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In 1997, Haruki and Rassias introduced two generalizations of the Poisson kernel in two dimensions
and discussed integral formulas for them. Furthermore, they presented an open problem. In 1999,
Kim gave a solution to that problem. Here, we give a solution to this open problem by means of a
different method. The purpose of this paper is to give integral averages of two generalizations of
the Poisson kernel, that is, we generalize the open problem.
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1. Introduction

It is well known that the Poisson kernel in two dimensions is defined by

P(r, θ) def=
1 − r2

(
1 − reiθ

)(
1 − re−iθ

) , (1.1)

and the integral formula

1
2π

∫2π

0
P(r, θ)dθ = 1 (1.2)

holds. Here r is a real parameter satisfying |r| < 1.
In [1], Haruki and Rassias introduced two generalizations of the Poisson kernel.
The first generalization is defined by

Q(θ;a, b) def=
1 − ab

(
1 − aeiθ

)(
1 − be−iθ

) , (1.3)

where a, b are complex parameters satisfying |a| < 1 and |b| < 1.
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The second generalization is defined by

R(θ;a, b, c, d) =
L(a, b, c, d)

(
1 − aeiθ

)(
1 − be−iθ

)(
1 − ceiθ

)(
1 − de−iθ

) , (1.4)

where a, b, c, d are complex parameters satisfying |a| < 1, |b| < 1, |c| < 1, and |d| < 1 as well as

L(a, b, c, d) def=
(1 − ab)(1 − ad)(1 − bc)(1 − cd)

1 − abcd
. (1.5)

Then they proved the integral formulas

1
2π

∫2π

0
Q(θ;a, b)dθ = 1, (1.6)

1
2π

∫2π

0
R(θ;a, b, c, d)dθ = 1. (1.7)

Remark 1.1. If we set c = a and d = b in (1.7), then we obtain

1
2π

∫2π

0
Q(θ;a, b)2dθ =

1 + ab

1 − ab
. (1.8)

Afterwards, they set the following definition and open problem.
For n = 0, 1, 2, . . ., let

In
def=

1
2π

∫2π

0
Q(θ;a, b)n+1dθ, (1.9)

where a, b are complex parameters satisfying |a| < 1 and |b| < 1.

Open Problem 1.2. Compute In for n = 2, 3, 4, . . . .
In [2], Kim gave a solution to this open problem using the Laurent series expansion.

In the next section, we give a solution to the open problem by means of the Leibniz rule.

2. A different solution of the open problem

Theorem 2.1. It holds that

In =
n∑

k=0

(n + k)!

(n − k)!(k!)2

(
ab

1 − ab

)k

, (2.1)

where In is defined by (1.9).

Proof. We have

In =
1
2π

∫2π

0

(
1 − ab

(
1 − aeiθ

)(
1 − be−iθ

)

)n+1

dθ =
1
2π

∫2π

0

(
(1 − ab)/

(
1 − aeiθ

))n+1

(
1 − be−iθ

)n+1 dθ. (2.2)
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By the change of variables z = eiθ and setting

f(z) def=
(
1 − ab

1 − az

)n+1

zn, (2.3)

we have

In =
1

2πi

∫

|z|=1

f(z)

(z − b)n+1
dz, (2.4)

where the complex integral of the function f(z) along the unit circle |z| = 1 is in the positive
direction.

Since f(z) is an analytic function in |z| ≤ 1, by Cauchy’s integral formula for the deriva-
tive, we obtain

In =
f (n)(b)

n!
. (2.5)

So we must calculate f (n)(z). For this purpose, we will use the Leibniz rule (generalized prod-
uct rule).

Let

g(z) def= zn,

h(z) def= (1 − az)−(n+1).
(2.6)

Thus by (2.3) and (2.6), we have

f(z) = (1 − ab)n+1g(z)h(z). (2.7)

Applying the Leibniz rule to (2.7), we get

f (n)(z) = (1 − ab)n+1(gh)(n)(z)

= (1 − ab)n+1
n∑

k=0

(
n
k

)

g(n−k)(z)h(k)(z)

= n!(1 − ab)n+1
n∑

k=0

(n + k)!

(n − k)!(k!)2
(az)k(1 − az)−(n+k+1),

(2.8)

where

g(n−k)(z) =
n!
k!
zk,

h(k)(z) = ak (n + k)!
n!

(1 − az)−(n+k+1).
(2.9)

If we take z = b in (2.8), we obtain

f (n)(b)
n!

=
n∑

k=0

(n + k)!

(n − k)!(k!)2

(
ab

1 − ab

)k

. (2.10)

Thus by (2.5) and (2.10), we get the desired result.
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3. New generalizations of the open problem

In [3], the authors gave the values of the integral

1
2π

∫2π

0
Pn+1(r, θ)dθ (3.1)

for all real n > −1.
In this section, we will generalize In, and hence above integral as follows.

Theorem 3.1 (Main theorem). For any real number u, it holds that

Ju :=
1
2π

∫2π

0
Q(θ;a, b)udθ = (1 − ab)u 2F1(u, u; 1;ab), (3.2)

where 2F1 is the usual hypergeometric function.

Proof. Let u be any real number. Define the shifted factorial (or the Pochhammer symbol) by

(u)k :=
Γ(u + k)
Γ(u)

(u/= − n, n = 0, 1, 2, . . .), (3.3)

where Γ is the gamma function. If u = −n is a nonpositive integer, define (−n)k := (−n)(−n +
1) · · · (−n + k − 1) so that (−n)k = 0 for k = n + 1, n + 2, . . . . Then

1
(1 −w)u

=
∞∑

k=0

(u)k
k!

wk (|w| < 1
)
. (3.4)

For z = eiθ, one computes that

Ju =
1
2π

∫2π

0
Q(θ;a, b)udθ =

1
2π

∫2π

0

(1 − ab)u
(
1 − aeiθ

)u(1 − be−iθ
)u dθ

=
(1 − ab)u

2πi

∫

|z|=1

dz

z(1 − az)u(1 − b/z)u

=
(1 − ab)u

2πi

∫

|z|=1

1
z

( ∞∑

k=0

(u)k
k!

akzk
)( ∞∑

l=0

(u)l
l!

bl

zl

)

dz.

(3.5)

The integral of the terms with k /= l is 0 by residue theorem, and thus

Ju = (1 − ab)u
∞∑

k=0

(u)k(u)k
(1)kk!

(ab)k = (1 − ab)u 2F1(u, u; 1;ab), (3.6)

where 2F1 is the usual hypergeometric function.
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It is routine to check that

J1 = 1, J2 =
1 + ab

1 − ab
, (3.7)

as obtained in [1] because, then, the series above is summable via elementary functions. Also
for n = 0, 1, 2, . . ., one has

Jn = (1 − ab)n
∞∑

k=0

(
n − 1 + k

k

)2

(ab)k,

J−n =
1

(1 − ab)n
n∑

k=0

(
n
k

)2

(ab)k.

(3.8)

Moreover, setting a = b = r generalizes the results of [3] to all real powers u of the
Poisson kernel.

The same method applied to the integral averages of the second generalization of the
Poisson kernel yields

Ku :=
1
2π

∫2π

0
R(θ;a, b, c, d)udθ = L(a, b, c, d)u

∑

j+l=k+m

(u)j(u)k(u)l(u)m
j!k!l!m!

ajbkcldm . (3.9)

There is a further connection with the fractional-order derivative in [3] which is called
Du here for any real number u. If p is also any real number, let m = �p� be the least integer
greater than or equal to p. Then one can compute with s = t/x that

Du(xp) =
dm

dxm

[
1

Γ(m − u)

∫x

0
(x − t)m−u−1tpdt

]

=
dm

dxm

[
xm−u+p

Γ(m − u)

∫1

0
(1 − s)m−u−1spds

]

=
dm

dxm

[
xm−u+p

Γ(m − u)
B(m − u, p + 1)

]

=
dm

dxm

[
Γ(p + 1)

Γ(m − u + p + 1)
xm−u+p

]
=

xp−u

(p + 1)−u
,

(3.10)

which agrees with the usual derivative when u is a positive integer, where B is the beta func-
tion, u/= p + 1, p + 2, . . ., and p /= 0,−1,−2, . . . .

If u/= 0,−1,−2, . . ., then

1

Γ(u)2
Du−1

(
xu−1Du−1

(
xu−1

1 − x

))
=

1

Γ(u)2
Du−1

(

xu−1Du−1
( ∞∑

k=0

xk+u−1
))

=
∞∑

k=0

(u)2k
(k!)2

xk (3.11)

by successively applying the above fractional differentiation formula. Thus

Ju =
(1 − x)u

Γ(u)2
Du−1

(
xu−1Du−1

(
xu−1

1 − x

))∣∣∣∣
x=ab

. (3.12)
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