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1. Introduction

The papers [1, 2] initiated the theory of difference inequalities generated by first-order partial
differential equations. The results and the methods presented in [1, 2] were extended in
[3, 4] on functional differential problems, and they were generalized in [5-8] on parabolic
differential and differential functional equations. Explicit difference schemes were considered
in the above papers.

Our purpose is to give a result on implicit difference inequalities corresponding to
initial boundary value problems for first-order functional differential equations.

We prove also that that there are implicit difference methods which are convergent.
The proof of the convergence is based on a theorem on difference functional inequalities.

We formulate our functional differential problems. For any metric spaces X and Y
we denote by C(X,Y) the class of all continuous functions from X into Y. We will use
vectorial inequalities with the understanding that the same inequalities hold between their
corresponding components. Write

E=1[0,a] x (<b,b),  D=[-do,0] x[~d,d], (1.1)
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where a > 0,b = (by,...,by) € R", b; >0for1 <i<mandd = (dy,...,d,) € R}, dy € R,,
R, =[0,+0). Letc=b+dand

EO = [—do,O] X [—C,C],
9E = [0,a] x ([-¢,c] \ (=b,b)), (1.2)
Q=EUEyUOQyE.

For a function z : Q — RX, z = (z1,...,zx), and for a point (¢, x) € E where E is the closure
of E, we define a function z¢ ) : D — Rk by z¢x (T, y) = z(t+ T,x + y), (T,y) € D. Then
Z () is the restriction of z to the set [t — dy,t] x [x — d,x + d] and this restriction is shifted
to the set D. Write = = E x C(D,R¥) x R" and suppose that f = (f1,..., fx) : & — RF and
¢ :EgUO)E — Rk, ¢ = (¢1,..., k), are given functions. Let us denote by z = (z1,...,zx) an
unknown function of the variables (¢, x), x = (x1, ..., x,). Write

Flz](t, x) = (fi(t, x, 2@, Oxz1(E, X)), ..., fi (8, X, Z(tx), Ox 2k (£, X)) ) (1.3)

and Oyz; = (0x,Zi,...,0x,2i), 1 < i < k. We consider the system of functional differential
equations

atz(t/x) = F[Z] (t/x) (14)
with the initial boundary condition
z(t,x) = p(t,x) on EgUOyE. (1.5)

In the paper we consider classical solutions of (1.4), (1.5).
We give examples of equations which can be obtained from (1.4) by specializing the
operator f.

Example 1.1. Suppose that the function a : E — R!*" satisfies the condition: a(t, x)— (¢, x) € D
for (t,x) € E. Fora given f = (f1,..., fx) : Ex RF x RF x R" — RF we put

flt,x,w,q) = f(t, x,w(0,0),w(a(t,x) - (tx)),q) onZ, (1.6)

where 0 = (0,...,0) € R". Then (1.4) is reduced to the system of differential equations with
deviated variables

0:zi(t,x) = fi(t,x,z(t,x),z(a(t,x)),axzi(t,x)), i=1,...,k (1.7)
Example 1.2. For the above f we define

ft,x,w,q) = f(t, x,w(0, 9),JDw(T,y)dy dT,q> on 2. (1.8)
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Then (1.4) is equivalent to the system of differential integral equations

0zi(t, x) = fi<t,x,z(t,x),J‘ z(t+ 7, x + y)dy dr, 0xzi(t, x)), i=1,..., k. (1.9)
D

It is clear that more complicated differential systems with deviated variables and
differential integral problems can be obtained from (1.4) by a suitable definition of f.
Sufficient conditions for the existence and uniqueness of classical or generalized solutions
of (1.4), (1.5) can be found in [9, 10].

Our motivations for investigations of implicit difference functional inequalities
and for the construction of implicit difference schemes are the following. Two types of
assumptions are needed in theorems on the stability of difference functional equations
generated by (1.4), (1.5). The first type conditions concern regularity of f. It is assumed
that

(i) the function f of the variables (¢, x,w,q), 4 = (41, ..,qn), is of class C! with respect
to g and the functions 9, f; = (0g, fi, ..., 9y, fi), 1 <i <k, are bounded,

(ii) f satisfies the Perron type estimates with respect to the functional variable w.

The second type conditions concern the mesh. It is required that difference schemes generated
by (1.4), (1.5) satisfy the condition

LN |
1- hozh—j|6qu,~(t,x,w,q)| >0 onXfori=1,...,k, (1.10)
j=1

where hy and K = (hy,..., h,) are steps of the mesh with respect to f and (x1,...,x,)
respectively. The above assumption is known as a generalized Courant-Friedrichs-Levy
(CFL) condition for (1.4), (1.5) (see [11, Chapter 3] and [10, Chapter 5]). It is clear that strong
assumptions on relations between hy and h' are required in (1.10). It is important in our
considerations that assumption (1.10) is omitted in a theorem on difference inequalities and
in a theorem on the convergence of difference schemes.

We show that there are implicit difference methods for (1.4), (1.5) which are
convergent while the corresponding explicit difference schemes are not convergent. We give
suitable numerical examples.

The paper is organized as follows. A theorem on implicit difference functional
inequalities with unknown function of several variables is proved in Section 2. We propose
in Section 3 implicit difference schemes for the numerical solving of functional differential
equations. Convergence results and error estimates are presented. A theorem on difference
inequalities is used in the investigation of the stability of implicit difference methods.
Numerical examples are given in the last part of the paper.

We use in the paper general ideas for finite difference equations which were
introduced in [12-14]. For further bibliographic informations concerning differential and
functional differential inequalities and applications see the survey paper [15] and the
monographs [16, 17].
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2. Functional Difference Inequalities

For any two sets U and W we denote by F(U, W) the class of all functions defined on U and
taking values in W. Let N and Z be the sets of natural numbers and integers, respectively. For
x=(x1,...,%,) ER", p=(p1,...,px) € RF we put

x|l = [oe1| + -+ + |2, Iplleo = max {|p;| : 1 <i < k}. (2.1)

We define a mesh on Q in the following way. Suppose that (ho, k'), i’ = (h,...,h,), stand
for steps of the mesh. For (r,m) € Z*" where m = (my,...,m,), we define nodal points as
follows:

t™) = rhy, x(m = (ximl),...,xf,m")) = (mih, ..., myhy). (2.2)

Let us denote by H the set of all h = (hy, h’) such that there are Ky € Z and K = (Kj, ..., K},) €
7" satisfying the conditions: Kohg = dy and (Kihy, ..., K,h,) = d. Set

R = { (7, x™) 1 (r,m) € Z"*"},
Dy,=DnNR}™,  E,=EnNR;™,  Eou=EnNR™, (2.3)
00En = 00ENRN", Q= E, UEy, UdE.

Let Ny € N be defined by the relations: Nohy < a < (No + 1)hy and

El, = {(t7),x™) € E,:0< 7 < Ny—-1}. 24

For functions w : D, — Rfand z : Q, — RK we write w™ = w(t"),x) on D;, and
zrm = z(t®), x(M) on Q. We need a discrete version of the operator (t,x) — z(y). For a
function z : Q;, — RF and for a point (), x(™) € E;, we define a function zu; : D — RF

by

Zirm) (T, Y) = z(t(’) +7,xm 4 y), (1,y) € Dp. (2.5)

Solutions of difference equations corresponding to (1.4), (1.5) are functions defined on the
mesh. On the other hand (1.4) contains the functional variable z( ) which is an element of
the space C(D, RF). Then we need an interpolating operator Ty, : F(Dy,, R¥) — C(D,RF). We
define T}, in the following way. Let us denote by (84, ..., 83,) the family of sets defined by
9;={0,1} ifdi>0, 8={0} ifdi=0,1<i<m. (2.6)

Setv = (vy,...,0,) € Z"and v; =01if d; =0, v; = 1 if d; > 0 where 1 < i < n. Write

Ar={d=(\y,..,0): hed for1<i<n). 2.7)

Sete; =(0,...,0,1,0,...,0) € R" with 1 standing on the ith place.
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Let w € F(Dy,R¥) and (t,x) € D. Suppose that dy > 0. There exists (), x"™) € D,
such that (t0*D, x("+0)) € Dy and t) <t < 0D x(") < x < x(m+0) Write

t—t" x - xm\* x - xm\
— _ (rm+d) (X4 _
nlltn = (1-50) St (=) (1-55)

LeA, 38
- t(r) (oL X — x(m) A X — .X'(m) 1-A ( . )
r+l,m+ 1 _ ,
o 2 (h)( h’)
where
oMY xi(mi) A
() 1)
(2.9)
1—.11'
x—xm\'"Tt o on xi—x™
1-—— = 1-—
(-57) 1050
and we take 0 = 1 in the above formulas. If dy = 0 then we put
—xmy\* —xm\T
Tulw](t,x) = 3 wm) (%) (1 - %) : (2.10)

AeA,

Then we have defined T,[w] on D. It is easy to see that T,[w] € C(D,RF). The above
interpolating operator has been first proposed in [10, Chapter 5].

For w,@ € F(Dy, RF) we write w < @ if w™™ < w"™ where (t7,x™) € Dy,. In a
similar way we define the relation w < w for w,w € C(D, R¥) and the relation z < Z for
z,Z € F(Qy, RF) and for z,Z € C(Q, R¥).

We formulate an implicit difference scheme for (1.4), (1.5). For x,y € R" we write
xoy = (X1Y1,...,XnYn) € R™.

Assumption (H[f]). The function f = (f1,..., fr) : & — R¥ of the variables (t,x,w,q), q =
(q1,--.,4n), is continuous and

(1) the partial derivatives (g, fi,...,04,fi) = O4fi, i = 1,...,k, exist on X and the
functions 0, f;, i =1,..., k, are continuous and bounded on X,

(2) thereis x € (-b,b), x = (x1,...,X,), such that

(x=X)o04fi(t,x,w,q) >0 onXfori=1,...,k, (2.11)

(3) there is £y > 0 such that for 0 < hg < €9 and w,w € C(D,R¥), w < w, we have

w(0,0) + hof(t,x,w,q) <w(0,0) + hof(t,x,w,q), (t,x,q9)€ExR" (2.12)
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Remark 2.1. The existence theory of classical or generalized solutions to (1.4), (1.5) is based
on a method of bicharacteristics. Suppose that z € C(Q, R¥), u € C(Q, R"). Let us denote by

&Ki [Zr u] ('/ £ x) = (gi.l [Zr u] ('1 £, x), <o, &in [Z/ u] ('r £ .X')) (213)

the ith bicharacteristic of (1.4) corresponding to (z,u). Then g;[z, u](:,t, x) is a solution of the
Cauchy problem

Y (1) = =04fi(T,y(7), 2wy, u(T,y(7))),  y(t) =x (2.14)

Assumption (2.11) states that the bicharacteristics satisfy the following monotonicity
conditions: If x; — X; > 0 the function g;;[z,u](-,t,x) is non increasing. If x; — X; < 0 then
gijlz, u] (-, t, x) is nondecreasing.

The same property of bicharacteristics is needed in a theorem on the existence and
uniqueness of solutions to (1.4), (1.5) see [9]. It is important that our theory of difference
methods is consistent with known theorems on the existence of solutions to (1.4), (1.5).

Remark 2.2. Given the function f = (fl, .. .,fk) : ExR x C(D,RF) x R* — RF of the variables
(t,x,p,w,q). Write fi(t,x,w, q) = fi(t,x,w;(0,0),w,q),i=1,...,k, on 2. Then system (1.4) is
equivalent to

atzi(tr .X') = ﬁ(t/xr Zi(t/x)/ Z(t,x)/axzi(tl JC)), i= 1/~ . '/k' (215)

Note that the dependence of f on the classical variable z(t,x) is distinguished in (2.15).
Suppose that
(1) f is nondecreasing with respect to the functional variable,
(2) there exists the derivative 0, f = (0p fl, .oy Op fk) and 0, fi(t, x,p,w,q) > Lfori=
1,...,kand 1+ Lhy > 0.

Then the monotonicity condition (3) of Assumption (H[f]) is satisfied.

Let us denote by H* the set of all h = (ho, h') € H such that
h,-<min{bi—§,-, fi+bi}, i=1,...,n (216)
Suppose that w : Q, — R. We apply difference operators 6 = (61, ...,06,) given by

~ ; 1
if Xj < x](.m’) < b; then 6]-w(r’m) =— [w(""”ef) - w(r"")],
& (2.17)
N 1 '
if —-bj < x;m’) < ¥; then §;w™™ = h_] [orm) — (rm=eD],
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andweputj=1,...,nin (2.17). Let 6y be defined by

Boew™m) = hl w1 _ golrm] (2.18)
0

and 8¢z = (60z1, ..., 60zk). Write
Fulz]™™ = (f1 (47, x, Tyzppm), 627, 0, fie (K0, X, Tyzpy g, 620)). (2.19)
Given ¢, : Eg, UOgE, — Rk, we consider the functional difference equation
8oz = Fy[z]™ (2.20)
with the initial boundary condition
20 = "™ on Eyy, UdEp. (2.21)

The above problem is considered as an implicit difference method for (1.4), (1.5). It is
important that the difference expressions (61z;,...,6,zi), 1 < i < k, are calculated at the point
(t+D), x(m) and the functional variable Thz[r,m) appears in a classical sense.

We prove a theorem on implicit difference inequalities corresponding to (2.20), (2.21).
Note that results on implicit difference methods presented in [18] are not applicable to (2.20),
(2.21).

Theorem 2.3. Suppose that Assumption (H[f]) is satisfied and

(1) h € H*, hy < & and the functions u,v : Q, — Rk satisfy the difference functional
inequality

Sou™™ — Fy [u] "™ < 60 "™ ~ Fy[v]"™  on Ej, (2.22)

(2) the initial boundary estimate u™™ < v holds on Egj, U OoEp.

Then

u™m <m0 E,. (2.23)

Proof. We prove (2.23) by induction on r. It follows from assumption (2) that estimate (2.23)
is satisfied for r = 0 and (t,x(™) € Ej. Assume that u0™ < pU™ for (t1),x™) € E, N
([0, "] x R™). We prove that u*1 < p(r+1m) for (tr+1m) x(m)) ¢ E Write

7 4 1,
ulff m) _ uEr m) n hofi(t(r)/ x(m),Thu[rlm], 6u§r+ m)) (2.24)
- v,-(r'm) - hOfi(t(r),x(m),ThU[r,m]/6u§r+1’m))’ i=1... k.
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It follows from (2.22) that

(ui _ Ui)(r+1,m) < ufr,m) + hp [fi(t<r)/ x(m),ThU[r,m],(SuEHl’m))

(2.25)
= fi(t,x", Tyogm, 50 ™)],

where i = 1,...,k. The monotonicity condition (3) of Assumption (H[f]) implies the
inequalities U;r’m) <0 for (), x™) e E,,i=1,...,k. Then we have

n 1
(ui - vi)(r+1’m) < hOZI aq].f,-(Q;r’m) [v,7])dT 6; (u; - v,-)(Hl’m), (2.26)
=170
wherei=1,...,k and
(rm _ () (m) (r+1,m) (r+1,m)
[v,7] = (£, x"™, Tpopm), 60; +76(u; — v;) ). (2.27)
Write

M ={je(l...,np:x" e[5,b)}, T =(1,...,n}\T". (2.28)

It follows from (2.11), (2.17) that

(=)™ 14 hoZ f 109, fi(Q"" [o,7))ldr

<ho 3, f 3, fi(Q"" To, T1)dr (s — 0) " (2.29)
e1-(7'1) ]
~hy Y f 3y, fi(Q" [v, 1) dr (u; - vi) ", i=1,. k.
]Erw) h;

We define i € Z" and p € N, 1 < p < k, as follows:

(u‘u )(r+1 ) — max max { (ul . )(”’1 m) (t(7+1) (m)) e Qh} (2.30)

1<i<k
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If (1, x(M) € 3yE), then assumption (2) implies that (uy — v#)(r”'ﬁ’) < 0. Let us consider the
case when (t"*D, x(™) € E;. Then we have from (2.29) that

r+1,m - 1 ! T
(1, —0,) " ’[1+h0§1;h—jfo|aqui(g§' )[U,T])ldT]
pe

r+1,m 1 ! T
< ho(uy, —0,) " )[ > h—].foaq,-fi(QE' [0, 7])dr (231)

jert™

1 ~
-3 hljfoaq/. f,-(Qf”’”) [0, T])dT].

jer™
It follows that (u, — vﬂ)(”l”;‘) < 0. The the proof of (2.23) is completed by induction. O

3. Implicit Difference Schemes

We define N = (N, ..., N,) € N" by the relations:
(N1hy,...,Nuhy) < (b1,...,by) < (N1 +1)hy,..., (Ny+1)hy) (3.1)
and we assume that (N; + 1)h; = b; if d; = 0. For w € C(D, R¥) we write

|wllp = max {||w(t,x)||_, : (tx) € D}. (3.2)
In a similar way we define the norm in the space F (Dp, R¥) :if w : D, — R* then

llwlp, = max{”w(r'm)”OO : (t(’),x(’”)) € Dy}. (3.3)

The following properties of the operator Tj, are important in our considerations.

Lemma 3.1. Suppose that w : D — Rk is of class C' and wy, is the restriction of w to the set Dy,.
Let C be such a constant that ||0yw||p, [|0x,w|p < C for 1 <i < n. Then ||Ty[wy] — wl|p < C||h||
where ||h|| = ho + hy + -+ + hy,.

Lemma 3.2. Suppose thatw : D — R¥ is of class C? and wy, is the restriction of w to the set Dy. Let
C be such a constant that ||0yw||p, |01, WD, |0xx;wlp < C, i,j=1,...,n. Then ||Ty[wy]-w|p <

Clin|P>.

The above lemmas are consequences of [10, Lemma 3.19 and Theorem 5.27].
We first prove a theorem on the existence and uniqueness of solutions to (2.20), (2.21).

Theorem 3.3. If Assumption (H[f]) is satisfied and ¢, € F(Eop U doEy, R¥) then there exists
exactly one solution up = (Upy, ..., Unk) : Qp — Rk of difference functional problem (2.20), (2.21).
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Proof. Suppose that 0 < r < Ny —1is fixed and that the solution uj, of problem (2.20), (2.21) is

(r+1,m)

given on the set Qp, N ([~do, 1] x R™). We prove that the vectors u, ,—N <m < N, exist
and that they are unique. It is sufficient to show that there exists exactly one solution of the
system of equations

Lo wsim _ (m) (r+1,m)
h_O(Zir m _uhrjm ) - fi(t(r)'x(m)rT(uh)[r,m],(SZiH m ), (3.4)

where -N < m < N, i =1,...,k, with the initial boundary condition (2.21). There exists
Qpn > 0 such that

1 N (m 1 ) m

Qn 2 ho[ Z()h_jaqui(t( )’x( )'Th (uh)[r,m]’q) - Z()h_]_aqui(t( )’x( )’Th (uh)[r,m]’q)]’
jery” jer™

(3.5)

where -N <m < N, i =1,...,k. It is clear that system (3.4) is equivalent to the following
one:

1
Z§r+1,m) _ Qh = [Qh2§r+1,m) 4 u;r';m) 4 hofi<t(r),x(m), Th(uh) [r/m],ézi(rﬂ,m))], (3 6)

-N<m<N,i=1,...,k

Write S, = {x™ : x™ ¢ [~¢,c]}. Elements of the space F(Sj,, R¥) are denoted by ¢, ¢. For
&:8y — R &= (&,...,&), we write ™ = &(x™) and

66 = (6:6™,...,6,4™), 1<i<k,

m 1 m+e;j m . m; ~
6151( ) = h—[é( i) - él( )] if x](. 2 € [Xj,b]')/

; 1 (3.7)
5;¢™ = hlj[gﬁ"” —¢" i X" e (b, %)),
where j =1,...,n. The norm in the space F(Sy, RF) is defined by
é]l. = max {||g™]|_, : x™ € Sy} (3.8)
Let us consider the set
Xp = {& € F(Sp,RF) : ¢ = o2m) for x0™ € [—¢,c] \ (-b, ) }. (3.9)

We consider the operator Wy, : Xj, — Xp,, Wy, = (Wha, ..., Wh,) defined by

1

T&10m —
Wi [é] - Qh +1 [

Que™ +ul™ + ho fi (17, x™, T (uy,) [r,m)’ 6&™)1, (3.10)
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where -N<m<N,i=1,...,kand
W [0 = p(r+Lm) m 1 _
h[g] (ph fOf X € [ c, C] \ ( b/ b)/ (311)

where ¢ = (&1,...,&) € F(Sy,RF). We prove that

Q

|Wilg] - WalEl]l, < o le &ll.  on F(Sy, RF). (3.12)

It follows from (3.10) that we have for —-N < m < N:

Wii[E]™ = Wilg] "

(m) (m)

[Qh(gl Z) f 0y £ (PO [y, 1) dr (& &)
r“”

1
_Qh"'l

! e m
+ 3 i | oA w)ar @ -2

jerm ' (3.13)
rm (m+e;)
o Y f 0y i (B [y, 7)) (3~ )™
jer('"’
rm (m—e;
—ho f aq]f,(P( ) uth])dT (& - g) ] ]
]el"("')
wherei=1,...,k and
r,m r m ~(m) (m)
Pl.( ¢ )[uh,T] = (t( ),x( )/Th(uh)[r,m]/Séi +T6(§z §) ) (3.14)
It follows from the above relations and from (3.5) that
Wi, [¢]™ - Wh,i[E](m)| < Q—||§ ~¢ll. for —-N<m<N,i=1,...,k (3.15)
Qh +1
According to (3.12) we have
Wii[e1™ - Wi [E]1™ =0 for x™ € [=c,c] \ (=b,b), i=1,... k. (3.16)

This completes the proof of (3.12).
It follows from the Banach fixed point theorem that there exists exactly one solution
¢: Sy — RF of the equation ¢ = W, [¢] and consequently, there exists exactly one solution of

(3.6), (2.21). Then the vectors u;r“’m), —-N <m < N, exist and they are unique. Then the proof
is completed by induction with respect tor, 0 < r < Nj. O
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Assumption (H[co]). The function o : [0, a] x R, — R, satisfies the conditions:

(1) o is continuous and it is nondecreasing with respect to the both variables,

(2) o(t,0) =0 for t € [0, a] and the maximal solution of the Cauchy problem
n'(t) =o(t,nt),  n0)=0, (3.17)

is#(t) =0 for t € [0, a].

Assumption (H[f,o0]). Thereis o : [0,a] xR, — R, such that Assumption (H [c]) is satisfied
and for w,w € C(D,R¥), w > w, we have

filt, x,w,q) - fi(t,x,w,q) <o(t,|lw-w|p), i=1,...,k (3.18)

where (t,x,q) € E x R™.

Theorem 3.4. Suppose that Assumptions (H[f]) and (H[f, o]) are satisfied and

(1) v: Q — Risasolution of (1.4), (1.5) and v is of class C' on Q,
(2) he H*, hg < eand ¢y : Eg, U O0E;, — Rk and there is ag : H* — R, such that

lo"™ — ™| < ao(h) on EojUdoEr, limay () = 0. (3.19)
Under these assumptions there is a solution uy, : Q, — RF of (2.20), (2.21) and there is a : H* —
R, such that

| un = 0n) "™ || < a(h) on Ep, lima(h) =0, (3.20)

where vy, is the restriction of v to the set Q.

Proof. The existence of uy, follows from Theorem 3.3. Let T, : E; — R¥,To, : EgpUdE, — R*
be defined by the relations

600"™ = Fy[ox] "™ + T on E}, (3.21)
v;lr’m) = (pilﬁl’m) + l"(({;lm) for (+7),x™) € Egj, UdyEp. (3.22)

From Lemma 3.1 and from assumption (1) of the theorem it follows that there are y,yo : H* —
R, such that

TS| <y(h) onE}, TS| < yo(h) on Egx UdoEs, (3.23)

and limy o y(h) = 0, lim,_oy,(h) = 0. Write ] = [0,a] and J, = {t) : 0 < r < No}. For
B:Jn — Rweput p0) = p(t")). Let B, : Jn — R, be a solution of the difference problem

U = B + hoo (7, 7)) + hoy(h), 0<r<No-1, B9 =ay(h). (3.24)
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We prove that
| (ur - vh)(r’m) .. < ﬂ;lr) on Ej,. (3.25)

Let Oy = (Dpa, ..., 0nk) : Qn — RF be defined by

50" = 0"+ on Eos,
. (3.26)
5i(zrlm) = U;(:;'m) + ﬁ;,l) on E, UdEp,
wherei =1,...,k. We prove that the difference functional inequality
60tn > Fy[on] 7™, (7, x™) e E,, (3.27)

is satisfied. It follows from Assumption (H[f, o]) and from (3.21) that

~ 1
2" = ™ + L g - g
~ ey 1 1
= f;(t", x™, T, (Uh)[r,m],(‘jv;:: m)) + h—o(ﬁ;” ) _ ﬁ;’))
T, o011 8 ) )5, T ) 6] 29

~ ~ 1
2 it 5, T(50) 651 ) = 00, ) + 2 B = )

= fit?, x", Ty (D) oy, 60 ™), i=1,.. k.

This completes the proof of (3.27).

Since v}(lr’m) < ﬁg’m) on Egj, U OyEy, it follows from Theorem 2.3 that u;r’m) < v}(:’m) + [3;:)

on Ej,. In a similar way we prove that vfzr’m) - ﬁ;lr) < uilr’m) on Ej,. The above estimates imply

(3.25). Consider the Cauchy problem
n'(t) = o(t,n(t)) +y(h), 1(0) = ag(h). (3.29)

It follows from Assumption (H[o]) that there is € > 0 such that for ||h|| < € the maximal
solution (-, h) of (3.29) is defined on [0, a] and

}llirr})q(t, h) =0 uniformly on [0, a]. (3.30)

Since 7(-, h) is convex function then we have the difference inequality

(€D, k) = (K7, 1) + oo (8, (E7, 1)) + hoy (), (3:31)
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where 0 < r < Ny — 1. Since f, satisfies (3.24), the above relations imply the estimate
By <n(t”,h) <n(ah), 0<r<No (3.32)

It follows from (3.30) that condition (3.20) is satisfied with a(h) = 77(a, h). This completes the
proof. O

Lemma 3.5. Suppose that Assumption (H[f]) is satisfied and

(1) v: Q — Risasolution of (1.4), (1.5) and v is of class C? on Q,
(2) he H*, hg < eand ¢y, : Eg UOoE, — Rk and there is ag : H* — R, such that

”(p(r,m) _ (pilr,m) “oo <ag(h) on EygnUO0ooEn, %11}1‘(1) ag(h) =0. (3.33)

(3) there exists L € R, such that estimates
fi(t/xlw;CI)_fi(t/xlﬁLQ) SL”w_&}”Dr i=]~/--'1kr (334)

are satisfied for (t,x,q) € E x R", w,w € C(D,R¥) and w > @,
(4) there is C € R, such that

0qfi(t, x,w,9)|| <C on=fori=1,...,k. (3.35)

Under these assumptions there is a solution uy, : Q, — R¥ of (2.20), (2.21), and
| (e = 01) "™ ||, < &) on Ey, (3.36)

where

elr—1

a(h) = apg(h)et + y(h) ifL>0,
@(h) = ag(h) + ay(h) if L=0, (3.37)

F(h) = 0.5Cho(1+ C) + LC||H'|* + 0.5 CC||h|

and C € R, is such that

|00 (t, x)| dux0(t,x)||, < C (3.38)

atx,-v(t/ x) |

o’ oo’

onQforii=1,...,n
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Proof. It follows that the solution f, : J, — R. of the difference problem

B = (1+ Lho)p" + hoy(h), 0<r<No-1,

(3.39)
B = ao(h)
satisfies the condition: ﬂ;lr) < a(h) for 0 < r < Ny. Moreover we have
It |l, <F(k) on Ej, (3.40)

where I'y, is given by (3.21). Then we obtain the assertion from Lemma 3.2 and Theorem 3.4.
O

Remark 3.6. In the result on error estimates we need estimates for the derivatives of the
solution v of problem (1.4), (1.5). One may obtain them by the method of differential
inequalities, see [10, Chapter 5].

4. Numerical Examples

Example 4.1. For n =2 we put
E= [O/ 05] x [_1/ 1] x [_1/1]/ EO = {0} X [_111] X [_111] (41)
Consider the differential integral equation

0z(t, x,y) = arctan [2x0,z(t, x, y) + 2y0,z(t, x, y) — t2x*y? - x* - yH)z(t, x,y)]

+1(1- yz)fxlsz(t, s,y)ds +t(1- xz)fylsz(t, x,s)ds (4.2)

+z(t,x,y)[4+025(x* - 1) (y* -1)] -4
with the initial boundary condition

Z(O/x/y) = 1/ (x/y) € [_1/1] X [_1/1]/
z(t,-1,y) =z(,1,y) =1, (t,y)€[0,0.5] x [-1,1], (4.3)
z(t,x,-1) =z(t,x,1) =1, (t,x)€[0,0.5] x [-1,1].

The function v(t,x,y) = exp[0.25¢(x*> — 1)(y* — 1)] is the solution of the above
problem. Let us denote by zj, an approximate solution which is obtained by using the implicit
difference scheme.
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Table 1: Table of errors.

) 0.25 0.30 0.35 0.40 0.45 0.50
g}(:) 0.0006 0.0007 0.0009 0.0010 0.0012 0.0014

The Newton method is used for solving nonlinear systems generated by the implicit
difference scheme. Write m = (my, m;) and

(r _ 1 (r,m) (r,m)
g~ = z -v , 0<r< Ny, (4.4)
nT (2N, -1)(2N; - 1) néll h | °

where

M={m=(m,m): €Z: ~-N1+1<m <Ni-1, —-N1+1<m<N,-1}  (45)

and N1h1 = 1, Nohy = 1, Nohg = 0.5. The numbers eflr) can be called average errors of the
difference method for fixed ). We put hg = by = hy = 0.005 and we have the values of the
above defined errors which are shown in Table 1.

Note that our equation and the steps of the mesh do not satisfy condition (1.10) which
is necessary for the explicit difference method to be convergent. In our numerical example
the average errors for the explicit difference method exceeded 10°.

Example 4.2. Letn =2 and

E =10,0.5] x [-0.5,0.5] x [-0.5,0.5], Eo = {0} x [-0.5,0.5] x [-0.5,0.5]. (4.6)
Consider the differential equation with deviated variables

01z(t, x,y) = 2x0,z(t, x, y) + 2y0,z(t, x, y)
+cos [2x0xz(t, x,y) — 2yd,z(t, x,y) — t(x* - yH)z(t, x,y)] (4.7)

+1/z(82,x,y) + f(t, x, y)z(t, x,y) - 1,

with the initial boundary conditions

z(0,x,y) =1, (x,y)e€[-0.5,0.5] x [-0.5,0.5]
z(t,-0.5,y) =z(t,05,y) =1, (t,y) €[0,0.5] x [-0.5,0.5], (4.8)
z(t,x,-0.5) = z(t,x,0,5) =1, (t x)€[0,0.5] x [-0.5,0.5],

where

ft,x,y) = (x* = 0.25) (0.25 - y*) + t[8x*y* — x* — /] o)
49
—exp { (0.5t — ) (x> - 0.25) (0.25 - y*) }.
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Table 2: Table of errors.

) 0.25 0.30 0.35 0.40 0.45 0.5
g}(:) 0.0002 0.0003 0.0004 0.0004 0.0005 0.0006

The function v(t, x,y) = exp[[t(x> — 0.25)(0.25 — y?)] is the solution of the above
problem. Let us denote by zj, an approximate solution which is obtained by using the implicit
difference scheme.

The Newton method is used for solving nonlinear systems generated by the implicit
difference scheme.

Let €, be defined by (4.4) with N1h; = 0.5, Nohy = 0.5, Nohg = 0.5. We put hy = hy =
h> = 0.005 and we have the values of the above defined errors which are shown in Table 2.

Note that our equation and the steps of the mesh do not satisfy condition (1.10) which
is necessary for the explicit difference method to be convergent. In our numerical example
the average errors for the explicit difference method exceeded 10%.

The above examples show that there are implicit difference schemes which are
convergent, and the corresponding classical method is not convergent. This is due to the fact
that we need assumption (1.10) for explicit difference methods. We do not need this condition
in our implicit methods.

Our results show that implicit difference schemes are convergent on all meshes.
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