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Fluid queues offer a natural framework for analyzing waiting times in a relay node of an ad hoc
network. Because of the resource sharing policy applied, the input and output of these queues are
coupled. More specifically, when there are n users who wish to transmit data through a specific
node, each of them obtains a share 1/(n + W) of the service capacity to feed traffic into the queue
of the node, whereas the remaining fraction W/(n + W) is used to serve the queue; here W > 0
is a free design parameter. Assume now that jobs arrive at the relay node according to a Poisson
process, and that they bring along exponentially distributed amounts of data. The case W = 1 has
been addressed before; the present paper focuses on the intrinsically harder case W > 1, that is,
policies that give more weight to serving the queue. Four performance metrics are considered: (i)
the stationary workload of the queue, (ii) the queueing delay, that is, the delay of a “packet” (a fluid
particle) that arrives at an arbitrary point in time, (iii) the flow transfer delay, (iv) the sojourn time,
that is, the flow transfer time increased by the time it takes before the last fluid particle of the flow
is served. We explicitly compute the Laplace transforms of these random variables.

Copyright q 2008 M. Mandjes and W. Scheinhardt. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Ad hoc networks are self-configuring networks of mobile routers, connected by wireless links.
They enable infrastructure-free communication: no fixed equipment is needed, but instead
each client acts as a hub. When information needs to be transmitted across the network, it
is sent from the sender to the receiver by relaying the packets along the intermediate hubs. An
excellent survey on ad hoc networks, with special emphasis on quality-of-service aspects, is
[1].
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On a somewhat more abstract level the nodes in ad hoc networks can be regarded as
queues: information packets arrive and are relayed, and when the arrival rate (temporarily)
exceeds the departure rate, the buffer content of the queue builds up. These queues, however,
have the interesting modelling feature that the available transmission capacity at any specific
node is used both to (i) “pull” information packets from the “predecessor hubs” into the queue
and (ii) “push” information packets from the queue towards “successor hubs” (and eventually
the destination client).

Now, consider the situation that at some point in time there are n stations that transmit
traffic via the same relay node. If the standard resource sharing policy is used, then the relay-
node is assigned a share 1/(n+ 1) of the available medium capacity, which is the same fraction
as is allocated to each of the n “sending nodes.” In other words, as soon as n > 1, the node’s
input rate exceeds its output rate, and hence the excess traffic accumulates in the node’s buffer;
only when n = 0 the queue drains. This explains why relay nodes are prone to becoming
bottlenecks.

The above observations have motivated the development of alternative resource sharing
policies, that assign more “weight” to serving the relay node; see for instance [2] and references
therein. With the so-called enhanced distributed channel access (EDCA) protocol, it will be possible
to set a parameter W > 0, such that each of the n sending nodes obtains a fraction 1/(n + W) of
the capacity, while the remaining W/(n + W) is allocated to serving the queue. Clearly, when
W > 1 this has a benign effect on the buffer content of the queue, compared to the standard
resource sharing policy described above: the queue drains for all n < W (rather than just for
n = 0). The price paid is that the traffic remains longer at the sending nodes.

There is one important modelling feature, that applies to the case W > 1, that needs to
be mentioned here. When the queue is empty and the number of sending nodes n is below
W, it does not make sense to assign each of the sending notes just a share 1/(n + W): it would
imply that the (available) service rate is strictly larger than the input rate, and that a fraction
(W − n)/(n + W) > 0 is left unused. For that reason, the EDCA protocol (IEEE 802.11E) was
augmented with an “idle mode”: if the queue is idle and n < W, then half of the capacity
is allocated to serving the queue of the relay node, whereas the other half is shared equally
among the n sending nodes (such that the input and output rates are equal, the queue remains
empty, and all available capacity is used). Notice that when W ≤ 1 this special rate allocation
(during periods in which the buffer is empty) is not required, as it cannot be that both the
buffer is empty and that there are n < W jobs in the system.

The case W = 1, corresponding to the standard resource sharing policy, was proposed
and analysed in detail in [3, 4]. Seen from a queueing-theoretic perspective, this is a model
“with coupled input and output,” in that the capacity is shared between the input and output
process. It was assumed that flows (or jobs) arrive at the relay node according to a Poisson
process and initiate a data transfer. For the special case of exponentially distributed flow
sizes, [4] explicitly gave the Laplace transforms (and tail asymptotics) of several performance
measures.

Importantly, the case W = 1 (and in fact also W < 1) has nice features that are lost for
W > 1. As a consequence, the analysis of [4] for W = 1 does not carry over to W > 1. The main
differences are the following.

(1) In the first place, as we explained, the case W = 1 does not require the “idle mode”
rate allocation that was introduced above (during periods in which the buffer is empty). As a
consequence, the number of flows present evolves independently of the buffer content process
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(and hence the distribution of the number of flows present can be computed independently of
the distribution of the buffer content of the queue). This nice property is lost in the case W > 1;
one could say that there is then some sort of “feedback” from the buffer content to the flows, in
the sense that the buffer content has impact on the flow behaviour, and hence the distributions
of the number of sources present and the buffer content cannot be determined separately.

(ii) In the second place, suppose we wish to analyse the flow transfer delay, defined
as the time between the arrival of the flow and the epoch that its last fluid particle has been
transmitted into the queue. We know that for W = 1 the queue cannot become empty during
this flow transfer. Therefore, all the “state information” that we have to keep track of is the
number of flows present when entering (and not the buffer content); for W > 1 the queue can
become empty, and therefore we have to take into account the buffer content, as seen upon
arrival, as well.

(iii) In case W = 1, the buffer content decreases only during periods that there are no
flows in the system, and these intervals are exponentially distributed; it turned out in [4] that
this property entails that a direct translation is possible in terms of a related classical M/G/1
queueing model. For W > 1, the periods of net output are not exponentially distributed, and
therefore we lose this nice feature.

The above explains that the analysis for W > 1 is considerably more involved than for
W = 1.

For various values of W, the model described above has been extensively validated in
[2], by ad hoc network simulations that include all the details of the widely used IEEE 802.11
MAC-protocol. As indicated above, the alternative resource sharing policies can be enforced in
real systems by deploying the recently standardised IEEE 802.11E protocol; [2] also indicates
how to map the parameter settings of IEEE 802.11E on our model parameters.

The goal of the present paper is to extend the results of [4] to the case W > 1. As in
[4], four performance metrics are considered: (i) the stationary workload of the queue, (ii) the
queueing delay, that is, the delay of a “packet” (a fluid particle) that arrives at the queue at an
arbitrary point in time, (iii) the flow transfer delay, that is, the time elapsed between arrival of
a flow and the epoch that all its traffic has been put into the queue, and (iv) the sojourn time,
that is, the flow transfer time increased by the time it takes before the last fluid particle of the
flow is served.

We introduce the model (including a graphical illustration) and notation in Section 2—
it is noted that in our model an admission control policy is in force. We also present some
preliminaries as well as the stability condition. In Section 3 the steady-state workload (i.e.,
buffer content) distribution of the queue is characterised. This is done by relying on techniques
from [5–7]. Unfortunately, we cannot exploit the resemblance a related M/G/1 queueing
model, as was possible in [4]. We find the distribution function of the steady-state workload,
in terms of the solution of an eigensystem and a set of linear equations. In Section 4, we study
the queueing delay of a tagged fluid particle that arrived at time 0. A full characterisation of
its Laplace transform can be given; the computations turn out to be relatively straightforward,
based on the observation that during the queueing delay the queue cannot enter the “idle
mode.”

Above we already indicated that the analysis of the flow transfer delay is much more
involved than for W = 1, mainly due to the fact that the buffer can become empty during the
flow transfer, so that the allocation gets into the “idle mode.” The derivation of the Laplace
transform requires the solution of various complex systems of equations. The results can be
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found in Section 5. In order to prove that the number of equations matches the number of
unknowns, we need to show that a certain eigensystem has sufficiently many eigenvalues in
the right half-plane; this we showed by using an elegant and powerful lemma of Sonneveld
[8].

Section 6 concentrates on the so-called sojourn time, which is defined as the flow transfer
time increased by the time it takes before the last fluid particle of the flow has left the queue; in
other words, the sojourn time is the time it takes for the flow to go through the relay node.
Relying on the results of Section 5, the sojourn time can be decomposed into a number of
known components. Section 7 concludes and identifies a number of topics for future research.

2. Model and preliminaries

In this section, we first give a detailed description of our model and introduce notation. Then,
we derive the stability condition.

2.1. Model

The following model was verbally motivated in the Introduction. Consider a queueing system
at which flows arrive according to a Poisson process transmits traffic into a queue (which
is served in a FIFO manner) and leaves when ready. When there are n flows active and the
queue is nonempty, each flow transmits traffic into the queue at rate C/(n + W), while a rate
WC/(n+W) is used to serve the queue; as a consequence, the queue drains when the number of
flows present is below W. For ease, we assume that W is noninteger; we come back to this issue
later in Section 7. When there are n flows active and the queue is empty, all flows transmit at
rate C/(2n), while the queue is served at rate C/2, so that the queue remains empty.

Suppose that we impose the admission control policy that the system accommodates
maximally N ∈ N flows simultaneously; in this way, each active flow is guaranteed at least a
transmission rate C/(N + W), and the queue at least WC/(N + W). We assume that N > W (as
otherwise the queue remains empty).

The above dynamics define a queueing process, for any given initial buffer level and
initial number of flows present; we denote the buffer content at time t by Wt. We let Nt denote
the number of flows present (i.e., feeding traffic into the queue) at time t. A pictorial illustration
is given in Figure 1.

We introduce the following notation.
(i)Wt > 0: the “busy mode.” It is not hard to see, under the assumption of exponentially

distributed flow sizes (with mean μ−1) and interarrival times (with mean λ−1), that, during
periods that Wt > 0, the process Nt behaves as a Markov chain on {0, . . . ,N}, with generator
matrix

Qb :=

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ λ
μ1C −μ1C − λ λ

μ2C −μ2C − λ λ
. . . . . . . . .

μN C −μN C

⎞
⎟⎟⎟⎟⎟⎟⎠
, (2.1)

where μn := μn/(n + W); the subscript “b” stands for “busy.” We define νn := μnC + λ1{n < N}.
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Figure 1: Illustration of the model. The top panel depicts the number of flows Nt as a function of time, the
middle panel the rate allocated to each source as a function of time, and the bottom panel the workload
Wt as a function of time; we have chosen W = 3/2. Note that when Nt = 1 the rate per source equals C/2
when the buffer is empty, and 2C/5 when the buffer is nonempty. Also note that the queue builds up when
Nt ≥ 2.

WhenNt = n, the aggregate traffic rate generated by the flows is rI,n := Cn/(n+W), while
the queue’s output rate is rO,n := WC/(n + W), such that the net rate of change of the queue is

rA,n := rI,n − rO,n = C
n − W

n + W
. (2.2)

Define RI := diag{rI}, RO := diag{rO}, and RA := RI − RO.
Busy periods are periods in which Wt is positive all the time. With n+ := �W�, it is evident

that the number of active flows at the beginning of a busy period equals n+. The number of
active flows at the end of a busy period is in {0, . . . , n−}, with n− := �W�.

(ii)Wt = 0: the “idle mode.” Let idle periods be periods in which Wt = 0 all the time. An
idle period ends as soon as Nt = n+. During the idle period necessarily Nt ∈ {0, . . . , n−}.
One could say that Nt behaves as a Markov chain on {0, . . . , n−} until Nt jumps from
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n− to n+ (i.e., the start of a new busy period). The corresponding rate matrix (which is not
a bona fide generator matrix) is

Qi :=

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ λ
μC/2 −μC/2 − λ λ

μC/2 −μC/2 − λ λ
. . . . . . . . .

μC/2 −μC/2 − λ

⎞
⎟⎟⎟⎟⎟⎟⎠

; (2.3)

the subscript “i” stands for “idle.”

2.2. Stability condition

To make sure that the steady-state workload W� is finite a.s., the mean drift should be negative
when Wt is large. Since Nt behaves essentially like a stationary Markov process with generator
Qb whenWt is large, it follows thatWt can only escape to ∞ when

∑N
n=0 πnrA,n ≥ 0, denoting by

�π ≡ (π0, . . . , πN)
T the invariant measure of Qb. Hence, we should require that

∑N
n=0 πnrA,n < 0.

Elementary Markov chain analysis yields that, with � := λ/(μC),

πn =
ρnB(n + W, n)∑N

m=0�
mB(m + W, m)

, (2.4)

where, for k ≥ 	 ≥ 0, B(·, ·) can be regarded as a “generalised binomial coefficient”:

B(k, 	) :=
Γ(k + 1)

Γ(	 + 1)Γ(k − 	 + 1)
. (2.5)

The stability condition becomes
∑N

n=0rA,nπn < 0.
It is instructive to show how this condition simplifies in the situation of N→∞. Due to

(recognize the probability density function of the negative binomial distribution)
∞∑
m=0

�mB(m + W, m) =
1

(1 − �)W+1
, (2.6)

we have to verify whether
∞∑
n=0

πn·n − W

n + W
=

∞∑
n=0

ρnB(n + W, n)(1 − �)W+1·n − W

n + W
< 0. (2.7)

Using identity (2.6) again, writing

n − W

n + W
=

2n
n + W

− 1, (2.8)

and observing that
∞∑
n=0

�nB(n + W, n)
2n

n + W
=

∞∑
n=1

�nB(n + W, n)
2n

n + W

= 2
∞∑
n=1

�nB(n + W − 1, n − 1) = 2�
∞∑
n=0

�nB(n + W, n) =
2�

(1 − �)W+1
,

(2.9)

it is readily verified that the stability requirement reduces to 2� − 1 < 0. In other words, for
the system to be stable, it is required that � < 1/2 (irrespective of the value of W). This result
makes sense as essentially all traffic has to be “served” twice: first it has to be transmitted from
the sources to the queue, and then it has to be served by the queue.
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3. Buffer content distribution

In this section, we study the steady-state workload W� of the queue introduced in the previous
section (jointly with the steady-state number N� of sources present). We do this by relating the
workload of our model (to which we refer as Model I) to the workload in a slightly different
system (Model II): a model in which the generator Qb and the traffic rate matrices RI, RO, and
RA apply also when the buffer is empty (so Model II has no “idle mode”).

The procedure of relating a feedback system (Model I, in which the sources react to
the buffer content) to an (easier) nonfeedback system (Model II, in which the flows behave
independently of the buffer content) resembles that of [7, Section 2].

The distribution of the steady-state workload is characterised in terms of the solution
of a certain eigensystem (and a number of additional linear equations). It also enables us to
compute the corresponding Laplace transform, which we use several times in the next sections.

3.1. Preliminary results

In this subsection, we consider the model without feedback, that is, Model II: the generator
matrix Qb and the traffic rate matrices RI, RO, and RA apply not only when the buffer content
is positive, but also when the buffer is empty. We assume that the stability criterion derived
above (which reduces to � < 1/2 when N→∞) applies. Denote by Vt the buffer content of this
system at time t (where V � is its stationary version), and by Mt the number of flows present at
time t (where M� is its stationary version). Define also �F(x) := (F0(x), . . . , FN(x))

T, where

Fn(x) := P
(
V � ≤ x, M� = n

)
. (3.1)

Model II has been studied extensively in the literature; we now recall a number of basic
properties, which turn out to become useful when analysing Model I, see Section 3.2.

Buffer content distribution

It is well known from the literature how the Fn(x) can be determined; they obey the system of
linear differential equations:

RA
�F ′(x) = QT

b
�F(x). (3.2)

Owing to the special birth-death structure, we can use explicit results obtained by van Doorn
et al. [9].

A central role in the analysis is played by the eigensystem

z�vRA = �vQb, (3.3)

with eigenvectors �v0 up to �vN and corresponding eigenvalues z0, . . . , zN. Notice that rA,n /= 0, for
all n = 0, . . . ,N, so RA is invertible. Then, [9, Theorem 1] says that all eigenvalues z are real and
simple.

Moreover, observe that the number of states ofMt in which Vt drains (or remains empty)
is n+; in the other N − n− the buffer level increases. Provided that the stability condition is
satisfied, [9, Theorem 1] entails that there are N − n− negative eigenvalues, one eigenvalue that
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equals 0, and n− positive eigenvalues. Put the eigenvalues in increasing order; let (�vm)n refer to
the nth component of �vm. Then the above, in conjunction with the fact that Fn(∞) lies between
0 and 1 for all n, implies that in the representation

Fn(x) =
N∑

m=0

cm·
(
�vm
)
n·eznx, (3.4)

the terms N − n+ + 1 up to N are 0. As zN−n− = 0 and �vN−n− = π , it follows that the requirement
�F(∞) = π implies cN−n− = 1. We obtain

Fn(x) = πn +
N−n+∑
m=0

cm·
(
�vm
)
n·ezmx. (3.5)

Now, only the cm (for m = 0 up to N − n+) need to be determined. These follow from the fact
that Fn(0) = 0 for n = n+, . . . ,N. These are N − n− equations in the same number of unknowns,
and can be determined explicitly in terms of z0, . . . , zN−n+ , as described in [9], Section 4 .

Busy and idle periods

Elwalid and Mitra [10] give explicit expressions for a number of quantities that are related to
the busy and idle periods of the queue. A busy period is, as before, defined as a period in which
the buffer content is positive, whereas an idle period is a period in which the buffer is empty.
It is easily seen that at the beginning of a busy period the number of flows present is equal to
n+; at the end of the busy period the number of flows present is at most n−.

Denote by �P the distribution of the number of flows present at the end of the busy period.
Let the matrices QDD

b , QDU
b , QUD

b , QUU
b be the submatrices that are obtained by partitioning Qb

into down-states (i.e., states n such that rA,n < 0) and up-states (rA,n > 0); similarly, �F(x) is
partitioned in �FD(x) and �FU(x).

Then, it is not hard to prove that

�P =
1〈

�FD(0)QDD
b , 1

〉 ·�FD(0)QDD
b , (3.6)

see [10, Equation (5.9)]; 〈·, ·〉 denotes the inner product of two vectors. The mean idle period
EI is given by

EI = −
∑n−

n=0Fn(0)〈
�FD(0)QDD

b , 1
〉 . (3.7)

Finally, the mean busy period EB can be calculated. According to “renewal reward”∑n−
n=0Fn(0) = EI/(EI + EB), so that

EB = EI·1 −∑n−
n=0Fn(0)∑n−

n=0Fn(0)
. (3.8)
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3.2. Analysis of buffer content distribution

Now, we turn back to Model I, as described in Section 2.1. Our goal is to show that the steady-
state buffer content W� of Model I (in which there are different queueing dynamics when the
buffer is empty or nonempty) is intimately related to the steady-state buffer V � content of
Model II (in which there is no distinction between an empty and nonempty buffer).

Let us start by making a number observations. First, observe that in both Models I and II

a busy period starts with n+ flow present. Also, the distribution of the length of the busy period
B is the same for both models, as well as the distribution �P of the number of flows present at
the end of the busy period. In other words, the difference between the models lies just in the
duration of the idle periods. In Section 3.1, we already found the mean idle period EI of Model
II. Let us therefore consider the mean idle period EJ of Model I.

As in [7, Lemma 2.3], we have that the mean idle period of Model I equals

EJ =
〈 − �PQ−1

i , 1
〉
; (3.9)

the expected amount of time during this idle time in which there are n flows present, say
E(Jn), is (− �PQ−1

i )
n
, that is, the nth entry of − �PQ−1

i . This follows from the fact that the mean
time Em(Jn) spent in n during the idle time, given that at the beginning of the idle time m
flows were present, satisfies the linear system, for m = 1, . . . , n−,

Em(Jn) =
(

1
λ + μC/2

)
1{m = n} + λ

λ + μC/2
·Em+1

(
Jn
)
+

μC/2
λ + μC/2

·Em−1
(
Jn
)
, (3.10)

with En+(Jn) = 0, and

E0
(
Jn
)
=

1
λ

1{n = 0} + E1
(
Jn
)
. (3.11)

We now have collected all the required elements to determine the distribution of the steady-
state buffer content W�. Analogously to [7, Theorem 2.4] we obtain the following result for
Gn(x) := P(W� ≤ x,N� = n).

Theorem 3.1. For all x ≥ 0,

Gn(x) =
(
Fn(x) − Fn(0)

)·EI + EB

EJ + EB
+

E
(
Jn
)

EJ + EB
. (3.12)

Proof. This is proven as follows. We first condition on W� being positive or zero:

Gn(x) = P
(
W� ≤ x,N� = n |W� > 0

)
P
(
W� > 0

)
+ P
(
W� = 0,N� = n

)
. (3.13)

By applying the renewal-reward theorem, the latter probability can be rewritten as

P
(
W� = 0,N� = n

)
=

E
(
Jn
)

EJ + EB
; (3.14)

notice that these probabilities equal 0 for n = n+, . . . ,N. Also, from “renewal-reward,”

P
(
W� > 0

)

P
(
V � > 0

) =
EI + EB

EJ + EB
. (3.15)
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Hence, we are left with determining the first probability in the right-hand side of (3.13). We
first rewrite it as

P
(
N� = n |W� > 0

)
P
(
W� > 0

) − P
(
W� > x,N� = n |W� > 0

)
P
(
W� > 0). (3.16)

Now, recall that the distribution of (W�,N�), conditional on W� > 0, is the same as the
distribution of (V �,M�), conditional on V � > 0. Combining this with (3.15), we obtain

P
(
M� = n | V � > 0

)
P
(
W� > 0

) − P
(
V � > x,M� = n | V � > 0

)
P
(
W� > 0

)

=
(
P
(
V � > 0,M� = n

) − P
(
V � > x,M� = n

)) × EI + EB

EJ + EB

=
(
Fn(x) − Fn(0)

)·EI + EB

EJ + EB
.

(3.17)

This proves the claim.

Upon combining the above theorem with representation (3.5), we find the following
useful result.

Corollary 3.2. For all x ≥ 0, Theorem 3.1, in conjunction with (3.5), defines numbers αn and βnm
(with n = 0, . . . ,N andm = 0, . . . ,N − n+) such that

Gn(x) = αn +
N−n+∑
m=0

βnme
zmx. (3.18)

Here, Gn(0) > 0 if and only if n ∈ {0, . . . , n−}; Gn(0) is given by

Gn(0) = P
(
W� = 0,N� = n

)
= αn +

N−n+∑
m=0

βnm. (3.19)

The probability of n flows in the system is given by P(N� = n) = Gn(∞) = αn (where
∑N

n=0αn = 1).
The Laplace transform ofW� reads, for s > 0,

E
(
e−sW

�

1
{
N� = n

})
= αn +

N−n+∑
m=0

sβnm
s − zm . (3.20)

4. Queueing delay distribution

It is clear that it is a nontrivial step to translate the steady-state workload distribution into
the queueing delay distribution. Importantly, to study the delay of a fluid particle arriving
at time, say, 0, the arrivals and departures of flows after 0 have impact. In Sections 4.1 and
4.2, we analyse the so-called virtual queueing delay, that is, the delay experienced by a fluid
particle arriving at a random point in time (i.e., a “time average”); this is done through a direct
approach in Section 4.1 and through so-called “double transforms” is Section 4.2. Section 4.3
characterises the queueing delay of an arbitrary fluid particle (i.e., a “traffic average”).
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4.1. Virtual queueing delay

Let D� denote the delay experienced by a fluid particle arriving at the queue in steady state,
say for ease at time 0; this type of delay is sometimes referred to as virtual queueing delay. Let
O(0, t) denote the amount of output capacity available in the interval [0, t). If the fluid particle
arrives at an empty queue, then the virtual delay is clearly zero; if the fluid particle arrives at
a nonempty queue, then the queue is drained according to the rates rO,n until the particle has
been served (in fact even until the queue is empty). Define, for z ≥ 0, the random variable τz
as the time until z units of service have become available:

τz := inf
{
t ≥ 0 : O(0, t) = z

}
= inf

{
t ≥ 0 :

∫ t
0
rO,Ns

ds = z
}

; (4.1)

notice that O(0, t) is increasing in t. Then, analogously to [4, Section 4.1], with some abuse of
notation,

Ee−sD
�

=
N∑
n=0

∫∞

0
E
(
e−sτz |N� = n

)
P
(
W� = z,N� = n

)
dz. (4.2)

Hence, to further compute this expression, we need to evaluate E(e−sτz |N� = n). Here, we can
use [4, Proposition 4.1]:

E
(
e−sτz |N� = n

)
=
(

exp
((
R−1

O Qb − sR−1
O

)
z
)
1
)
n, (4.3)

where 1 denotes an (N+1)-dimensional vector with 1s. As the same proposition entails that the
eigenvalues are simple and negative (hence real numbers), it allows us to write, for constants
γmn, with m,n = 0, . . . ,N,

E
(
e−sτz |N� = n

)
=

N∑
m=0

γmne
δm(s)z. (4.4)

We thus obtain the following result.

Theorem 4.1. For s > 0,

Ee−sD
�

=
N∑
n=0

N∑
m=0

γmnE
(
eδm(s)W

�

1
{
N� = n

})
, (4.5)

where the γmn are as in (4.4). The δn(s), for n = 0, . . . ,N, are the eigenvalues of R−1
O Qb − sR−1

O (which
are negative). An expression for E(e−sW

�
1{N� = n}), with s > 0, is available from Corollary 3.2.

4.2. A second approach: double transforms

We now proceed with demonstrating a second approach, which relies on the concept of
“double transforms.” We feel that this is instructive, as this approach is used extensively in
the remainder of the paper (when analysing the flow transfer delay and the sojourn time).
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Let us first condition on the buffer content (W0 = x) that the fluid particle sees (say that
it arrives at time 0), and the number of flows that are then present (N0 = n). Define, for given
n = 1, . . . ,N and x ≥ 0, the transform of the queueing delay:

ξn(s | x) := E
(
e−sD |W0 = x,N0 = n

)
. (4.6)

Then, we also introduce the transform of ξn(s | x) with respect to the workload x:

Kn(s, t) =
∫∞

0
e−txξn(s | x)dx; (4.7)

we say that Kn(s, t) is a “double transform.” Below, we show how to use these double
transforms to derive Ee−sD

�
.

Our first goal is to characterise the Kn(s, t), n = 1, . . . ,N, for fixed s ≥ 0 and t > 0. We do
this by expressing Kn(s, t) in terms of Km(s, t) (with m/=n) as follows. Condition on the time
until the service rate changes; this time has an exponential distribution with mean ν−1

n . Hence,

Kn(s, t) =
∫∞

0
e−tx
(∫x/rO,n

0
νne

−νnye−sy
(
λ1{n < n}

νn
ξn+1
(
s | x − rO,ny

)
+
μnC

νn
ξn−1
(
s | x − rO,ny

))
dy

+
∫∞

x/rO,n

νne
−νnye−sx/rO,ndy

)
dx.

(4.8)

A straightforward change of variable (x − rO,ny = z) then yields that

Kn(s, t) =
1

νn + s + trO,n

(
λ1{n < N}Kn+1(s, t) + μnCKn−1(s, t) + rO,n

)
. (4.9)

For given s and t, these are N+1 linear equations in the same number of unknowns. It is easy to
see that the corresponding linear system is diagonally dominant, and hence there is a unique
solution. This enables us to find the Kn(s, t).

Our second goal is to show how these Kn(s, t) yield an expression for Ee−sD
�
. At an

arbitrary point in time, the distribution function of the workload (jointly with the number of
flows present) is given by Gn(·), as given by (3.18). But, as the corresponding density is the
weighted sum of exponentials, it entails that knowledge of the Kn(s, t) gives an expression for
the Laplace transform of the virtual delay:

Ee−sD
�

=
N∑
n=0

∫

[0,∞)
ξn(s | x)dGn(x)

=
N∑
n=0

(
ξn(s | 0)Gn(0) +

∫

(0,∞)

N−n−∑
m=0

ξn(s | x)zmβnmezmxdx
)

=
n−∑
n=0

Gn(0) +
N∑
n=0

N−n−∑
m=0

zmβnmKn

(
s,−zm

)
;

(4.10)

recall that zm < 0 for m = 0, . . . ,N − n−.

Theorem 4.2. For s > 0,

Ee−sD
�

=
n−∑
n=0

Gn(0) +
N∑
n=0

N−n−∑
m=0

zmβnmKn

(
s,−zm

)
. (4.11)
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4.3. “Packet average” queueing delay

The previous subsections presented expressions for the Laplace transform of the queueing
delay “at an arbitrary point in time” (a “time average”). Clearly, there is a bias between the
delay D� “at an arbitrary point in time” and delay D

�
“seen by an arbitrary fluid particle.” The

correction to be made is analogous to [4, Section 4.2] and rather straightforward:

Ee−sD
�

=
N∑
n=0

(
ri,n∑N

k=0
πkrI,k

) N∑
m=0

γmnE
(
eδm(s)W

�

1
{
N� = n

})
, (4.12)

compared to [11, Proposition 7.2].

5. Flow transfer delay distribution

In this section, we focus on the time F it takes for an arbitrary arriving flow to transmit its
traffic. We define the flow transfer delay as the time between arrival and the epoch that its last
fluid particle has been transmitted into the queue. Realise that the flow transfer time depends
on the buffer content and number of flows that the tagged flow sees upon arrival. Due to
the PASTA-property, these coincide with the corresponding time-averages. Recall that the case
W = 1, as addressed in [4] is simpler, as the buffer content seen upon arrival does not play a
role.

Let us first condition on the buffer content (W0 = x) and the number of flows (N0 = n).
Define, for s ≥ 0, t > 0, the Laplace transform of the flow transfer time (conditional on W0 = x
and N0 = n) and its transform with respect to x:

ηn(s | x) := E
(
e−sF |W0 = x,N0 = n

)
;

Ln(s, t) =
∫∞

0
e−txηn(s | x)dx.

(5.1)

For later reference, we also introduce, for n = 1, . . . ,N and m > W,

κn(s, t) := νn + s − trA,n; tn(s) :=
νn + s
rA,n

; 	n,m(s) := Ln
(
s, tm(s)

)
. (5.2)

Notice that, for n > W, tn(s) is positive.
In Section 5.1, we find the Ln(s, t); this is in terms of auxiliary transforms that are

determined in Section 5.2. We conclude this section by presenting the transform of the flow
transfer delay; see Section 5.3.

5.1. A system of equations for the double transform

We now deduce a system of equations for the Ln(s, t), n = 1, . . . ,N. We do so by distinguishing
between “down-states” (nwith rA,n > 0) and “up-states” (with rA,n < 0). The idea is that for up-
states during the time till the first event (new arrival or departure) the buffer content cannot
become 0, while for down-states this is possible. As a consequence, these cases have to be dealt
with differently.
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Up-state

First, assume that n is an “up-state”: n ∈ {n+, . . . ,N}. It is elementary to see that, conditioning
on the first event taking place after w units of time,

Ln(s, t) =
∫∞

0
e−tx
(∫∞

0
νne

−νnwe−sw

×
(
λ1{n<N}

νn
ηn+1
(
s | x+rA,nw

)
+
n−1
n

μnC

νn
ηn−1
(
s | x+rA,nw

)
+

1
n

μnC

νn

))
dw dx.

(5.3)

This is the sum of three integrals. The third equals

L
(3)
n (s, t) =

μnC

n
·1
t
· 1
νn + s

=: μ+
n(s, t). (5.4)

Consider the first, and perform the change of variable x + rA,nw = y:

L
(1)
n (s, t) =

∫∞

0
e−tx
(∫∞

0
λ1{n < N}e−νnwe−swηn+1

(
s | x + rA,nw

))
dw dx

=
∫∞

0

∫y/rA,n

0
e−t(y−rA,nw)λ1{n < n}e−νnwe−swηn+1(s | y)dw dy

=
∫∞

0
e−tyλ1{n < N}

(
e(t−νn/rA,n−s/rA,n)y − 1

trA,n − νn − s
)
ηn+1(s | y)dy

= λn(s, t)
(
Ln+1(s, t) − Ln+1

(
s,
νn + s
rA,n

))
, where λn(s, t) :=

λ1{n < N}
κn(s, t)

.

(5.5)

Similarly,

L
(2)
n (s, t) = μn(s, t)

(
Ln−1(s, t) − Ln−1

(
s,
νn + s
rA,n

))
, where μn(s, t) :=

n − 1
n

μnC

κn(s, t)
. (5.6)

We arrive at

Ln(s, t) = λn(s, t)
(
Ln+1(s, t) − 	n+1,n(s)

)
+ μn(s, t)

(
Ln−1(s, t) − 	n−1,n(s)

)
+ μ+

n(s, t). (5.7)

Later, it will turn out to be also useful to consider the representation

κn(s, t)Ln(s, t) = λ1{n < N}·Ln+1(s, t) +
n − 1
n

μnC·Ln−1(s, t) +
μnC

n
·κn(s, t)

t
· 1
νn + s

− λ1{n < N}·	n+1,n(s) − n − 1
n

μnC·	n−1,n(s).
(5.8)

Down-state

Now, assume that n is a down-state: n ∈ {0, . . . , n−}. In this case, we must distinguish between
the cases that the process remains in state n shorter, respectively, longer than −x/rA,n (which is
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a positive number); in the former case, the buffer does not become empty before the first event,
whereas in the latter case it does. In more detail, we have

Ln(s, t) =
∫∞

0
e−tx
(∫−x/rA,n

0
νne

−νnwe−sw

×
(
λ

νn
ηn+1
(
s | x + rA,nw

)
+
n − 1
n

μnC

νn
ηn−1
(
s | x + rA,nw

)
+

1
n

μnC

νn

)
dw

+
∫∞

−x/rA,n

νne
−νnxesx/rA,nηn(s | 0)dw

)
dx.

(5.9)

With μ−
n(s, t) := μnC/(n·κn(s, t)·t), this simplifies to

Ln(s, t) = λn(s, t)Ln+1(s, t) + μn(s, t)Ln−1(s, t) + μ−
n(s, t) − rA,n

κn(s, t)
·ηn(s | 0). (5.10)

As indicated, our goal is to generate a system of equations for the Ln(s, t) (with s and t fixed);
we therefore wish to express ηn(s | 0) in terms of the Ln(s, t). This can be done as follows.

(i) First, for n ∈ {0, . . . , n−},

ηn(s | 0) =
1

νn + s

(
ληn+1(s | 0) +

n − 1
n

μnC·ηn−1(s | 0) +
μnC

n

)
, (5.11)

whereas for n ∈ {n+, . . . ,N},

ηn(s | 0) =
λ1{n < N}

rA,n
·Ln+1

(
s,
νn + s
rA,n

)

+
n − 1
n

·μnC

rA,n
·Ln−1

(
s,
νn + s
rA,n

)
+
μnC

n
· 1
νn + s

=
λ1{n < N}

rA,n
·	n+1,n(s) +

n − 1
n

·μnC

rA,n
·	n−1,n(s) +

μnC

n
· 1
νn + s

.

(5.12)

(ii) Now, consider the vector �η(s) ≡ (η1(s | 0), . . . , ηn−(s | 0))T. Define for n,m = 1, . . . , n−,

an,m(s) :=

⎧⎪⎪⎨
⎪⎪⎩

−λ, if m = n + 1;

νn + s, if m = n;

−(n − 1)/n·μnC, if m = n + 1.

(5.13)

and 0 else. The corresponding matrix is called A(s), that is, A(s) ≡ (an,m(s))
n−
n,m=1; for

s > 0 we have that A(s) is diagonally dominant and hence invertible. Also, �u(s) ≡
(u1(s), . . . , un−(s))

T, with

un(s) :=

{
μnC/n, if n = 1, . . . , n− − 1,

μn− C/n− + ηn+(s | 0), if n = n−.
(5.14)

Then, (5.11) implies that �η(s) = (A(s))−1�u(s). In other words, once we know ηn+(s | 0),
we can compute η1(s | 0), . . . , ηn−(s | 0).
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(iii) Let a−1
n,m(s) := (A(s))−1

n,m. Now, (5.12) entails that, for n = 1, . . . , n−,

ηn(s | 0) =
n−−1∑
m=1

a−1
n,m(s)

μmC

m
+ a−1

n,n−(s)
(
μn− C

n−
+ ηn+(s | 0)

)

= αn(s) + βn(s)	n++1,n+(s) + γn(s)	n−,n+(s),

(5.15)

where

αn(s) :=
n−∑
m=1

a−1
n,m(s)

μmC

m
+ a−1

n,n−(s)
μn− C

n−
· 1
νn− + s

;

βn(s) := a−1
n,n−(s)·

λ

rA,n+

; γn(s) := a−1
n,n−(s)·

n−
n+

·μn+ C

rA,n+

.

(5.16)

Inserting this into (5.10), we have found the following relation for down-states n:

κn(s, t)Ln(s, t) = λ·Ln+1(s, t) +
n − 1
n

μnC·Ln−1(s, t)

+
μnC

nt
− rA,n·

(
αn(s) + βn(s)	n++1,n+(s) + γn(s)	n−,n+(s)

)
;

(5.17)

notice the similarity with the equation for the up-states (5.8).

5.2. Determining the auxiliary transforms

From (5.8) and (5.17), it follows that for known functions φn(·, ·) and ψm,k(·),

�Ln(s, t) =
N∑

m=1

((
Q(s, t)

)−1)
n,m

(
φm(s, t) +

N∑
k=n+

ψm,k(s)	m,k(s)

)
; (5.18)

here, the N × N matrix Q(s, t) is given through

(
Q(s, t)

)
n,m :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1{n < N}, if m = n + 1;

−κn(s, t), if m = n;

(n − 1)/n·μnC, if m = n − 1.

(5.19)

In other words, if the transforms 	n,m(s), for n = 1, . . . ,N and m = n+, . . . ,N, would be known,
then, for fixed s and t, the values of the Ln(s, t) can be found directly from solving a system of
linear equations. The rest of this subsection is devoted to explaining how to identify the 	n,m(s),
for given s > 0. We first prove a useful lemma.

Lemma 5.1. Consider, for fixed s > 0, the t ∈ C such that {de} t(Q(s, t)) = 0. There are N − n− such
values such that {Re} t > 0.
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(a) (b)

Figure 2: Eigenvalues in the complex plane. (a) Eigenvalues of −R−1
A Q̆; (b) eigenvalues of −R−1

A (Q̆ − εD). In
this example N = 5, and there are 3 up-states and 2 down-states.

Proof. First, rewrite Q = Q̆ −D + tRA, with

Q̆n,m :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1{n ≤ N} if m = n + 1,

−λ1{n ≤ N} − (n − 1)/n·μnC if m = n,

(n − 1)/n·μnC if m = n − 1,

(5.20)

dn := n−1·μnC + s > 0, D := diag{−→d}. Observe that Q̆ is a generator matrix. Notice also that
solutions of det(Q(s, t)) = 0 are the eigenvalues of −R−1

A (Q̆ −D).
(i) We first focus on properties of the eigenvalues of −R−1

A Q̆. Recall that it follows from
Theorem 2, part 3 of [8] that −R−1

A Q̆ has as many eigenvalues in the right half plane as the
number of up-states in RA, that is, M := N −n−; there is also one eigenvalue of −R−1

A Q̆ equal to 0
(note that Q̆ is singular), and the remaining n− − 1 are in the left half plane. “Geršgorin” states
that all eigenvalues are in at least one of the disks

{
z ∈ C :

∣∣∣∣z +
Q̆n,n

rA,n

∣∣∣∣ ≤
∣∣∣∣
Q̆n,n

rA,n

∣∣∣∣
}

; (5.21)

the nth disk is a circle in the complex plane around −Q̆n,n/rA,n of radius |Q̆n,n/rA,n| (which
therefore goes through 0). Notice that Q̆n,n < 0 implies that the number of disks in the right
(left) half plane equals the number of up-states (down-states, resp.). These observations are
illustrated in the left panel of Figure 2.

(ii) Now, consider the eigenvalues of −R−1
A (Q̆ − εD) for small ε > 0. Observe that these

solve the equation ζ(ε, t) := det(Q̆ − εD + tRA) = 0. As seen in the proof of [8, Theorem 2],

∂

∂t
ζ(ε, t)

∣∣∣∣
ε,t=0

(5.22)

has the same sign as the mean drift, that is, negative. Likewise, the derivative of ζ with respect
to ε is positive (use that all diagonal entries of D are positive). Hence, replacing −R−1

A Q̆ by
−R−1

A (Q̆ − εD) moves the zero eigenvalue to the left.
“Geršgorin” implies that all eigenvalues of −R−1

A (Q̆ − εD) are in at least one of the disks

{
z ∈ C :

∣∣∣∣z +
Q̆n,n − εdn

rA,n

∣∣∣∣ ≤
∣∣∣∣
Q̆n,n

rA,n

∣∣∣∣
}

; (5.23)
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compared to the situation of ε = 0 this means that the disks corresponding to the up-states
(that were in the right half plane) move to the right (with the same radius); likewise, the disks
corresponding to the down-states move to the left. This implies that all eigenvalues in the left
(right) half plane remain in the left (right) half plane, because of the continuity of the solutions
of ζ(ε, t) in the coefficients of the characteristic polynomial.

Conclude that for small ε > 0, there are then N − n− in the right half plane, and the
remaining n− in the left half plane. This is illustrated in the right panel of Figure 2.

(iii) Observe that the same arguments imply this classification remains valid when
increasing ε further. The special case ε = 1 proves our claim.

Now, we are able to characterise the transforms 	n,m(s) as follows.

Step 1. Determine linear equations for the entries of �	(s).

(a) First, focus on (5.8); these relate to n = n+, . . . ,N. We introduce the notation κn,m(s) :=
κn(s, tm(s)). Then, for n/=m and m = n+, . . . ,N, we obtain by inserting t = tm(s):

κn,m(s)	n,m(s) = λ1{n ≤ N}(	n+1,m(s) − 	n+1,n(s)
)

+
n − 1
n

μnC
(
	n−1,m(s) − 	n−1,n(s)

)
+ κn,m(s)μ+

n

(
s, tm(s)

)
.

(5.24)

Notice that κn,n(s) = κn(s, tn(s)) = 0, so that for n = m both sides reduce to 0; hence,
these M equations are meaningless.

(b) Now, consider (5.17); these relate to n = 1, . . . , n−. Plugging in t = tm(s) for m =
n+, . . . ,N, we obtain

κn,m(s)	n,m(s) = λ	n+1,m(s) +
n − 1
n

μnC	n−1,m(s) +
μnC

ntm(s)
− rA,n·

(
αn(s) + βn(s)	n++1,n+(s) + γn(s)	n−,n+(s)

)
.

(5.25)

Step 2. Reduce dimension of the vector �	(s). The sets of (5.24) and (5.25) enable us to express the
	n,m(s) for n = 1, . . . ,N andm = n+, . . . ,N, but n/=m, in terms of �	+(s) := (	n+,n+(s), . . . , 	N,N(s))

T.
We have thus identified functions ϕm(·, ·) and ϑm,k(·) such that for n = 1, . . . ,N,

Ln(s, t) =
N∑

m=1

((
Q(s, t)

)−1)
n,m

(
ϕm(s, t) +

N∑
k=n+

ϑm,k(s)	k,k(s)

)
. (5.26)

In other words, when the M functions 	n+,n+(s), . . . , 	N,N(s) would be known, we would have
found the Ln(s, t).

Step 3. Apply Lemma 5.1. By virtue of Cramer’s rule, we obtain from (5.26) that

Ln(s, t) =
detQn(s, t)

detQ(s, t)
, (5.27)

where Qn(s, t) is defined as Q(s, t) but with the nth column replaced by a vector of which the
mth entry is ϕm(s, t) +

∑N
k=n+ϑm,k(s)	k,k(s). For any t in the right half plane, this should have

a finite norm. Now fix s > 0, and use Lemma 5.1. Denote the zeroes of the denominator by
τ1(s), . . . , τN−n−(s). Conclude that each zero of the denominator should correspond to a zero of
the numerator. This yields N − n− equations that determine 	n+,n+(s), . . . , 	N,N(s).
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The above results are summarised in the following theorem.

Theorem 5.2. For s, t > 0,

�L(s, t) =
(
Q(s, t)

)−1(
�ϕ(s, t) + Θ(s)�	+(s)

)
, (5.28)

with �φ(s) and Θ(s) defined by (5.26). For any s > 0 there are N − n− values of t in the right half plane
such that {det}Q(s, t) = 0, say τ1(s), . . . , τN−n−(s). The vector �	+(s) follows, for fixed s > 0, from
letting t→τm(s) in the numerator of (5.27) and equating this to 0, form = 1, . . . ,N − n−.

Remark 5.3. It is easily verified that, in passing, we have also found a procedure to compute the
ηn(s | 0), for n = 0, . . . ,N, compared to (5.11), (5.12), (5.15).

5.3. Flow transfer delay

It is clear that, due to PASTA, the number of customers present at (i.e., just after) arrival of an
(accepted) flow has distribution (n = 1, . . . ,N)

Hn :=
Gn−1(∞)∑N−1
m=0Gm(∞)

. (5.29)

For determining the flow transfer delay, however, it is also necessary to know the amount of
work found in the buffer. The joint distribution of the number of flows and the buffer content
is given by

Hn(x) :=
Gn−1(x)∑N−1
m=0Gm(∞)

= A ×
(
αn−1 +

N−n−∑
m=0

βn−1,me
zmx

)
, A :=

(
N−1∑
m=0

αm

)−1

; (5.30)

observe that indeed
∑N

n=1Hn(∞) = 1. Hence,

Ee−sF =
N∑
n=1

∫

[0,∞)
ηn(s | x)dHn(x). (5.31)

Mimicking the derivation of Ee−sD
�
, we obtain the following result.

Theorem 5.4. For s > 0,

Ee−sF =
n+∑
n=1

AGn−1(0)·ηn(s | 0) +
N∑
n=1

N−n−∑
m=0

(
Azmβn−1,m

)·Ln
(
s,−zm

)
. (5.32)

Expressions for Ln(·, ·) and ηn(· | 0) are available from the previous subsection.

6. Sojourn time distribution

In this section, we study the sojourn time S of flows in the system, which is defined as the
flow transfer time, increased by the time it takes to serve the last particle of the flow. These
components are not independent. Due to PASTA, the joint distribution of the workload and the
number of flows that a new (accepted) flow sees upon arrival, is given by Hn(·), as defined
through (5.30). To derive the Laplace transform of S, we first need to describe the workload
increment (which can be positive or negative) during the flow transfer time F, see Section 6.1.
Then, in Section 6.2 we put the components together, and derive the transform of S.
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6.1. Joint transform of flow transfer time and workload increment

In the sequel it will turn out that, in order to characterise the distribution of the sojourn time,
we do not just need the distribution of F, but rather its joint distribution with the workload
WF+ and the number of flows present NF+ at the end of the transfer (not counting the flow that
just left). To this end we introduce the counterparts of ηn(s | w) and Ln(s, t):

ηn,m(�s | x) := E
(
e−s1F−s2WF+1

{
NF+ = m

} |W0 = x,N0 = n
)
;

Ln,m(�s, t) =
∫∞

0
e−txηn,m(�s | x)dx,

(6.1)

with �s ≡ (s1, s2). Similarly to before, we also define 	n,m,k(�s) := Ln,m(�s, tk(s1)).
Ln,m(�s, t) can be derived essentially in the same fashion as Ln(s, t) was found in Sections

5.1 and 5.2. We sketch this procedure. The counterpart of (5.7) is, for n > W,

Ln,m(�s, t) = λn
(
s1, t
)(
Ln+1,m(�s, t) − 	n+1,m,n(�s)

)
+ μn

(
s1, t
)(
Ln−1,m(�s, t) − 	n−1,m,n(�s)

)

+
μnC

n
· 1
t + s1

· 1
νn + s1 + s2rA,n

·1{n − 1 = m}, (6.2)

whereas (5.10) generalises to, for n < W,

Ln,m(�s, t) = λn
(
s1, t
)
Ln+1,m(�s, t) + μn

(
s1, t
)
Ln−1,m(�s, t)

+
μnC

n
· 1
κn
(
s1, t
) · 1
t + s2

·1{n − 1 = m} − rA,n

κn
(
s1, t
) ·ηn,m(�s | 0).

(6.3)

In the last equation, as before, the ηn,m(�s | 0) can be expressed in terms of the 	n,m,k(�s). Then, it
remains to find the transforms 	n,m,k(�s); these can be determined as in Section 5.2.

6.2. Sojourn time

The sojourn time can be decomposed into (i) the flow transfer delay and (ii) the time it takes
to serve the traffic that is in the buffer at the end of the flow transfer delay (i.e., the time it takes
to serve the last particle of the tagged flow). This allows us to write, as in [4, Section 6.3], with
the usual abuse of notation

Ee−sS = E
(
e−sF−sτWF+

)

=
∫∞

0

∫

[0,∞)

N∑
n=1

N−1∑
m=0

E
(
e−sF1

{
WF+ = y,NF+ = m

} |W0 = x,N0 = n
)

× E
(
e−sτy |N0 = m

)
dHn(x)dy.

(6.4)

Consider the cases {W0 = 0} and {W0 > 0} separately. The contribution due to {W0 = 0}
amounts to∫∞

0

N∑
n=1

N−1∑
m=0

E
(
e−sF1

{
WF+ = y,NF+ = m

} |W0 = 0,N0 = n
) N∑
k=0

γkme
δk(s)yAGn−1(0)dy

=
N∑
n=1

N−1∑
m=0

N∑
k=0

γkmE
(
e−sF+δk(s)WF+1

{
NF+ = m

} |W0 = 0,N0 = n
)
AGn−1(0)

=
N∑
n=1

N−1∑
m=0

N∑
k=0

γkm·AGn−1(0)·ηn,m
(
s,−δk(s) | 0).

(6.5)
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Similarly, we find that the contribution due to {W0 > 0} is

∫

(0,∞)

N∑
n=1

N−1∑
m=0

N∑
k=0

γkmηn,m
(
s,−δk(s) | x

)N−n−∑
j=0

(
Azjβn−1,j

)
ezjxdx

=
N∑
n=1

N−1∑
m=0

N∑
k=0

N−n−∑
j=0

γkm·
(
Azjβn−1,j

)·Ln,m
(
s,−δk(s),−zj

)
.

(6.6)

Theorem 6.1. For s > 0, Ee−sS is given by the sum of Expressions (6.5) and (6.6).

7. Discussion and concluding remarks

In this paper, we have considered a relay node in an ad hoc network, fed by a Poisson stream of
exponentially distributed jobs. We have characterised its performance in terms of (the Laplace
transforms of) the buffer content, the queueing delay, the flow transfer delay, and the sojourn
time.

Integer weights

In our analysis, we throughout assumed that the weight W was noninteger. If W ∈ N, the
analysis is slightly more involved. We now indicate how the analysis should be adapted. In
the first place, one of the coupled differential equations in (3.2) has left-hand side 0 (because
rA,W = 0); if we enumerate the equations 0, . . . ,W, then the Wth equation reads

0 =
N∑
n=0

qn,WFn(x), or FW(x) = − 1
qW,W

∑
n/= W

qn,WFn(x), (7.1)

where qn,m is the (n,m)-entry of Qb. Then the nth differential equation (where n/= W) becomes

rA,nF
′
n(x) =

∑
m/= W

q−W
m,nFm(x), where q−W

m,n :=
(
qm,n −

qW,n

qW,W
·qm,W

)
. (7.2)

Interestingly, q−W
m,n ≥ 0 for m/=n, and

∑
n/= Wq

−W
m,n = 0, and hence the Q−W

b := (q−W
m,n)m,n (with

m,n = 0, . . . ,N, but m,n/= W) correspond to an N-dimensional generator matrix. In self-evident
notation, we have arrived at

R−W
A

(
�F−W
)′(x) = (Q−W

b

)T �F−W(x), (7.3)

with all entries of R−W
A not equal to 0. In this way, the steady-state buffer content distribution

of Model II can be determined: we first find the Fn(·) for n/= W, and then we use (7.1) to derive
FW(·).

The buffer content distribution follows in the same fashion as in Section 3.2. It is of
crucial importance to choose a definition of busy and idle periods (i.e., one has to choose
whether periods with an empty buffer and W flows in the system belong to the busy or to
the idle periods), and then to consistently use this definition. It is readily verified that for the
other performance measures no specific problems arise.
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Limiting cases

We now consider a number of interesting limiting choices for the weight W. For ease, we lift
the assumption of performing admission control; in other words: we take N = ∞. Let N�(W)
be the steady-state number of flows in the system (i.e., transmitting traffic into the queue), for
a given weight W; W�(W) is defined analogously.

As argued in [3], the total amount of traffic in the system has the same dynamics as
an M/M/1 queue; in this M/M/1 all job sizes are inflated by a factor 2 (as they have to be
processed twice). This total amount of traffic is to be understood as 2W�

s (W) +W�(W), W�
s (W)

denoting the traffic at the sources, and W�(W) the traffic at the queue; the factor 2 is due to the
fact that traffic at the sources still needs to be processed twice, as opposed to traffic at the queue.
Importantly, the evolution of the total queue is independent of W; realise that the total queue is
work-conserving. It follows from the Pollaczek-Khinchine formula that the mean amount of
work (measured in processing time) in the system is 4λ−1·�2/(1 − 2�), independently of the
choice of W. It can be seen that pathwise the amount of traffic that is at the sources increases in
W (as the rI,n decrease), so that the amount of traffic in the queue decreases in W.

(i) In case W = ∞, the queue has maximum weight, and never builds up. Always half
of the capacity is dedicated to the flows, and the other half to the queue. It can be verified
that the queue becomes a normal processor-sharing queue. The flow transfer delays and the
sojourn times coincide. Elementary computations reveal that the steady-state distribution of
the number of flows in the system is geometrically distributed. The probability of n flows in
the system is (1 − 2�)(2�)n; the mean number of flows is EN�(∞) = 2�/(1 − 2�).

(ii) A second extreme case is W = 0. Then, the queue is only served when the flows have
transmitted all their traffic into the queue; when the flows have something to transmit, the
queue grows at a rate C. In this case, the probability of n flows in the system is (1 − �)�n; the
mean number of flows is EN�(0) = �/(1 − �).

Evidently, the mean amount of work in the queue does depend on W. First, observe that
the mean amount of traffic (measured in processing time) that the flows still need to inject into
the queue is

2EN�(W)· 1
μ
, (7.4)

where the factor 2 reflects the fact that the traffic still needs to be processed twice. We conclude
that the mean amount of work (measured in processing time) at the queue is

EW�(∞) = C

(
1
λ
· 4�2

1 − 2�
− 2
μC

· 2�
1 − 2�

)
= 0;

EW�(0) = C

(
1
λ
· 4�2

1 − 2�
− 2
μC

· �

1 − �
)

=
1
μ
· 2�
(1 − �)(1 − 2�)

.

(7.5)

These arguments can be used to quantify the tradeoff between the flow transfer delay (which
increases in W) and the queueing delay of the last particle (which decreases in W). The formula
for W = 1 was already given in [3]

EW�(1) =
1
μ
· 4�2

(1 − �)(1 − 2�)
, (7.6)

which is indeed between (7.5) for � < 1/2.
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Numerical aspects

The numerical techniques to be used in the approach presented in this paper (namely, solving
eigensystems, solving linear systems, and numerically inversion of Laplace transforms) are
techniques that are well established, and for which efficient and reliable computer code is
available. The distributions of W� and D� can be found without the need of performing
any Laplace inversion; as a result, their evaluation boils down to solving a linear system of
differential equations, comparable to those highlighted in, for example, [5, 6]. Determining the
distribution of F and S does require Laplace inversion. It is noted that recently, substantial
progress has been made with respect to this type of inversion techniques. Besides the
“classical” reference [12], we wish to draw attention to significant recent progress by den
Iseger, as reported on in [13]; the latter reference also provides a fairly complete literature
overflow.

When focusing on obtaining numerical output, there are several alternatives to the
approach described in this paper. A first alternative is to rely on tail asymptotics, as done in [4]
for W = 1, in the spirit of

lim
x→∞

1
x

log P
(
W� > x

)
= −ϑ�, (7.7)

where the constant ϑ� > 0 follows from the solution of the corresponding eigensystem;
likewise, one could consider the logarithmic tail asymptotics of D�, F, and S. As this just
provides us with decay rate (i.e., it says that P(W� > x) = ψ(x)e−ϑ

�x for an unknown function
ψ(·) such that x−1· logψ(x)→0), one could use importance sampling-based simulations to
improve on this, where the twisted distribution can be computed as in [14]. For sojourn times,
such importance sampling schemes can be set up as in [15].

Subjects for future research

We mention the following directions for further research.
(i)Multiple bottlenecks. In some situations, the scenario of a single bottleneck link may be

an oversimplification of reality, and in such cases one could study multiple bottleneck links that
share capacity. The complicating factor is that then the dynamics of the flows feeding into one
queue will be affected by the workload process in other queues; the queues cannot be analysed
separately. This gives the model the flavor of coupled-processors systems as studied in, for
example, [16].

(ii) Other flow-size distributions. Another challenging extension is to consider nonexpo-
nential flow sizes; particularly the impact heavy-tailed jobs is interesting to study. Suppose
for instance that the flow sizes have a regularly varying distribution of index −δ, then it is an
open question whether the sojourn times are regularly varying of index 1 − δ, as is the case in
the M/G/1 FIFO queue [17, 18], or regularly varying of index −δ, as is the case in the M/G/1
processor sharing (PS) queue [19] (or perhaps regularly varying of another index).

(iii) Other queueing disciplines. In this study, as well as in [3, 4], the queue was supposed
to operate under the FIFO discipline. This introduces some “unfairness” in that even small jobs
can incur significant delay. Put differently the sojourn time of a job of size x, say S(x), is such
that limx↓0 ES(x) > 0. If the scheduling discipline in the queue would be PS (rather than FIFO),
then this limit would be 0; in this sense, PS could be regarded as a remedy for unfairness.
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(iv)Weight selection. Now, that we are able to evaluate the performance of the relay node
for a given weight W, one may wonder what value of W should be chosen. As argued above,
there is a tradeoff between the flow transfer delay and the queueing delay of the last particle,
imposing some cost structure, and optimal value for W can be selected.

In a network setting, each node chooses its own weight. A high weight may be beneficial
for the node itself, but harmful for other nodes. In view of this it may make sense to charge
nodes for their weight. Pricing schemes could provide incentives for users to act as transit
nodes on multihop paths, compared to [20, 21].
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