6
e−x

2/2(1 − x2)

E(x)
+
A0

2
R2 e

−x2/2

E(x)

− A0

2
R(R + 1)γ log

[
E(x)

] −
∫x
−∞ e−u

2/2Λ(u)du
[
E(x)

]R+1 exp
[
μ

2γ
(ω + x)2

]

Dxg0(x)

+ (R + 1)
∫∞

x

{
e−v

2/2
∫v
−∞ e−u

2/2Λ(u)du
[
E(v)

]R+2 − e−v
2/2Λ(v)

[
E(v)

]R+1

}

· exp
[
μ

2γ
(ω + v)2

]

Dvg0(v)dv.

(5.65)

Here, A1 is a constant that will be fixed by normalization.
We thus write g1 as

g1(x) = exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R ·
{

A1 +N(x) +A0

[

M(x) +
Re−x

2/2(1 − x2)

6E(x)

]}

, (5.66)

where

M(x) =
μ

2γ

[

ω + x − μ

3γ
(ω + x)3

]

+
R2e−x

2/2

2E(x)
− R(R + 1)γ

2
log
[
E(x)

]
, (5.67)

N(x) = −
∫x
−∞ e−u

2/2Λ(u)du
[
E(x)

]R+1 exp
[
μ

2γ
(ω + x)2

]

Dxg0(x)

+ (R + 1)
∫∞

x

e−v
2/2

[
E(v)

]R

{∫v
−∞ e−u

2/2Λ(u)du
[
E(v)

]2 − Λ(v)
E(v)

}

· exp
[
μ

2γ
(ω + v)2

]

Dvg0(v)dv,

(5.68)

where Dvg0(v) = γg ′′
0(v) + μ(ω + v)g ′

0(v) + μg0(v) is as in (5.13).
We next determine A1 by normalization and then obtain correction terms to the block-

ing probabilities B1 and B2. This requires that we evaluate the integrals
∫∞
−∞ φ(1)(x, 0)dx and

∫∞
−∞
∫∞
0 φ(1)(x, y)dy dx =

∫∞
−∞
∫∞
ξ ψ(1)(ξ, η)dη dξ. From (5.5), we have

φ(1)(x, 0) = e−x
2/2
[
1
6
(
x3 − 3x

)
g0(x) + g1(x) + Λ(x)Dxg0(x)

]

, (5.69)

and from (3.43), we calculate Dxg0 and obtain

exp
[
(μ/(2γ))(ω + v)2

]

[
E(v)

]R Dvg0(v) = A0Rγ
e−v

2/2

E(v)

{

(R − 1)
e−v

2/2

E(v)
−
[

v +
μ

γ
(ω + v)

]}

. (5.70)
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Consider the contribution to
∫∞
−∞ φ(1)(x, 0)dx that comes from the term Λ(x)Dxg0(x) in

(5.69) and the part of g1 that is proportional toN(x) (cf. (5.66)). We obtain
∫∞

−∞
e−x

2/2
{

Λ(x)Dxg0(x) + exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R
N(x)

}

dx

=
∫∞

−∞
e−x

2/2
{[

Λ(x) −
∫x
−∞ e−u

2/2Λ(u)du
E(x)

]

Dxg0(x)

+ (R + 1) exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R
∫∞

x

e−v
2/2

[
E(v)

]R+2Dvg0(v)

·
[ ∫v

−∞
e−u

2/2Λ(u)du − E(v)Λ(v)
]

exp
[
μ

2γ
(ω + v)2

]

dv

}

dx

=
μ

γ

∫∞

−∞
(ω + x)

[
E(x)

]R+1 exp
[

− μ

2γ
(ω + x)2

]

·
∫∞

x

e−v
2/2

[
E(v)

]R+2

[ ∫v

−∞
e−u

2/2Λ(u)du − E(v)Λ(v)
]

exp
[
μ

2γ
(ω + v)2

]

Dvg0(v)dv dx.

(5.71)

Here, we wrote

e−x
2/2(R + 1)

[
E(x)

]R =
d

dx

[
E(x)

]R+1 (5.72)

and integrated by parts. We also have
∫∞

−∞
e−x

2/2(x3 − 3x
)
g0(x)dx

= −
∫∞

−∞
e−x

2/2(1 − x2)g ′
0(x)dx

= A0

∫∞

−∞

(
1 − x2)e−x

2/2 exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R
[
μ

γ
(ω + x) − Re−x

2/2

E(x)

]

dx.

(5.73)

Using (5.71) and (5.73), we integrate (5.69) and get
∫∞

−∞
φ(1)(x, 0)dx =

∫∞

−∞
exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R

·
(

e−x
2/2
[

A1 +
A0μ

6γ
(ω + x)(1 − x2) +A0M(x)

]

+A0μR(ω + x)E(x)
∫∞

x

[ ∫v

−∞
e−u

2/2Λ(u)du −Λ(v)E(v)
]

· e−v
2

[
E(v)

]3

{

(R − 1)
e−v

2/2

E(v)
−
[

v +
μ

γ
(ω + v)

]}

dv

)

dx.

(5.74)

Here, we also used (5.70) to eliminate Dxg0 from the expression.
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Next, we consider

∫∞

−∞

∫∞

0
φ(1)(x, y)dy dx =

∫∞

−∞

∫∞

x

ψ(1)(x, η)dη dx

=
∫∞

−∞

∫∞

x

e−x
2/2
[
1
6
(
x3 − 3x

)
g0(η) + Λ(x)Dηg0(η) + g1(η)

]

dη dx.

(5.75)

Integration by parts shows that

∫∞

−∞
e−x

2/2(x3 − 3x
)
[ ∫∞

x

g0(η)dη
]

dx =
∫∞

−∞

(
1 − x2)e−x

2/2g0(x)dx,

∫∞

−∞
e−x

2/2Λ(x)
[ ∫∞

x

Dηg0(η)dη
]

dx =
∫∞

−∞

[ ∫x

−∞
e−u

2/2Λ(u)du
]

Dxg0(x)dx,

∫∞

−∞
e−x

2/2
[ ∫∞

x

g1(η)dη
]

dx =
∫∞

−∞
E(x)g1(x)dx.

(5.76)

From (5.68) and (5.70), we obtain

∫∞

−∞

{

E(x) exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R
N(x) +

(∫x

−∞
e−u

2/2Λ(u)du
)

Dxg0(x)
}

dx

= A0R(R + 1)γ
∫∞

−∞
exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R+1 ·
∫∞

x

[∫v
−∞ e−u

2/2Λ(u)du
E(v)

−Λ(v)
]

e−v
2

[
E(v)

]2

·
{

(R − 1)
e−v

2/2

E(v)
−
[

v +
μ

γ
(ω + v)

]}

dv dx.

(5.77)

With (5.66), (5.68), and (5.75)–(5.77), we obtain

∫∞

−∞

∫∞

0
φ(1)(x, y)dy dx

=
∫∞

−∞
exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R+1

·
[

A1 +A0M(x) +
1
6
A0(R + 1)

e−x
2/2(1 − x2)

E(x)
+A0R(R + 1)γ

·
∫∞

x

[∫v
−∞ e−u

2/2Λ(u)du
E(v)

−Λ(v)
]

e−v
2

[
E(v)

]2

{

(R − 1)
e−v

2/2

E(v)
−
[

v +
μ

γ
(ω + v)

]}

dv

]

dx.

(5.78)
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Using
∫∞
Z e−u

2/2du =
√
π/2Erfc(Z/

√
2) and (5.6), we can show that

∫v

−∞
e−u

2/2Λ(u)du − E(v)Λ(v) =
√
π

2

∫∞

0

[

Erfc

(

− v√
2

)

e−t
2/2evt − Erfc

(
t − v√

2

)]
dt

t
,

(5.79)

which helps in the numerical evaluation of (5.78).
Finally, we calculate the blocking probabilities. Using (3.1), (3.3), and (3.5), we obtain

B1 =
1√
λ

∫∞

−∞

[

p
(0)
R (x) +

1√
λ
p
(1)
R (x) +O

(
λ−1
)
]

dx

=
1√
λ

∫∞

−∞

{

F0(x) +
1√
λ

[
F1(x) − R(x + γ)F0(x) − RF ′

0(x)
]
+O
(
λ−1
)
}

dx

=
A0√
λ

∫∞

−∞
e−x

2/2
[

1 − R√
λ
(x + γ)

]

exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R
dx

+
1
λ

∫∞

−∞
φ(1)(x, 0)dx +O

(
λ−3/2

)
,

(5.80)

where the last integral is given by (5.74) in terms of A0 and A1. To obtain (5.80), we used the
scaling (2.9) and (2.10) in (2.4), and approximated the sum by an integral. Since the integrand
has exponentially small tails, the finite limits in (2.4)may be replaced by infinite ones, with an
error, that is, o(λ−N) for allN.

Similarly, we obtain B2 as

B2 =
1√
λ

∫∞

−∞

R∑

�=0

[

p
(0)
�
(x) +

1√
λ
p
(1)
�
(x) +O

(
λ−1
)
]

dx

=
1√
λ

∫∞

−∞

R∑

�=0

{

F0(x) +
1√
λ
F1(x) − �√

λ

[
(x + γ)F0(x) + F ′

0(x)
]
+O
(
λ−1
)
}

dx

=
A0√
λ
(R + 1)

∫∞

−∞
e−x

2/2
[

1 − R

2
√
λ
(x + γ)

]

exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R
dx

+
R + 1
λ

∫∞

−∞
φ(1)(x, 0)dx +O

(
λ−3/2

)
.

(5.81)

Finally, we determine A1 from the normalization (2.3). Again, using (2.9), (2.10), (3.1),
and (3.12), we obtain

∫∞

−∞

∫∞

0
φ(0)(x, y)dy dx +

1
2

1√
λ

∫∞

−∞
φ(0)(x, 0)dx

+
1√
λ

∫∞

−∞

R∑

�=1

p
(0)
�
(x)dx +

1√
λ

∫∞

−∞

∫∞

0
φ(1)(x, y)dy dx +O

(
λ−1
)
= 1.

(5.82)

Here, the second integral in (5.82) comes from the Euler-MacLaurin approximation as we go
from a discrete sum to an integral over y = 0. Note that the expansion on the � scale, for
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Table 1: R = 2, γ = 1, μ = 1, ω = 1.

C (λ)
B1 B2

Exact asy-1 asy-2 Exact asy-1 asy-2

5 (2.25) .09741 .3504 <0 .6293 >1 .4418

10 (5.13) .09906 .2320 .01921 .4881 .6961 .4289

15 (7.90) .09384 .1869 .04879 .4194 .5609 .3874

20 (10.6) .08874 .1612 .05848 .3756 .4837 .3547

25 (13.3) .08432 .1440 .06203 .3442 .4321 .3291

30 (16) .08051 .1314 .06315 .3201 .3943 .3085

40 (21.3) .07432 .1138 .06262 .2849 .3416 .2773

50 (26.5) .06948 .1019 .06087 .2598 .3059 .2543

60 (31.8) .06556 .09320 .05886 .2407 .2796 .2364

70 (37) .06229 .08638 .05688 .2254 .2591 .2221

1 ≤ � ≤ R, leads to the third term in (5.82). For � ≤ 0, the expansion on the y scale contains
that on the � scale. The leading term in (5.82) regains (3.45) and determines A0. The O(1/

√
λ)

terms lead to

A0

(

R +
1
2

)∫∞

−∞
e−x

2/2 exp
[

− μ

2γ
(ω + x)2

]
[
E(x)

]R
dx +

∫∞

−∞

∫∞

0
φ(1)(x, y)dy dx = 0. (5.83)

In view of (5.78), (5.83) may be viewed as a linear equation for A1, and thus all the correction
terms are now known fully.

To summarize the calculations in this section, we have determined g1(x) in (5.66)–(5.68),
with A1 computed from (5.78) and (5.83). In terms of g1, the second term in the expansion on
the (x, y) (or (ξ, η) = (x, x + y)) scale is given by (5.5). Then, F1(x) = φ(1)(x, 0) = ψ(1)(ξ, ξ) and
the second terms on the � scale are given by (3.5) for 0 ≤ � ≤ R, and by (3.10) for � < 0 (with
F0(x) in (3.21) and (3.43)).

6. Numerical studies

We test the numerical accuracy of our asymptotic expansions, focusing on the blocking prob-
abilities B1 and B2. The numerical results are obtained by solving the linear system (2.1) with
the normalization (2.3). We simply omitted the equation with n1 = n2 = 0 in (2.1) and replaced
it by (2.3), thus obtaining an inhomogeneous problem with a unique solution.

We solved (2.1) by two different methods. First, we simply used the programMAPLE to
solve the linear system numerically. We also tried an iteration method of the form p(n1, n2;M+
1) = p(n1, n2;M) + T/MAX · Lp(n1, n2;M), where Lp = 0 is the basic equation (2.1). Starting
from some initial guess p(n1, n2; 0) and iterating up to M = MAX − 1 correspond to solving
approximately for the transient solution for this model, from time t = 0 to t = T . We verified
that choosing T sufficiently large leads to the same results as the MAPLE solution of (2.1).

Since the asymptotic results are expansions in powers of 1/
√
λ with coefficients ex-

pressed in terms of (γ, μ,ω), we input the five parameters (C,R, γ, μ,ω), calculate λ from (2.8),
then ν and κ from (2.7), and solve (2.1) numerically. In Table 1, we have R = 2, γ = 1, μ = 1, and
ω = 1, and we compare the exact (numerical) results for B1 and B2 with the one- and two-term
asymptotic approximations. We give various values of C and also tabulate the corresponding
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Table 2: R = 2, γ = 1, μ = 1, ω = 0.

C (λ)
B1 B2

Exact asy-1 asy-2 Exact asy-1 asy-2

5 (1.5) .03572 .2801 <0 .4381 .8404 .1082

10 (4) .04771 .1715 <0 .3293 .5146 .2401

15 (6.5) .04921 .1345 <0 .2804 .4037 .2347

20 (9) .04860 .1143 .01515 .2500 .3431 .2210

25 (11.5) .04743 .1011 .02352 .2284 .3035 .2080

30 (14) .04613 .09170 .02791 .2120 .2751 .1966

40 (19) .04361 .07871 .03171 .1882 .2361 .1783

50 (24) .04140 .07004 .03283 .1714 .2101 .1643

60 (29) .03948 .06371 .03292 .1586 .1911 .1532

70 (34) .03781 .05884 .03258 .1484 .1765 .1442

Table 3: R = 2, γ = 1, μ = 1, ω = −1.

C (λ)
B1 B2

Exact asy-1 asy-2 Exact asy-1 asy-2

5 (1) .00990 .1911 <0 .2574 .5735 <0

10 (3.11) .01820 .1082 <0 .1856 .3248 .07698

15 (5.34) .02083 .08270 <0 .1566 .2481 .1035

20 (7.61) .02170 .06926 <0 .1392 .2077 .1063

25 (9.92) .02189 .06068 <0 .1270 .1820 .1042

30 (12.2) .02179 .05462 .00421 .1178 .1638 .1008

40 (16.9) .02123 .04645 .00999 .1045 .1393 .09374

50 (21.6) .02053 .04106 .01257 .09516 .1232 .08755

60 (26.4) .01984 .03719 .01382 .08806 .1115 .08233

70 (31.2) .01919 .03422 .01443 .08242 .1026 .07791

values of λ, as computed from (2.8). We see that the one-term approximations always overes-
timate the true values, while the two-term approximations underestimate them. The two-term
approximations are more accurate especially for the second blocking probability B2 and for
larger values of C. In Table 2, we have ω = 0, and in Table 3, ω = −1, with the other parame-
ter values unchanged. With decreasing ω (which corresponds to increasing the total load (cf.
(2.7)), we get similar results, but the overall asymptotics (both one- and two-term) are getting
somewhat worse. Also note that the two-term approximations may sometimes lead to negative
answers, and this is explained in what follows.

We next consider a different purely numerical approach to estimating the coefficients in
the expansions of the Bj . We choose some C0, and for C = C0 − 1, C0, and C0 + 1, we equate

B1 =
T1√
λ
+
T2
λ

+
T3

λ3/2
,

B2 =
S1√
λ
+
S2

λ
+

S3

λ3/2
.

(6.1)



32 Journal of Applied Mathematics and Stochastic Analysis

Table 4: R = 2, γ = 1, μ = 1, ω = 1.

C0 T1 T2 T3 S1 S2 S3

10 .4875 −.7674 .3882 1.556 −1.227 .4670
15 .4993 −.8271 .4635 1.565 −1.269 .5195
20 .5056 −.8649 .5207 1.568 −1.291 .5533
25 .5096 −.8922 .5679 1.571 −1.306 .5790
30 .5123 −.9131 .6078 1.572 −1.317 .5986
40 .5158 −.9431 .6723 1.573 −1.329 .6260
50 .5180 −.9650 .7256 1.575 −1.340 .6530
60 .5195 −.9806 .7617 1.575 −1.346 .6678
70 .5203 −.9899 .7948 1.575 −1.340 .6508

Table 5: R = 2, γ = 1, μ = 1, ω = 0.

C0 T1 T2 T3 S1 S2 S3

10 .2951 −.5575 .3160 .9891 −.8412 .3610
15 .3145 −.6442 .4135 1.006 −.9203 .4500
20 .3230 −.6911 .4783 1.014 −.9621 .5077
25 .3277 −.7214 .5267 1.018 −.9880 .5490
30 .3308 −.7433 .5656 1.021 −1.006 .5821
40 .3345 −.7727 .6249 1.023 −1.029 .6284
50 .3366 −.7920 .6695 1.025 −1.043 .6610
60 .3379 −.8058 .7048 1.026 −1.053 .6849
70 .3390 −.8186 .7409 1.027 −1.069 .7309

Note that Bi = Bi(C) and λ = λ(C), for fixed values of (R, γ, μ,ω). Thus, (6.1)may be viewed as
3 × 3 systems of linear equations for the Ti and Si, respectively. This allows us to numerically
estimate the first three coefficients in the asymptotic series. In Table 4, we consider C0 in the
range of 5 to 70, and give the Ti and Si, fixing (R, γ, μ,ω) = (2, 1, 1, 1). We see that the sequence
of T1 and S1 does appear to converge as C0 → ∞; the convergence of T2 and S2 is slower, and
that of T3 and S3 is even slower. The asymptotic results in Sections 3 and 5 show that for these
parameter values

B1 ∼ .52574√
λ

+
−1.0924

λ
, B2 ∼ 1.5772√

λ
+
−1.3717

λ
(ω = 1). (6.2)

This is in good agreement with Table 4. The data in Table 4 also give a rough estimate of the
third (O(λ−3/2)) terms in the expansions of the blocking probabilities. These can be computed
analytically by continuing our expansions further, but the calculations are too foreboding.

In Tables 5 and 6, we again give the Ti and Si for C0 between 5 and 70, but now with
ω = 0 and ω = −1, respectively. For these values, our asymptotic analysis predicts that

B1 ∼ .34312√
λ

+
−.89300

λ
, B2 ∼ 1.0293√

λ
+
−1.0983

λ
(ω = 0),

B1 ∼ .19119√
λ

+
−.61754

λ
, B2 ∼ .57358√

λ
+
−.77272

λ
(ω = −1).

(6.3)
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Table 6: R = 2, γ = 1, μ = 1, ω = −1.
C0 T1 T2 T3 S1 S2 S3

10 .1360 −.2716 .1556 .5215 −.4576 .2041
15 .1585 −.3618 .2467 .5435 −.5460 .2934
20 .1688 −.4138 .3122 .5533 −.5957 .3560
25 .1745 −.4476 .3622 .5588 −.6279 .4034
30 .1781 −.4715 .4018 .5621 −.6500 .4401
40 .1824 −.5034 .4622 .5660 −.6797 .4964
50 .1847 −.5238 .5069 .5682 −.6987 .5381
60 .1862 −.5381 .5418 .5695 −.7115 .5697
70 .1871 −.5478 .5677 .5701 −.7175 .5855

Again this is in good agreement with the apparent limiting values of T1, T2, S1, and S2 as
C0 → ∞. The data in Tables 4–6 show that the expansions do indeed appear to be in powers of
1/

√
λ, and that we correctly computed the leading two terms. Note that in each case, the second

coefficient (T2 and S2) is negative, while the first and third ones are positive. This is consistent
with the fact that in Tables 1–3 the leading terms always overestimate the exact answer, while
the two-term approximations underestimate it. As we decrease ω, the ratio |T2/T1 | increase,
as do |S2/S1 | (though these are always larger). Hence, we expect that decreasing ω leads
to further cancellation between the first and second terms in the asymptotic series, and this
again is in agreement with the data in Tables 1–3. It also explains why the two-term asymptotic
approximations to B1 sometimes lead to negative answers, for moderate C values.

To summarize, we have shown that the asymptotic approximations are reasonably accu-
rate, though certainly not excellent, and that there is merit to computing theO(1/λ) correction
terms unless C is quite small. For small C, however, the one-term approximations may be su-
perior, as the two-term approximations may lead to negative answers. The accuracy of the
asymptotic approximations presumably increases as C increases further, and the two-term ap-
proximations are presumably better than the one-term approximations. However, limitations
of the available computing facilities have so far prevented the evaluation of the exact numerical
results for larger values of C.
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