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Motivated by the so-called shortfall risk minimization problem, we consider Merton’s portfolio
optimization problem in a non-Markovian market driven by a Lévy process, with a bounded
state-dependent utility function. Following the usual dual variational approach, we show that the
domain of the dual problem enjoys an explicit “parametrization,” built on a multiplicative optional
decomposition for nonnegative supermartingales due to Föllmer and Kramkov (1997). As a key step
we prove a closure property for integrals with respect to a fixed Poisson randommeasure, extending
a result by Mémin (1980). In the case where either the Lévy measure ν of Z has finite number
of atoms or ΔSt/St− = ζtϑ(ΔZt) for a process ζ and a deterministic function ϑ, we characterize
explicitly the admissible trading strategies and show that the dual solution is a risk-neutral local
martingale.

1. Introduction

The task of determining good trading strategies is a fundamental problem in mathematical
finance. A typical approach to this problem aims at finding the trading strategy that
maximizes, for example, the final expected utility, which is defined as a concave and
increasing function U : R → R ∪ {−∞} of the final wealth. There are, however, many
applications where a utility function varies with the underlying securities, or even random.
For example, if the market is incomplete, it is often more beneficial to allow certain degree
of “shortfall” in order to reduce the “super-hedging cost” (see, e.g., [1, 2] for more details).
Mathematically, such a shortfall risk is often quantified by the expected loss

E
[
L
(
(H − VT )+

)]
, (1.1)

where L : R+ → R is a convex increasing “loss” function, H is a contingent claim, and V is
the value process that is subject to the constraint V0 ≤ z, for a given initial endowment z ≥ 0.
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The above shortfall minimizing problem can be easily recast as a utility maximization
problem with a bounded state-dependent utility of the form

U(v;ω) := L(H(ω)) − L
(
(H(ω) − v)+

)
, ω ∈ Ω, (1.2)

as it was first pointed out by Föllmer and Leukert [3] (see Definition 2.3 for a formal
description of the general bounded state-dependent utility). Then, the minimal shortfall risk
cost is given by

u(z) := sup{E[U(VT (·), ·)] : V is admissible and V0 ≤ z}, z ≥ 0, (1.3)

where the supremum is taken over all wealth processes {Vt}t≤T generated by admissible
trading strategies. We should point out here that it is the boundedness and potential
nondifferentiability of such utility function that give rise to some technical issues which make
the problem interesting.

The existence and essential uniqueness of the solution to the problem (1.3) in its
various special forms have been studied by many authors see, for example, Cvitanić [4],
Föllmer and Leukert [3], Xu [5], and Karatzas and Žitković [6], to mention a few. However,
while the convex duality approach in [3] succeeds in dealing with the non-Markovian nature
of the model, it does not seem to shed any light on how to compute, in a feasible manner,
the optimal trading strategy, partly due to the generality of the model considered there. In
this paper we will consider a specific but popular model driven by a Lévy process. Our
goal is to narrow down the domain of dual problem so that the convex duality method
holds true. Furthermore, we will try to give an explicit construction of the dual domain that
contains the dual optimizer. Although at this point our results are still rather general, and at
a theoretical level, we believe that this is a necessary step towards a feasible computational
implementation of the convex duality method.

While the utility maximization problem of this kind can be traced back to Merton
[7, 8], in this paper we shall follow the convex duality method, suggested by Karatzas et
al. [9], and later extended by Kunita [10] to general Lévy market models. However, we
note that in [9] the utility function was required to be unbounded, strictly increasing and
concave, continuously differentiable, and other technical assumptions including the so-called
Inada conditions. On the other hand, since one of the key tools in [10] is an exponential
representation for positive local supermartingales (see, e.g., [11, Lemma4.2]), it is required
that the utility function satisfies the same conditions as in [9] (in particular, unboundedness),
plus that the dual domain Γ contains all positive “risk-neutral” local supermartingales. The
boundedness and potential nondifferentiability of the utility function in our case thus cause
some technical subtleties. For example, the dual optimal process can be 0 with positive
probability, thus the representation theorem of Kunita [11, Lemma4.2] does not apply
anymore.

A key element that we use to overcome these technical difficulties is an exponential
representation theorem for nonnegative supermartingales by Föllmer and Kramkov [12].
This result leads to an explicit construction of the dual domain, based on those nonnegative
supermartingales that can be written as stochastic exponentials ξ = ξ0E(X − A), with A
being an increasing process and X belonging to a class of semimartingales S that is closed
under Émery’s topology. To validate this approach we prove a closure property for integrals
with respect to a fixed compensated Poisson random measures, a result of interest on its
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own, which extends the analog property for integrals with respect to a fixed semimartingale
due to Mémin [13]. Finally, unlike some previous works on the subject (see, e.g., Föllmer
and Leukert [3] and Xu [5]), we do not use the so-called bipolar theorem of Kramkov and
Schachermayer [14] to argue the attainability of the optimal final wealth. Instead, we shall
rely on the fundamental characterization of contingent claims that are super replicable [1, 2],
reducing the problem of finding the optimal primal solution to a super-eplication problem.

We believe that the dual problem proposed in this paper offers several advantages. For
example, since the dual class enjoys a fairly “explicit” description and “parametrization,” our
results could be considered as a first step towards a feasible computational implementation
of the covex duality method. Furthermore, the specific results we obtained for the Lévy
market can be used to characterize the elements of the dual domain and the admissible
trading strategies. In particular, if either (i) the jumps of the price process S are driven by
the superposition of finitely many shot-noise Poisson processes, or (ii) ΔSt/St− = ζtϑ(ΔZt)
for a process ζ and a deterministic function ϑ, we show that the dual solution is a risk-neutral
local martingale.

We would like to remark that some of our results are related to those in Xu [5], but
there are essential differences. For example, the model in [5] exhibits only finite-jump activity
and allows only downward price jumps (in fact, this assumption seems to be important for
the approach there), while our model allows for general jump dynamics, and our approach is
also valid for general additive processes, including the time-inhomogeneous cases considered
in [5] (see (ii) of Section 6).

The rest of the paper is organized as follows. In Section 2 we introduce the financial
model, along with some basic terminology that will be used throughout the paper. The
convex duality method is revised in Section 3, where a potential optimal final wealth is
constructed. An explicit description of a dual class and a characterizations of the dual
optimum and admissible trading strategies are presented in Section 4. In Section 5 we
show that the potential optimal final wealth is attained by an admissible trading strategy,
completing the proof of the existence of optimal portfolio. In Section 6 we give some
concluding remarks. Some necessary fundamental theoretical results, such as the exponential
representation for nonnegative supermartingales of Föllmer and Kramkov [12] and the
closure property for integrals with respect to Poisson random measures, are collected in
Appendix A. Finally, Appendix B briefly outlines the proofs of the convex duality results
used in the paper.

2. Notation and Problem Formulation

Throughout this paper we assume that all the randomness comes from a complete probability
space (Ω,F,P), on which there is defined a Lévy process Z with Lévy triplet (σ2, ν, 0)
(see Sato [15] for the terminology). By the Lévy-Itô decomposition, there exist a standard
Brownian motion W and an independent Poisson random measure N on R+ × R \ {0} with
mean measure EN(dt, dz) = ν(dz)dt, such that

Zt = σWt +
∫ t

0

∫

|z|≤1
zÑ(ds, dz) +

∫ t

0

∫

|z|>1
zN(ds, dz), (2.1)

where Ñ(dt, dz) := N(dt, dz) − ν(dz)dt. Let F := {Ft}t≥0 be the natural filtration generated
by W and N, augmented by all the null sets in F so that it satisfies the usual conditions (see,
e.g., [16]).
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2.1. The Market Model

We assume that there are two assets in the market: a risk free bond (or money market
account), and a risky asset, say, a stock. The case of multiple stocks, such as the one studied
in [10], can be treated in a similar way without substantial difficulties (see Section 6 for more
details). As it is customary all the processes are taken to be discounted to the present value
so that the value Bt of the risk-free asset can be assumed to be identically equal to 1. The
(discounted) price of the stock follows the stochastic differential equation

dSt = St−

{

btdt + σtdWt +
∫

R0

v(t, z)Ñ(dt, dz)

}

, (2.2)

where R0 := R \ {0}, b ∈ L1
loc, σ ∈ L2

loc(W), and v ∈ Gloc(N) (see [17] for the terminology).
More precisely, b, σ, and v are predictable processes such that v(·, ·) > −1 a.s. (hence, S· > 0
a.s.), and that the processes

{∫ t

0
|bs|ds

}

t≥0
,

{∫ t

0
|σs|2ds

}

t≥0
,

⎧
⎨

⎩

(
∑

u≤t
v2(u,ΔZu)

)1/2
⎫
⎬

⎭
t≥0

(2.3)

are locally integrable with respect to time. Even though we will work with a finite horizon
[0, T] later on, we choose to define our market model on R+. Finally, we assume that the
market is free of arbitrage so that there exists at least one risk-neutral probability measure Q

such that the (discounted) process St, 0 ≤ t ≤ T , is an F-local martingale underQ. Throughout,
M will stand for the class of all equivalent risk neutral measures Q. It is relevant to mention
that we do not impose market completeness, and hence, the class M is not assumed to be a
singleton.

2.2. Admissible Trading Strategies and the Utility Maximization Problem

A trading strategy is determined by a predictable locally bounded process β representing the
proportion of total wealth invested in the stock. Then, the resulting wealth process is governed by
the stochastic differential equation

Vt = w +
∫ t

0
Vs−

βs
Ss−

dSs, 0 < t ≤ T, (2.4)

where w stands for the initial endowment. For future reference, we give a precise definition
of “admissible strategies.”

Definition 2.1. The process Vw,β := V solving (2.4) is called the value process corresponding
to the self-financing portfolio with initial endowment w and trading strategy β. We say that
a value process Vw,β is “admissible” or that the process β is “admissible” for w if Vw,β

t ≥
0, for all t ∈ [0, T].

For a given initial endowment w, we denote the set all admissible strategies for w
by Uw

ad, and the set of all admissible value processes by Vw
ad. In light of the Doléans-Dade
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stochastic exponential of semimartingales (see, e.g., [17, Section I.4f]), one can easily obtain
necessary and sufficient conditions for admissibility.

Proposition 2.2. A predictable locally bounded process β is admissible if and only if

P
[{
ω ∈ Ω : βtv(t,ΔZt) ≥ −1, for a.e. t ≤ T

}]
= 1. (2.5)

To define our utility maximization problem, we begin by introducing the bounded state-
dependent utility function.

Definition 2.3. A random functionU : R+ ×Ω �→ R+ is called a “bounded and state-dependent
utility function” if

(1) U(·, ω) is nonnegative, nondecreasing, and continuous on [0,∞);

(2) for each fixed w, the mapping ω �→ U(w,ω) is FT -measurable;

(3) there is an FT -measurable, positive random variable H such that for all ω ∈ Ω,
U(·, ω) is a strictly concave differentiable function on (0,H(ω)), and it holds that

U(w,ω) ≡ U(w ∧H(ω), ω), w ∈ R+, (2.6)

E[U(H; ·)] < ∞. (2.7)

Notice that the FT -measurability of the random variable ω → U(VT (ω), ω) is auto-
matic because U(w,ω) is B([0,∞)) × FT -measurable in light of the above conditions (1) and
(2).We remark that while assumption (2.7) is merely technical, assumption (2.6) is motivated
by the shortfall risk measure (1.2). Our utility optimization problem is thus defined as

u(z) := sup
{
E[U(VT (·), ·)] : V ∈ Vw

ad with w ≤ z
}

(2.8)

for any z > 0. We should note that the above problem is relevant only for those initial wealths
z that are smaller than w := sup

Q∈MEQ{H}, the super-hedging cost of H. Indeed, if z ≥ w,

then there exists an admissible trading strategy β∗ for z such that V z,β∗

T ≥ H almost surely,
and consequently, u(z) = E[U(H, ·)] (see [1, 2] for this super-hedging result).

Our main objectives in the rest of the paper are the following: (1) Define the dual
problem and identify the relation between the value functions of the primal and the dual
problems; (2) By suitably defining the dual domain, prove the attainability of the associated
dual problem; (3) Show that the potential optimum final wealth induced by the minimizer of
the dual problem can be realized by an admissible portfolio. We shall carry out these tasks in
the remaining sections.

3. The Convex Duality Method and the Dual Problems

In this section we introduce the dual problems corresponding to the primal problem (1.3) and
revise some standard results of convex duality that are needed in the sequel. Throughout,
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Ũ represents the convex dual function ofU(·;ω), defined as

Ũ
(
y,ω

)
:= sup

0≤z≤H(ω)

{
U(z,ω) − yz

}
. (3.1)

We observe that the function Ũ is closely related to the Legendre-Fenchel transformation of
the convex function −U(−z). It can be easily checked that Ũ(·;ω) is convex and differentiable
everywhere, for each ω. Furthermore, if we denote the generalized inverse function of U′(·, ω)
by

I
(
y,ω

)
:= inf

{
z ∈ (0,H(ω)) | U′(z,ω) < y

}
, (3.2)

with the convention that inf ∅ = ∞, then it holds that

Ũ′(y,ω
)
= −(I(y;ω) ∧H

)
, ∀y > 0, (3.3)

and the function Ũ has the following representation:

Ũ
(
y,ω

)
= U

(
I
(
y,ω

) ∧H(ω), ω
) − y

(
I
(
y,ω

) ∧H(ω)
)
. (3.4)

Remark 3.1. We point out that the random fields defined in (3.1) and (3.2) are B([0,∞)) ×FT -
measurable. For instance, in the case of Ũ, we can write

Ũ
(
y,ω

)
= sup

z≥0

{
U(z,ω) − yz

}
1{z≤H(ω)}, (3.5)

and we will only need to check that (y,ω) → {U(z,ω) − yz}1{z≤H(ω)} is jointly measurable
for each fixed z. This last fact follows because the random field in question is continuous in
the spatial variable y for eachω and isFT -measurable for each y. In light of (3.3), it transpires
that the random field I(y,ω) ∧ H(ω) is jointly measurable. Given that the subsequent dual
problems and corresponding solutions are given in terms of the fields Ũ(y,ω) and I(y,ω) ∧
H(ω) (see Definition 3.3 and Theorem 3.5), the measurability of several key random variable
below is guaranteed.

Next, we introduce the traditional dual class (cf. [14]).

Definition 3.2. Let Γ̃ be the class of nonnegative supermartingales ξ such that

(i) 0 ≤ ξ(0) ≤ 1,

(ii) for each locally bounded admissible trading strategy β, {ξ(t)V β
t }t≤T is a super-

martingale.
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To motivate the construction of the dual problems below we note that if ξ ∈ Γ̃ and V is
the value process of a self-financing admissible portfolio with initial endowment V0 ≤ z, then
E[ξ(T)(VT ∧H)] ≤ z, and it follows that

E[U(VT , ·)] ≤ E[U(VT ∧H, ·)] − y(E[ξ(T)(VT ∧H)] − z)

≤ E

{

sup
0≤z′≤H(·)

{
U
(
z′, ·) − yξ(T)z′

}
}

+ zy

= E

{
Ũ
(
yξ(T), ·)

}
+ zy

(3.6)

for any y ≥ 0. The dual problem is defined as follows.

Definition 3.3. Given a subclass Γ ⊂ Γ̃, the minimization problem

vΓ
(
y
)
:= inf

ξ∈Γ
E

[
Ũ
(
yξ(T), ω

)]
, y > 0, (3.7)

is called the “dual problem induced by Γ.” The class Γ is referred to as a dual domain (or
class) and vΓ(·) is called its dual value function.

Notice that, by (3.6) and (3.7), we have the following weak duality relation between the
primal and dual value functions:

u(z) ≤ vΓ
(
y
)
+ zy, (3.8)

valid for all z, y ≥ 0. The effectiveness of the dual problem depends on the attainability
of the lower bound in (3.8) for some y∗ = y∗(z) > 0 (in which case, we say that strong
duality holds), and the attainability of its corresponding dual problem (3.7). The following
well-known properties will be needed for future reference. Their proofs are standard and are
outlined in Appendix B for the sake of completeness.

Proposition 3.4. The dual value function vΓ corresponding to a subclass Γ of Γ̃ satisfies the following
properties

(1) vΓ is nonincreasing on (0,∞) and E[U(0; ·)] ≤ vΓ(y) ≤ E[U(H; ·)].
(2) If

0 < wΓ := sup
ξ∈Γ

E[ξ(T)H] < ∞, (3.9)

then vΓ is uniformly continuous on (0,∞), and

lim
y↓0

E[U(H; ·)] − vΓ
(
y
)

y
= sup

ξ∈Γ
E[ξ(T)H]. (3.10)
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(3) There exists a process ξ̃ ∈ Γ̃ such that E[Ũ(yξ̃(T), ·)] ≤ vΓ(y).

(4) If Γ is a convex set, then (i)vΓ is convex, and with (ii) there exists a ξ∗ ∈ Γ̃ attaining the
minimum vΓ(y). Furthermore, the optimum ξ∗ can be “approximated” by elements of Γ in
the sense that there exists a sequence {ξn}n ⊂ Γ for which ξn(T) → ξ∗(T), a.s.

We now give a result that is crucial for proving the strong duality in (3.8). The
result follows from arguments quite similar to those in [9, Theorem9.3]. For the sake of
completeness, we outline the proof in Appendix B.

Theorem 3.5. Suppose that (3.9) is satisfied and Γ is convex, then, for any z ∈ (0, wΓ), there exist
y(z) > 0 and ξ∗

y(z) ∈ Γ̃ such that

(i) E[Ũ(y(z)ξ∗
y(z)(T), ω)] ≤ E[Ũ(y(z)ξ(T), ω)], for all ξ ∈ Γ;

(ii) E[V Γ
z ξ∗

y(z)(T)] = z, where

V Γ
z := I

(
y(z)ξ∗y(z)(T)

)
∧H; (3.11)

(iii) u(z) ≤ E[U(V Γ
z ;ω)].

We note that Theorem 3.5 provides essentially an upper bound for the optimal final
utility of the form E[U(V Γ

z ;ω)], for certain “reduced” contingent claim V Γ
z ≤ H. By suitably

choosing the dual class Γ, we shall prove in the next two sections that this reduced contingent
claim is (super-) replicable with an initial endowment z.

4. Characterization of the Optimal Dual

We now give a full description of a dual class Γ for which strong duality, that is, u(z) =
vΓ(y) + zy, holds. Denote V+ to be the class of all real-valued càdlàg, nondecreasing, adapted
processesA null at zero. We will call such a process “increasing.” In what follows we let E(X)
be the Doléans-Dade stochastic exponential of the semimartingale X (see, e.g., [17] for their
properties). Let

S :=

{

Xt :=
∫ t

0
G(s)dWs +

∫ t

0

∫

R0

F(s, z)Ñ(ds, dz) : F ≥ −1
}

, (4.1)

and consider the associated class of exponential local supermartingales:

Γ(S) := {ξ := ξ0E(X −A) : X ∈ S, A increasing, and ξ ≥ 0
}
. (4.2)

In (4.1), we assume that G ∈ L2
loc(W), F ∈ Gloc(N), and that F(t, ·) = G(t) = 0, for all t ≥ T .

The following result shows not only that the class

Γ := Γ̃ ∩ Γ(S) (4.3)



International Journal of Stochastic Analysis 9

is convex, but also that the dual optimum, whose existence is guaranteed from Theorem 3.5,
remains in Γ. The proof of this result is based on a powerful representation for nonnegative
supermartingales due to Föllmer and Kramkov [12] (see Theorem A.1 in Appendix A), and a
technical result about the closedness of the class of integrals with respect to Poisson random
measures, under Émery’s topology. We shall defer the presentation of these two fundamental
results to Appendix A in order to continue with our discussion of the dual problem.

Theorem 4.1. The class Γ is convex, and if (3.9) is satisfied, the dual optimum ξ∗
y(z) of Theorem 3.5

belongs to Γ, for any 0 < z < wΓ.

Proof. Let us check that S meets with the conditions in Theorem A.1. Indeed, each X in S is
locally bounded from below since, defining τn := inf{t ≥ 0 : Xt < −n},

Xτn
t ≥ Xτ−n − (ΔXτn)

−1τn<∞ ≥ −n − 1, (4.4)

where (x)− = −x1x<0. Condition (i) of Theorem A.1 is straightforward, while condition (ii)
follows from Theorem A.3. Finally, condition (iii) holds because the processes inS are already
local martingales with respect to P and hence P ∈ P(S) with AS(P) ≡ 0. By Proposition A.2
we conclude that Γ(S) is convex and closed under Fatou convergence on dense countable
sets. On the other hand, Γ̃ is also convex and closed under Fatou convergence, and thus so
is the class Γ := Γ̃ ∩ Γ(S). To check the second statement, recall that the existence of the dual
minimizer ξ∗

y(z) in Theorem 3.5 is guaranteed from Proposition 3.4, where it is seen that ξ∗
y(z) is

the Fatou limit of a sequence in Γ (see the proof of Proposition 3.4). This suffices to conclude
that ξ∗

y(z) ∈ Γ since Γ is closed under under Fatou convergence.

In the rest of this section, we present some properties of the elements in Γ and of the
dual optimum ξ∗ ∈ Γ. In particular, conditions on the “parameters” (G,F,A) so that ξ ∈
Γ(S) is in Γ̃ are established. First, we note that without loss of generality, A can be assumed
predictable.

Lemma 4.2. Let

ξ := ξ0E(X −A) ∈ Γ(S). (4.5)

Then, there exist a predictable process Ap ∈ V+ and a process X̂ ∈ S such that ξ = ξ0E(X̂ −Ap).

Proof. LetXt :=
∫ t
0G(s)dWs+

∫ t
0

∫
R0
F(s, z)Ñ(ds, dz) ∈ S. Since F ∈ Gloc(N), there are stopping

times τ ′n ↗ ∞ such that

E

∫ τ ′n

0

∫

R

|F(s, z)|1|F|>1ν(dz)ds < ∞, (4.6)

Compare with [17, Theorem II.1.33]. Now, define

τ ′′n := inf{t ≥ 0 : At > n}, (4.7)
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and τn := τ ′n ∧ τ ′′n . Then,

EAτn∞ = E
[
Aτ−n

]
+ E[ΔAτn] ≤ n + 1 + E[|F(τn, Zτn)|]

≤ n + 2 + E

∫ τn

0

∫

R

|F(s, z)|1|F|>1ν(dz)ds < ∞,
(4.8)

where we used thatΔXt−ΔAt ≥ −1. Therefore,A is locally integrable, increasing, and thus, its
predictable compensator Ap exists. Now, by the representation theorem for local martingales
(see [17, Theorem III.4.34]), the local martingale X′ := A −Ap admits the representation

X′
· :=

∫ ·

0
G′(s)dWs +

∫ ·

0

∫

R0

F ′(s, z)Ñ(ds, dz). (4.9)

Finally, ξ = ξ0E(X − A) = ξ0E(X − X′ − Ap). The conclusion of the proposition follows since
X̂ := X −X′ is necessarily in S.

The following result gives necessary conditions for a process ξ ∈ Γ(S) to belong to
Γ̃. Recall that a predictable increasing process A can be uniquely decomposed as the sum of
three predictable increasing processes,

A = Ac +As +Ad, (4.10)

where Ac is the absolutely continuous part, As is the singular continuous part, and Ad
t =∑

s≤t ΔAs is the jump part (cf. [18, Theorem19.61]).

Proposition 4.3. Let ξ := ξ0E(X −A) ≥ 0, where ξ0 > 0,

Xt :=
∫ t

0
G(s)dWs +

∫ t

0

∫

R0

F(s, z)Ñ(ds, dz) ∈ S, (4.11)

and A is an increasing predictable process. Let τ be the “sinking time” of the supermartingale ξ:

τ := sup
n

inf
{
t : ξt <

1
n

}
= inf{t : ΔXt = −1 or ΔAt = 1}. (4.12)

Also, let at = dAc
t /dt. Then, {ξtSt}t≤T is a supermartingale if and only if the following two conditions

are satisfied.

(i) There exist stopping times τn ↗ τ such that

E

∫ τn

0

∫

R

|v(s, z)F(s, z)|ν(dz)ds < ∞. (4.13)

(ii) For P-a.e. ω ∈ Ω,

ht ≤ at, (4.14)
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for almost every t ∈ [0, τ(ω)], where

ht := bt + σtG(t) +
∫

R

v(t, z)F(t, z)ν(dz). (4.15)

Proof. Recall that ξ and S satisfy the SDE’s

dξt = ξt−

(

G(t)dWt +
∫

R0

F(t, z)Ñ(dt, dz) − dAt

)

,

dSt = St−

(

btdt + σtdWt +
∫

R0

v(t, z)Ñ(dt, dz)

)

.

(4.16)

Integration by parts and the predictability of A yield that

ξtSt = local martingale +
∫ t

0
bsξs−Ss−ds +

∫ t

0
σsG(s)ξs−Ss−ds

−
∫ t

0
ξs−Ss−dAs +

∫ t

0

∫

R0

v(s, z)F(s, z)ξs−Ss−N(ds, dz).

(4.17)

Suppose that {ξtSt}t≥0 is a nonnegative supermartingale. Then, the integral
∫ t
0

∫
R
v(s, z)F(s, z)ξs−Ss−N(ds, dz) must have locally integrable variation in light of the

Doob-Meyer decomposition for supermartingale (see, e.g., [16, Theorem III.13]). Therefore,
there exist stopping times τ1n ↗ ∞ such that

E

∫ τ1n

0

∫

R

|v(s, z)F(s, z)ξs−Ss− |ν(dz)ds < ∞. (4.18)

Then, (i) is satisfied with τn := τ1n ∧ τ2n ∧ τ3n , where τ2n := inf{t : ξt < 1/n} and τ3n := inf{t : S̃t <
1/n}. Next, we can write (4.17) as

ξtSt = local martingale −
∫ t

0
ξs−Ss−(dAs − hsds). (4.19)

By the Doob-Meyer representation for supermartingales and the uniqueness of the canonical
decomposition for special semimartingales, the last integral must be increasing. Then, at ≥ ht

for t ≤ τ since ξt− > 0 and ξt = 0 for t ≥ τ (see [17, Theorem I.4.61]).
We now turn to the sufficiency of conditions (i) and (ii). Since {ξt−St−}t≥0 is locally

bounded,

∫ t

0

∫

R

|v(s, z)F(s, z)|ξs−Ss−1s≤τnν(dz)ds (4.20)



12 International Journal of Stochastic Analysis

is locally integrable. Then, from (4.17), we can write

ξt∧τnSt∧τn = local martingale −
∫ t

0
ξs−Ss−1s≤τn(dAs − hsds). (4.21)

Condition (ii) implies that {ξt∧τnSt∧τn} is a supermartingale, and by Fatou, {ξt∧τSt∧τ}t≥0 will
be a supermartingale. This concludes the prove since ξt = 0 for t ≥ τ , and thus, ξt∧τSt∧τ = ξtSt,
for all t ≥ 0.

The following result gives sufficient and necessary conditions for ξ ∈ Γ(S) to belong
to Γ̃. Its proof is similar to that of Proposition 4.3.

Proposition 4.4. Under the setting and notation of Proposition 4.3, ξ ∈ Γ(S) belongs to Γ̃ if and only
if condition (i) in Proposition 4.3 holds and, for any locally bounded admissible trading strategies β,

P
[{
ω : htβt ≤ at, for a.e. t ∈ [0, τ(ω)]

}]
= 1. (4.22)

The previous result can actually be made more explicit under additional information
on the structure of the jumps exhibited by the stock price process. We consider two cases:
when the jumps come from the superposition of shot-noise Poisson processes, and when the
random field v exhibit a multiplicative structure. Let us first extend Proposition 2.2 in these
two cases.

Proposition 4.5. (i) Suppose that ν is atomic with finitely many atoms {zi}ki=1, then, a predictable
locally bounded strategy β is admissible if and only if P × dt-a.e.

− 1
maxiv(t, zi) ∨ 0

≤ βt ≤ − 1
miniv(t, zi) ∧ 0

. (4.23)

(ii) Suppose that v(t, z) = ζtϑ(z), for a predictable locally bounded process ζ such that P×dt-
a.e. ζt(ω)/= 0 and ζ−1t is locally bounded, and a deterministic function ϑ such that ν({z : ϑ(z) = 0}) =
0, then, a predictable locally bounded strategy β is admissible if and only if P × dt-a.e.

− 1

ϑ ∨ 0
≤ βtζt ≤ − 1

ϑ ∧ 0
, (4.24)

where ϑ := sup{ϑ(z) : z ∈ supp(ν)} and ϑ := inf{ϑ(z) : z ∈ supp(ν)}.

Proof. From Proposition 2.2, recall that P-a.s.

βtv(t,ΔZt) ≥ −1, (4.25)

for a.e. t ≤ T . Then, for any closed set C ⊂ R0, 0 ≤ s < t, and A ∈ Fs,

∑

s<u≤t
χA(ω)χC(ΔZu)

{
βuv(u,ΔZu) + 1

} ≥ 0. (4.26)
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Taking expectation, we get

E

∫ t

s

χA

∫

C

{
βuv(u, z) + 1

}
ν(dz)du ≥ 0. (4.27)

Since such processes Hu(ω) := χA×(s,t](ω, u) generate the class of predictable processes, we
conclude that P × dt-a.e.

−1 ≤ βt

∫
Cv(t, z)ν(dz)

ν(C)
. (4.28)

Let us prove (ii) (the proof of (i) is similar). Notice that

inf
z∈U

ϑ(z) = inf
C⊂R0

∫
Cϑ(z)ν(dz)

ν(C)
≤ sup

C⊂R0

∫
Cϑ(z)ν(dz)

ν(C)
= sup

z∈U
ϑ(z), (4.29)

whereU is the support of ν. Suppose that infz∈Uϑ(z) < 0 < supz∈Uϑ(z). Then, by considering
closed sets Cn,C

′
n ⊂ R0 such that

∫
Cn
ϑ(z)ν(dz)

ν(Cn)
↗ sup

z
ϑ(z),

∫
C′

n
ϑ(z)ν(dz)

ν(C′
n)

↘ inf
z
ϑ(z), (4.30)

as n → ∞, we can prove the necessity. The other two cases (namely, infzϑ(z) ≥ 0 or 0 ≥
supzϑ(z)) are proved in a similar way. Sufficiency follows since, P-a.s.,

{
t ≤ T : βtζtv(ΔZt) < −1} ⊂

{

t ≤ T : βtζt sup
z∈U

v(z) < −1
}

∪
{
t ≤ T : βtζt inf

z∈U
v(z) < −1

}
.

(4.31)

Example 4.6. It is worth pointing out some consequences

(a) In the time homogeneous case, where v(t, z) = z, the extreme points of the support
of ν (or what accounts to the same, the infimum and supremum of all possible
jump sizes) determine completely the admissible strategies. For instance, if the
Lévy process can exhibit arbitrarily large or arbitrarily close to −1 jump sizes, then

0 ≤ βt ≤ 1; (4.32)

a constraint that can be interpreted as absence of shortselling and bank borrowing
(this fact was already pointed out by Hurd [19]).

(b) In the case that ϑ ≥ 0, the admissibility condition takes the form −1/ϑ ≤ βtζt.
If in addition ζ· < 0 (such that the stock prices exhibit only downward sudden
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movements), then −1/(ϑζt) ≥ βt, and β· ≡ −c, with c > 0 arbitrary, is admissible.
In particular, from Proposition 4.4, if ξ ∈ Γ(S) belongs to Γ̃, then a.s. htβt ≤
at, for a.e. t ≤ τ. This means that ξ ∈ Γ(S) ∩ Γ̃ if and only if condition (i) in
Proposition 4.3 holds and P−a.s. ht ≥ 0, for a.e. t ≤ τ . For a general ζ and still
assuming that ϑ ≥ 0, it follows that β is admissible and ξ ∈ Γ(S) ∩ Γ̃ satisfy that
P-a.s.

− 1

ϑ(ζt ∨ 0)
≤ βt ≤ − 1

ϑ(ζt ∧ 0)
, htζ

−1
t 1{t≤τ} ≤ 0, (4.33)

for a.e. t ≥ 0.

We now extend Proposition 4.4 in the two cases introduced in Proposition 4.5. Its proof
follows from Propositions 4.4 and 4.5.

Proposition 4.7. Suppose that either (i) or (ii) in Proposition 4.5 is satisfied, in which case, define

ĥt :=

⎧
⎪⎪⎨

⎪⎪⎩

− ht

maxiv(t, zi) ∨ 0
1{ht<0} −

ht

miniv(t, zi) ∧ 0
1{ht>0} if (i) holds true,

−htζ
−1
t

ϑ ∨ 0
1{htζ

−1
t <0} −

htζ
−1
t

ϑ ∧ 0
1{htζ

−1
t >0} if (ii) hold strue,

(4.34)

then, a process ξ ∈ Γ(S) belongs to Γ̃ if and only if condition (i) in Proposition 4.3 holds, and for P-a.e.
ω, ĥt(ω)1{t≤τ(ω)} ≤ at(ω)1{t≤τ(ω)}, for a.e. t ≥ 0.

We remark that the cases ϑ ≥ 0 and ϑ ≤ 0 do not lead to any absurd in the definition
of ĥ above as we are using the convention that 0 · ∞ = 0. Indeed, for instance, if ϑ ≥ 0, it was
seeing that htζ

−1
t ≤ 0, for a.e. t ≤ τ , and thus, we set the second term in the definition of ĥ to

be zero.
Now we can give a more explicit characterization of the dual solution ξ∗ = E(X∗ −

A∗) to problem (3.7), whose existence was established in Theorem 4.1. For instance, we will
see that A∗ is absolutely continuous up to a predictable stopping time. Below, we refer to
Proposition 4.3 for the notation.

Proposition 4.8. Let ξ := ξ0E(X −A) ∈ Γ(S), τA := inf{t : ΔAt = 1}, and Ãt :=
∫ t
0asds + 1{t≥τA}.

The followings two statements hold true.

(1) ξ̃ := ξ0E(X − Ã) ≥ ξ. Furthermore, ξ ∈ Γ̃ if and only if ξ̃ ∈ Γ̃.

(2) Suppose that either of the two conditions in Proposition 4.7 are satisfied and denote

Ât :=
∫ t

0
ĥs1s≤τds + 1{t≥τA}, (4.35)

where ĥ is defined accordingly to the assumed case. Then, ξ· ≤ ξ̂·, and furthermore, the
process ξ̂ := ξ0E(X − Â) belongs to Γ̃ if ξ ∈ Γ̃.
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Proof. Let Ac,As,Ad denote the increasing predictable processes in decomposition (4.10) of
A. Since A is predictable, there is no common jump times between X and A. Then,

ξt = ξ0e
Xt−At−(1/2)〈Xc,Xc〉t

∏

s≤t
(1 + ΔXs)e−ΔXs

∏

s≤t
(1 −ΔAs)eΔAs

≤ ξ0e
Xt−Ac

t−(1/2)〈Xc,Xc〉t
∏

s≤t
(1 + ΔXs)e−ΔXs1{t<τA} = ξ̃t,

(4.36)

where we used that At −
∑

s≤t ΔAs = Ac
t + As

t ≥ Ac
t , and

∏
s≤t(1 − ΔAs) ≤ 1{t<τA}. Since

both processes ξ and ξ̃ enjoy the same absolutely continuous part, and the same sinking
time, the second statement in (1) is straightforward from Proposition 4.4. Part (2) follows
from Proposition 4.7 since the process ât := ĥt1t≤τ is nonnegative, predictable (since h is
predictable), and locally integrable (since 0 ≤ ĥ ≤ a).

We remark that part (2) in Proposition 4.8 remains true if we take Ât :=
∫ t
0ĥs1s≤τA ds +

1{t≥τA}. The following result is similar to Proposition 3.4 in Xu [5] and implies, in particular,
that the optimum dual ξ∗ can be taken to be a local martingale.

Proposition 4.9. Suppose that either (i) or (ii) of Proposition 4.5 is satisfied. Moreover, in the case of
condition (ii), assume additionally that

ν
({

z ∈ supp(ν) \ {0} : ϑ(z) = c
})

> 0, (4.37)

for c = ϑ if ϑ > 0, and for c = ϑ if ϑ < 0. Let ξ ∈ Γ̃ ∩ Γ(S). Then, there exists X̃ ∈ S such that
ξ̃ := ξ0E(X̃) ∈ Γ̃ and ξ· ≤ ξ̃·. Furthermore, {ξ̃(t)V β

t }t≤T is a local martingale for all locally bounded
admissible trading strategies β.

Proof. Let us prove the case when condition (i) in Proposition 4.5 is in force. In light of
Proposition 4.8, we assume without loss of generality that At =

∫ t
0atdt + 1{t≥τA}, with at :=

ĥt1{t≤τ}. Assume that miniv(t, zi) < 0 < maxiv(t, zi). Otherwise if, for instance, maxiv(t, zi) ≤
0, then it can be shown that ht ≥ 0, a.s. (similarly to case (b) in Example 4.6), and the first
term of ĥ is 0 under our convention that ∞ · 0 = 0. Notice that, in any case, one can find a
predictable process z taking values on {zi}ni=1, such that

ĥt = − ht

v(t, z(t))
. (4.38)

Write X̃· :=
∫ ·
0G(s)dWs +

∫ ·
0

∫
R0
F̃(s, z)dÑ(s, z) for an F̃ ∈ Gloc(N) to be determined in the

sequel. For ξ̃ ≥ ξ it suffices to prove the existence of a field D satisfying both conditions
below:

(a) D ≥ 0, (b)
∫

R0

D(t, z)ν(dz)1{t≤τ} ≤ ĥt1{t≤τ}, (4.39)
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(then, F̃ is defined as D + F). Similarly, for ξ̂ to belong to Γ̃ it suffices that

(c) ht +
∫

R0

v(t, z)D(t, z)ν(dz) = 0. (4.40)

Taking

D(t, z) := − ht

v(t, z(t))ν({z(t)})1{z=z(t)}, (4.41)

clearly nonnegative, (b) and (c) hold with equality. Moreover, the fact that inequalities (c)
hold with equality implies that {ξ̂(t)V β

t }t≤T is a local martingale for all locally bounded
admissible trading strategy β (this can be proved using the same arguments as in the
sufficiency part of Proposition 4.3). Now suppose that condition (ii) in Proposition 4.5 holds.
For simplicity, let us assume that ϑ < 0 < ϑ (the other cases can be analyzed following
arguments similar to Example 4.6). Notice that (4.37) implies the existence of a Borel C (resp.,
C) such that ϑ(z) ≡ ϑ on C (resp., ϑ(z) ≡ ϑ on C ) and 0 < ν(C), ν(C) < ∞. Taking

D(t, z) := − htζ
−1
t

ϑν
(
C
)1C(z)1{htζ

−1
t <0} −

htζ
−1
t

ϑν
(
C
)1C(z)1{htζ

−1
t >0}, (4.42)

(b) and (c) above will hold with equality.

5. Replicability of the Upper Bound

We now show that the tentative optimum final wealth V Γ
z , suggested by the inequality (iii) in

Theorem 3.5, is (super-) replicable. We will combine the dual optimality of ξ∗ with the super-
hedging theorem, which states that given a contingent claim Ĥ satisfyingw := sup

Q∈MEQ{Ĥ} <
∞, one can find for any fixed z ≥ w an admissible trading strategy β∗ (depending on z) such
that V z,β∗

T ≥ Ĥ almost surely (see Kramkov [2], and also Delbaen and Schachermayer [1]).
Recall that M denotes the class of all equivalent risk neutral probability measures.

Proposition 5.1. Under the setting and conditions of Theorem 3.5, for any 0 < z < wΓ, there is an
admissible trading strategy β∗ for z such that

V
z,β∗

T ≥ I
(
y(z)ξ∗y(z)(T)

)
∧H, (5.1)

and thus, the optimum of u(z) is reached at the strategy β∗. In particular,

V
z,β∗

T = I
(
y(z)ξ∗y(z)(T)

)
, (5.2)

when I(y(z)ξ∗
y(z)(T)) < H.
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Proof. For simplicity, we write ξ∗t := ξ∗
y(z)(t), y = y(z), and

V ∗ = I
(
y(z)ξ∗y(z)(T)

)
∧H. (5.3)

Fix an equivalent risk neutral probability measure Q ∈ M, and let ξ′t = (dQ|Ft
/dP|Ft

)
be its corresponding density processes. Here, Q|Ft (resp., P|Ft) is the restriction of the
measure Q (resp., P) to the filtration Ft. Under Q, S· is a local martingale, and then, for
any locally bounded β, V β

· is a Q-local martingale. By [17, Proposition III.3.8.c], ξ′V β is a P-
local martingale (necessarily nonnegative by admissibility), and thus, ξ′ is in Γ̃. On the other
hand, ξ′ belongs to Γ(S) due to the exponential representation for positive local martingales
in Kunita [11] (alternatively, by invoking [17, Theorems III.8.3, I.4.34c, and III.4.34], ξ′ ∈ Γ(S)
even if Z were just an additive process Z). By the convexity of the dual class Γ = Γ(S)∩ Γ̃ and
the fact that ξ∗ ∈ Γ (see Theorem 4.1), ξ(ε) := εξ′ + (1 − ε)ξ∗ belongs to Γ, for any 0 ≤ ε ≤ 1.
Moreover, since Ũ is convex and Ũ′(y) = −(I(y) ∧H),

∣∣∣∣∣∣∣

Ũ
(
yξ

(ε)
T

)
− Ũ

(
yξ∗T

)

ε

∣∣∣∣∣∣∣
≤ yH

∣∣ξ′T − ξ∗T
∣∣ ≤ yH

(
ξ′T + ξ∗T

)
. (5.4)

The random variable yH(ξ′T + ξ∗T ) is integrable since by assumption wΓ < ∞. We can then
apply dominated convergence theorem to get

lim
ε↓0

1
ε

{
E

[
Ũ
(
yξ

(ε)
T

)]
− E

[
Ũ
(
yξ∗T

)]}
= −yE

[
V ∗(ξ′T − ξ∗T

)]
, (5.5)

which is nonnegative by condition (i) in Theorem 3.5. Then, using condition (ii) in
Theorem 3.5,

EQ[V ∗] = E
[
V ∗ξ′T

] ≤ E
[
V ∗ξ∗T

]
= z. (5.6)

Since Q ∈ M is arbitrary, sup
Q∈MEQ[V ∗] ≤ z. By the super-hedging theorem, there is an

admissible trading strategy β∗ for z such that

V
z,β∗

T ≥ I
(
y(z)ξ∗y(z)(T)

)
∧H. (5.7)

The second statement of the theorem is straightforward since U(z) is strictly increasing on
z < H.
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6. Concluding Remarks

We conclude the paper with the following remarks.

(i) The dual class Γ

The dual domain of the dual problem can be taken to be the more familiar class of equivalent
risk-neutral probability measures M. To be more precise, define

Γ :=

{

ξt :=
dQ|Ft

dP|Ft

: Q ∈ M
}

. (6.1)

Since Γ is obviously a convex subclass of Γ̃, Theorem 3.5 implies that, as far as

0 < w := sup
ξ∈Γ

E[ξTH] < ∞, (6.2)

for each z ∈ (0, w), there exist y := y(z) > 0 and ξ∗ := ξ∗
y(z) ∈ Γ̃ (not necessarily belonging

to Γ) such that (i)–(iii) in Theorem 3.5 hold with Γ = Γ. Finally, one can slightly modify the
proof of Proposition 5.1, to conclude the replicability of

V Γ
z := I

(
yξ∗T

) ∧H. (6.3)

Indeed, in the notation of the proof of the Proposition 5.1, the only step which needs to be
justified in more detail is that

E

[
Ũ
(
yξ∗T

)] ≤ E

[
Ũ
(
yξ

(ε)
T

)]
, (6.4)

for all 0 ≤ ε ≤ 1, where ξ(ε) = εξ′ + (1− ε)ξ∗ (here, ξ′ is a fixed element in Γ). The last inequality
follows from the fact that, by Proposition 5.1 (c), ξ∗ can be approximated by elements {ξ(n)}n≥1
in Γ in the sense that ξ(n)T → ξ∗T a.s. Thus, ξ(ε) can be approximated by the elements ξ(ε,n) :=
εξ′ + (1 − ε)ξ(n) in Γ, for which we know that

E

[
Ũ
(
yξ∗T

)] ≤ E

[
Ũ
(
yξ

(ε,n)
T

)]
. (6.5)

Passing to the limit as n → ∞, we obtain (6.4).
In particular we conclude that condition (6.2) is sufficient for both the existence of the

solution to the primal problem and its characterization in terms of the dual solution ξ∗ ∈ Γ̃ of
the dual problem induced by Γ = Γ. We now further know that ξ∗ belongs to the class Γ̃∩Γ(S)
defined in (4.3), and hence, enjoys an explicit parametrization of the form

ξ∗ := E
(∫ ·

0
G∗(s)dWs +

∫ ·

0

∫

R0

F∗(s, z)Ñ(ds, dz) −
∫ ·

0
a∗
sds

)

, (6.6)

for some triple (G∗, F∗, a∗).
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(ii) Market driven by general additive models

Our analysis can be extended to more general multidimensional models driven by additive
processes (i.e., processes with independent, possibly nonstationary increments; cf. Sato [15]
and Kallenberg [20]). For instance, let (Ω,F,P) be a complete probability space on which is
defined a ddimensional additive process Z with Lévy-Itô decomposition:

Zt = αt + ΣWt +
∫ t

0

∫

{‖z‖>1}
zN(ds, dz) +

∫ t

0

∫

{‖z‖≤1}
zÑ(ds, dz), (6.7)

whereW is a standard d-dimensional Brownian motion,N(dt, dz) is an independent Poisson
random measure on R+ × R

d, and Ñ(dt, dz) = N(dt, dz) − EN(dt, dz). Consider a market
model consisting of n + 1 securities: one risk free bond with price

dBt := rtBtdt, B0 = 1, t ≥ 0, (6.8)

and n risky assets with prices determined by the following stochastic differential equations
with jumps:

dSi
t = Si

t−

⎧
⎨

⎩
bit dt +

d∑

j=1

σ
ij
t dW

j
t +
∫

Rd

vi(t, z)Ñ(ds, dz)

⎫
⎬

⎭
, i = 1, . . . , n, (6.9)

where the processes r, b, σ, and v are predictable satisfying usual integrability conditions (cf.
Kunita [10]). We assume that F := F∞− , where F := {Ft}t≥0 is the natural filtration generated
by W and N; namely, Ft := σ(Ws,N([0, s] × A) : s ≤ t, A ∈ B(Rd)). The crucial property,
particular to this market model, that makes our analysis valid, is the representation theorem
for local martingales relative to Z (see [17, Theorem III.4.34]). The definition of the dual
class Γ given in Section 4 will remain unchanged, and only very minor details will change
in the proof of Theorem A.3. Some of the properties of the results in Section 4 regarding the
properties of Γwill also change slightly. We remark that, by taking a real (nonhomogeneous)
Poisson process, the model and results of Chapter 3 in Xu [5]will be greatly extended. We do
not pursue the details here due to the limitation of the length of this paper.

(iii) Optimal wealth-consumption problem

Another classical portfolio optimization in the literature is that of optimal wealth-
consumption strategies under a budget constraint. Namely, we allow the agent to spend
money outside the market, while maintaining “solvency” throughout [0, T]. In that case the
agent aims to maximize the cost functional that contains a “running cost”:

E

[

U1(VT ) +
∫T

0
U2(t, ct)dt

]

, (6.10)
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where c is the instantaneous rate of consumption. To be more precise, the cumulative
consumption at time t is given by Ct :=

∫ t
0cudu and the (discounted) wealth at time t is given

by

Vt = w +
∫ t

0
βudSu −

∫ t

0
cudu. (6.11)

Here,U1 is a (state-dependent) utility function andU2(t, ·) is a utility function for each t. The
dual problem can now be defined as follows:

vΓ
(
y
)
= inf

ξ∈Γ
E

[

Ũ1
(
yξT

)
+
∫T

0
Ũ2
(
s, yξs

)
ds

]

, (6.12)

over a suitable class of supermartingales Γ. For instance, if the support of ν is [−1,∞), then
Γ can be all supermartingales ξ such that 0 ≤ ξ0 ≤ 1 and {ξtSt}t≤T is a supermartingale.
The dual Theorem 3.5 can be extended for this problem. However, the existence of a wealth-
consumption strategy pair (β, c) that attains the potential final wealth induced by the optimal
dual solution (as in Section 5) requires further work. We hope to address this problem in a
future publication.

Appendices

A. Convex Classes of Exponential Supermartingales

The goal of this part is to establish the theoretical foundations behind Theorem 4.1. We begin
by recalling an important optional decomposition theorem due to Föllmer and Kramkov [12].
Given a family of supermartingales S satisfying suitable conditions, the result characterizes
the nonnegative exponential local supermartingales ξ := ξ0E(X − A), where X ∈ S and A ∈
V+, in terms of the so-called upper variation process for S. Concretely, let P(S) be the class
of probability measures Q ∼ P for which there is an increasing predictable process {At}t≥0
(depending on Q and S) such that {Xt − At}t≥0 is a local supermartingale under Q, for all
X ∈ S. The smallest of such processesA is denoted byAS(Q) and is called the upper variation
process for S corresponding to Q. For easy reference, we state Föllmer and Kramkov’s result
(see [12] for a proof).

Theorem A.1. Let S be a family of semimartingales that are null at zero, and that are locally bounded
from below. Assume that 0 ∈ S, and that the following conditions hold:

(i) S is predictably convex,

(ii) S is closed under the Émery distance,

(iii) P(S)/= ∅,
then, the following two statements are equivalent for a nonnegative process ξ:

(1) ξ is of the form ξ = ξ0E(X −A), for some X ∈ S and an increasing process A ∈ V+;

(2) ξ/E(AS(Q)) is a supermartingale under Q for each Q ∈ P(S).
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The next result is a direct consequence of the previous representation. Recall that a
sequence of processes {ξn}n≥1 is said to be “Fatou convergent on π” to a process ξ if {ξn}n≥1 is
uniformly bounded from below and it holds that

ξt = lim sup
s↓t :s∈π

lim sup
n→∞

ξns = lim inf
s↓t :s∈π

lim inf
n→∞

ξns , (A.1)

almost surely for all t ≥ 0.

Proposition A.2. If S is a class of semimartingales satisfying the conditions in Theorem A.1, then

Γ(S) := {ξ := ξ0E(X −A) : X ∈ S, A increasing, and ξ ≥ 0} (A.2)

is convex and closed under Fatou convergence on any fixed dense countable set π of R+; that is, if
{ξn}n≥1 is a sequence in Γ(S) that is Fatou convergent on π to a process ξ, then ξ ∈ Γ(S).

Proof. The convexity of Γ(S) is a direct consequence of Theorem A.1, since the convex
combination of supermartingales remains a supermartingale. Let us prove the closure
property. Fix a Q ∈ P(S) and denote Ct := E(AS(Q)). Notice that Ct > 0 because
AS(Q)t is increasing and hence, its jumps are nonnegative. Since ξn ∈ Γ(S), {C−1

t ξnt }t≥0 is a
supermartingale under Q. Then, for 0 < s′ < t′,

E
Q

[
C−1

t′ ξ
n
t′ | Fs′

]
≤ C−1

s′ ξ
n
s′ . (A.3)

By Fatou’s lemma and the right-continuity of process C,

E
Q

[
C−1

t ξt | Fs′
]
= E

Q

[
lim inf
t′↓t:t′∈π

lim inf
n→∞

C−1
t′ ξ

n
t′ | Fs′

]
≤ C−1

s′ ξ
n
s′ . (A.4)

Finally, using the right continuity of the filtration, we have

E
Q

[
C−1

t ξt | Fs

]
≤ lim inf

s′↓s:s′∈π
lim inf
n→∞

C−1
s′ ξ

n
s′ = C−1

s ξs, (A.5)

where 0 ≤ s < t. Since Q is arbitrary, the characterization of Theorem A.1 implies that ξ ∈
Γ(S).

The most technical condition in Theorem A.1 is the closure property under Émery
distance. The following result is useful to deal with this condition. It shows that the class of
integrals with respect to a Poisson random measure is closed with respect to Émery distance,
thus extending the analog property for integrals with respect to a fixed semimartingale due
to Mémin [13].
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Theorem A.3. Let Θ be a closed convex subset of R
2 containing the origin. Let Π be the set of all

predictable processes (F,G), F ∈ Gloc(N), and G ∈ L2
loc(W), such that F(t, ·) = G(t) = 0, for all

t ≥ T , and (F(ω, t, z), G(ω, t)) ∈ Θ, for P × dt × ν(dz)-a.e. (ω, t, z) ∈ Ω × R+ × R0. Then, the class

S :=

{

Xt :=
∫ t

0
G(s)dWs +

∫ t

0

∫

R0

F(s, z)Ñ(ds, dz) : (F,G) ∈ Π

}

(A.6)

is closed under convergence with respect to Émery’s topology.

Proof. Consider a sequence of semimartingales

Xn(t) :=
∫ t

0
Gn(s)dWs +

∫ t

0

∫

R

Fn(s, z)Ñ(ds, dz), n ≥ 1, (A.7)

in the class S. Let X be a semimartingale such that Xn → X under Émery topology. To prove
the result, we will borrow some results in [13].

For some Q ∼ P, we denote M2(Q) to be the Banach space of all Q-square
integrable martingales on [0, T], endowed with the norm ‖M‖M2(Q) := (EQ〈M,M〉T )1/2 =

(EQ[M,M]T )
1/2, and A(Q) to be the Banach space of all predictable processes on [0, T] that

have Q-integrable total variations, endowed with the norm ‖A‖A(Q) := E
Q Var(A). Below,

A+
loc(Q) stands for the localized class of increasing process in A(Q). By [13, Theorem II.3],

one can extract a subsequence from {Xn}, still denote it by {Xn}, for which one can construct
a probability measure Q, defined onFT and equivalent to PT (the restriction of P onFT ), such
that the following assertions hold:

(i) ξ := dQ/(dPT) is bounded by a constant;

(ii) Xn
t = Mn

t + An
t , t ≤ T , for Cauchy sequences {Mn}n≥1 and {An}n≥1 in M2(Q) and

A(Q), respectively.

Let us extend Mn and An to [0,∞) by setting Mn
t = Mn

t∧T and An = An
t∧T for all t ≥ 0.

Also, we extend Q for A ∈ F by setting Q(A) :=
∫
AξdP, so that Q ∼ P (on F). In that case,

it can be proved that A+
loc(P) = A+

loc(Q). This follows essentially from [17, Proposition III.3.5]
and Doob’s Theorem. Now, let ξt := (dQ|Ft)/(dP|Ft) = E[ξ | Ft], denote the density process.
Since ξ is bounded, both {ξt}t and {|Δξt|}t are bounded. By [17, Lemma III.3.14 and Theorem
III.3.11], the P-quadratic covariation [Xn, ξ] has P-locally integrable variation and the unique
canonical decomposition Mn +An of Xn relative to Q is given by

Mn = Xn −
∫ t

0

1
ξs−

d〈Xn, ξ〉s, An =
∫ t

0

1
ξs−

d〈Xn, ξ〉s. (A.8)

Also, the P-quadratic variation of the continuous part Xn,c of Xn (relative to P), given by
〈Xn,c, Xn,c〉· =

∫ ·
0(G

n(s))2ds, is also a version of the Q-quadratic variation of the continuous
part of Xn (relative to Q). By the representation theorem for local martingales relative to Z
(see, e.g., [17, Theorem III.4.34] or [11, Theorem2.1]), ξ has the representation

ξt = 1 +
∫ t

0
ξs−E(s)dWs +

∫ t

0

∫

R

ξs−D(s, z)Ñ(ds, dz), (A.9)
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for predictable D and E necessarily satisfying that D > −1,

E

∫T

0

∫

R

D2(s, z)ξ2sν(dz)ds < ∞, E

∫T

0
E2(s)ξ2sds < ∞. (A.10)

Then,

〈Xn, ξ〉t =
∫ t

0
Gn(s)E(s)ξs−ds +

∫ t

0

∫

R

Fn(s, z)D(s, z)ξs−ν(dz)ds,

An
t =

∫ t

0

∫

R

Fn(s, z)D(s, z)ν(dz)ds +
∫ t

0
Gn(s)E(s)ds.

(A.11)

We conclude that ΔMn
t = ΔXn

t = Fn(t,ΔZt). Hence, ΔMn = ΔM̃n, where M̃n is the purely
discontinuous local martingale (relative to Q) defined by

M̃n
t :=

∫ t

0

∫

R

Fn(s, z)
(
N(ds, dz) − νQ(ds, dz)

)
, (A.12)

where νQ(ds, dz) := Y (s, z)dsν(dz) is the compensator of N relative to Q (see [17,
Theorem III.3.17]). It can be shown that Y = 1 + D. Notice that M̃n is well defined since
A+

loc(P) = A+
loc(Q) and [17, Definition III.1.27]. Then, the purely discontinuous part of the

local martingale Mn (relative to Q) is given by M̃n (see [17, Corollary I.4.19]), and since
Mn ∈ M2(Q),

E
Q[Mn,Mn]T = E

Q

∫T

0
(Fn(s, z))2Y (s, z)ν(dz)ds + E

Q

∫T

0
(Gn(s))2ds < ∞. (A.13)

Similarly, since {Mn}n≥1 is a Cauchy sequences under the norm E
Q[M,M]T ,

E
Q[Mn −Mm,Mn −Mm]T = E

Q

∫T

0
(Fn(s, z) − Fm(s, z))2Y (s, z)ν(dz)ds

+ E
Q

∫T

0
(Gn(s) −Gm(s))2ds −→ 0,

(A.14)

as n,m → ∞. Using the notation Ω̃ := Ω×R+×R and P̃ := P×B(R), whereP is the predictable
σ-field, we conclude that {Fn}n≥1 is a Cauchy sequence in the Banach space

Hd := L
2
(
Ω̃, P̃, YdQdνdt

)
∩ L

1
(
Ω̃, P̃, |D| dQdνdt

)
, (A.15)

and thus, there is F ∈ Hd such that Fn → F, as n → ∞. Similarly, there exists a G in the
Banach space

Hc := L
2(Ω × R+,P, dQdt) ∩ L

1(Ω × R+,P, |E|dQdνdt), (A.16)
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such that Gn → G, as n → ∞. In particular, (F,G) satisfies condition (iv) since Y = 1 + D
is strictly positive, and each (Fn,Gn) satisfies (iv). Also, F ∈ Gloc(N) relative to Q in light of
A+

loc(P) = A+
loc(Q). Similarly,

∫ ·
0G

2(s)ds belongs to A+
loc(Q), and hence, belongs to A+

loc(P). It
follows that the process

X̃ :=
∫ t

0
G(s)dWs +

∫ t

0

∫

R

F(s, z)Ñ(ds, dz), n ≥ 1, (A.17)

is a well-defined local martingale relative to P. Applying Girsanov’s Theorem to X̃ relative to
Q and following the same argument as above, the purely discontinuous local martingale and
bounded variation parts of X̃ are, respectively,

Md
t =

∫ t

0

∫

R

F(s, z)
(
N(ds, dz) − νQ(ds, dz)

)
,

At =
∫ t

0

∫

R

F(s, z)D(s, z)ν(dz)ds +
∫ t

0
G(s)E(s)ds.

(A.18)

The continuous part of X̃ has quadratic variation
∫ ·
0G

2(s)ds. We conclude that X̃ ∈ M2(Q) ⊕
A(Q) and Xn → X̃ onM2(Q)⊕A(Q). Then, Xn converges under Émery’s topology to X̃ and
hence, X = X̃.

B. Proofs of Some Standard Convex Duality Results

This appendix sketches the proofs of the results in Section 3. The proofs are standard in
convex duality and are given only for the sake of completeness.

Proof of Proposition 3.4. For simplicity, we write v(y) = vΓ(y). The monotonicity and range
of values of v are straightforward. To prove (2), notice that since Ũ(·;ω) is convex,
nonincreasing, and Ũ′(0+;ω) = −H(ω), we have

E[U(H; ·)] − infξE
[
Ũ
(
yξ(T)

)]

y
≤ sup

ξ∈Γ
E[ξ(T)H]. (B.1)

On the other hand, by the mean value theorem, dominated convergence theorem, (3.3), and
the assumptions in Definition 2.3,

E

[
Hξ̂(T)

]
≤ lim inf

y↓0
E[U(H; ·)] − v

(
y
)

y
≤ sup

ξ∈Γ
E[ξ(T)H], (B.2)

for every ξ̂ ∈ Γ. Then, (2) is evident. Uniform continuity is straightforward since for any h
small enough it holds that

∣∣vΓ
(
y + h

) − vΓ
(
y
)∣∣ ≤ wΓ|h|, (B.3)
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Part (i) of (4) is well known. Let us turn out to prove (3) and part (ii) in (4). Let
{ξn}n≥1 ⊂ Γ ⊂ Γ̃ be such that

lim
n→∞

E

[
Ũ
(
yξnT , ω

)]
= vΓ

(
y
)
. (B.4)

Without loss of generality, one can assume that each process ξn is constant on [T,∞). By
Lemma5.2 in [12], there exist ξ

n ∈ conv(ξn, ξn+1, . . .), n ≥ 1, and a nonnegative super-
martingale {ξ̃t}t≥0 with ξ̃0 ≤ 1 such that {ξn}n≥1 is Fatou convergent to ξ̃ on the rational numbers
π ; namely,

ξ̃t = lim sup
s↓t :s∈π

lim sup
n→∞

ξ
n

s = lim inf
s↓t :s∈π

lim inf
n→∞

ξ
n

s , a.s. (B.5)

for all t ≥ 0. By Fatou’s Lemma, it is not hard to check that {ξ̃(t)Vt}t≤T is a supermartingale
for every admissible portfolio with value process V , and hence, ξ̃ ∈ Γ̃. Next, since the ξn’s are
constant on [T,∞) and Ũ(·;ω) is convex, Fatou’s Lemma implies that E[Ũ(yξ̃T , ω)] ≤ vΓ(y)
Finally, we need to verify that, when Γ is convex, equality above is attained and that ξ̃ can
be approximated by elements of Γ. Both facts are clear since {ξn} ⊂ Γ and limn→∞ξ

n

T = ξ̃T a.s.
Then, by the continuity and boundedness of Ũ,

vΓ
(
y
) ≤ lim

n→∞
E

[
Ũ
(
yξ

n

TB
−1
T

)]
= E

[
Ũ
(
yξ̃TB

−1
T , ω

)]
. (B.6)

Proof of Theorem 3.5. We follow the arguments in [9, Theorem9.3]. For simplicity let us write
v(y) instead of vΓ(y). Recall that wΓ := supξ∈ΓE[ξ(T)H] and define v(0) := E[U(H;ω)]. In
light of Proposition 3.4, the continuous function fz(y) := v(y) + zy satisfies

lim
y↓0

fz
(
y
) − fz(0)
y

= −wΓ + z < 0, fz(∞) = ∞, (B.7)

for all z < wΓ. Thus, fz(·) attains its minimum at some y(z) ∈ (0,∞). By Proposition 3.4, we
can find a ξy(z) ∈ Γ̃ such that

v
(
y(z)

)
= E

[
Ũ
(
y(z)ξy(z)(T), ω

)]
, (B.8)

proving the (i) above. Now, consider the function

F(u) := uy(z)z + E

[
Ũ
(
uy(z)ξy(z)(T)

)]
, u > 0. (B.9)

Since ξy(z) can be approximated by elements in Γ, for each ε > 0 there exists a ξ
y,ε

y(z) ∈ Γ such
that

E

[
Ũ
(
yξy(z)(T)

)]
> E

[
Ũ
(
yξ

y,ε

y(z)(T)
)]

− ε. (B.10)
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It follows that for each ε > 0,

inf
u>0

F(u) ≥ inf
y>0

{
yz + E

[
Ũ
(
yξ

y,ε

y(z)(T)
)]}

− ε ≥ inf
y>0

{
yz + v

(
y
)} − ε

= y(z)z + E

[
Ũ
(
y(z)ξy(z)(T)

)] − ε.

(B.11)

Since ε > 0 is arbitrary, the function F(u) attains its minimum at u = 1. On the other hand,
(F(1 + h) − F(1))/h equals

y(z)z + E

[
Ũ
(
(1 + h)y(z)ξy(z)(T)

) − Ũ
(
y(z)ξy(z)(T)

)

h

]

, (B.12)

which converges to

y(z)z − y(z)E
[(
I
(
y(z)ξy(z)(T)

) ∧H
)
ξy(z)(T)

]
(B.13)

as h → 0. Here, we use (3.3) and the dominated convergence theorem. Then,

E
[(
I
(
y(z)ξy(z)(T)

) ∧H
)
ξy(z)(T)

]
= z. (B.14)

This proves (ii) of the theorem, and also (iii) in light of (3.4) and (3.6).
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lichkeitstheorie und Verwandte Gebiete, vol. 52, no. 1, pp. 9–39, 1980.

[14] D. Kramkov and W. Schachermayer, “The asymptotic elasticity of utility functions and optimal
investment in incomplete markets,” Annals of Applied Probability, vol. 9, no. 3, pp. 904–950, 1999.
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