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We apply Rice’s multidimensional formulas, in amathematically rigorousway, to several problems
which appear in random sea modeling. As a first example, the probability density function of the
velocity of the specular points is obtained in one or two dimensions as well as the expectation of
the number of specular points in two dimensions. We also consider, based on a multidimensional
Rice formula, a curvilinear integral with respect to the level curve. It follows that its expected value
allows defining the Palm distribution of the angle of the normal of the curve that defines the waves
crest. Finally, we give a new proof of a general multidimensional Rice formula, valid for all levels,
for a stationary and smooth enough random fields X : R

d → R
j(d > j).

1. Introduction

In 1944, Rice [1] proposed the model

ζ(t) =
∑

n

cn cos(σnt + εn), (1.1)

to describe the noise in an electrical current. In this relation, σn/(2π) denotes the different
frequencies, cn are Gaussian random variables, identically distributed and independent, and
εn are random variables uniformly distributed in [0, 2π].

Later, in 1957, Longuet-Higgins [2] defined the following multidimensional general-
ization of Rice’s model:

ζ
(
t, x, y

)
=
∑

n

cn cos
(
unx + vny + σnt + εn

)
. (1.2)

Since then this model has been used to describe the movement of the sea.
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The present work is aimed at studying functionals of random field level sets in order
to understand certain phenomena occurring in random sea modeling such as the movement
of the luminous points which appear over any water surface. These points are called specular
points and originate when the light is reflected in agreement to Snell’s Law from different
zones which act as small mirrors. They can be modeled as level sets of certain derivatives
of the original random field ζ. This type of phenomena leads us to study the size (cardinal,
length, area, and volume) and other measurements of level sets for Gaussian random fields.

It is thus necessary to consider functionals over fields defined by (1.2) or their
generalizations given in Section 3. Our study relates the expectation of such functionals with
the moments of the spectral measure of this process. The latter is important for applications,
as usually the spectral measure of the process as well as its moments may be estimated based
on data measured by buoys or satellites. The main tools that we use are given by Rice’s
multidimensional formulas.

Ourmain results include the probability density function of the velocity of the specular
points studied by Longuet-Higgins in [3–5]. First, we compute the probability density
function of the Palm distribution of the speed of the specular points in an arbitrary, but
fixed, direction. Then, using model (1.2) we are able to compute the density of the Palm
distribution of the speed of the specular points in a 2D space (see [6] for applications of this
type of densities). We are also interested in obtaining the expectation of the number of the
specular points in two dimensions. We provide an expression for this expectation by using a
multidimensional Rice formula recently proved in the books of Azaı̈s and Wschebor [7, page
163] and Adler and Taylor’s (page 267).

Also based on a multidimensional Rice formula we are able to study a curvilinear
integral with respect to the level curve whose expected value allows defining the Palm
distribution of the angle of the normal of the curve that defines the waves crest in a fixed
direction, such type of objects was recently introduced in [8].

All the expectations mentioned above can be rigorously computed by using the
multidimensional Rice formula for Gaussian random fields X : R

d → R
d, recently proved in

[7] and by using another Rice formula for random fields X : R
d → R

j (d > j) established by
Cabaña in 1985 [9]. For the sake of completeness, we also include a simplified proof of the
latter, which allows a generalization of the original results. Namely, we show that the formula
holds true over the complete level set, instead of over the intersection of the level set with the
set of regular points, that is, those where the derivative of the random field has rank equal
to j.

This work can thus be viewed as the implementation of several applications suggested
in the book mentioned in [7] as well as a continuation of the second author’s articles [10, 11].

The paper is organized as follows. Section 2 studies the coarea formula and its
application in the computation of the expectation of the Lebesgue measure of the level
sets and some related surface integrals with respect to the measure over the level set,
(see [9, 12, 13]). The formula holds true for all levels and this is a new result. Section 3
gives a stochastic integral representation of the Longuet-Higgins model and the relation
between this model and the directional spectrum. Section 4 gives the probability density
function for the speed of the specular points in a fixed but arbitrary direction. In Section 5,
the multidimensional Rice formula (cf. [7, 14]) is used to obtain the expectation of the
number of the specular points in two dimensions. Section 6 provides the probability density
function associated with the velocity of the specular points in all directions. These velocities
are computed both for Gaussian and non-Gaussian random fields, thus formalizing and
generalizing, the deep and inspired work of Longuet-Higgins. Finally, Section 7 establishes
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an application of Rice’s formula to study the asymptotic distribution of the normal angle to
the crests.

In what follows λd and σd−m will denote, respectively, the Lebesgue measure in the
space R

d and the Hausdorff measure defined in the subspaces of dimension d −m, trivially
by definition λd = σd.

2. The Coarea Formula and Its Application to Rice’s Formula

Before proving our main result let us give an overview of the area formula and its
probabilistic consequence, the Rice formula. Let g : R

d → R
d be a continuously differentiable

function. If we define

N
g

A(y) = #
{
s ∈ A ⊂ R

d : g(s) = y
}
, (2.1)

then if d = 1, one has

∫

A

f
(
g(s)
)∣∣g ′(s)

∣∣ds =
∫

Rd

f(y)Ng

A(y)dy, (2.2)

where f : R → R is a continuous and bounded function. This formula was obtained by
Banach in 1925 [15].

If ∇g(x) is the Jacobian of g in x and f : R
d → R is a continuous bounded function,

then the version of Banach’s formula for d ≥ 1 is

∫

A

f
(
g(s)
)∣∣det∇g(s)∣∣ds =

∫

Rd

f(y)Ng

A(y)dy. (2.3)

This expression is usually called the area formula (cf. [12]).
Now, let X : R

d → R
d be a Gaussian random field with continuously differentiable

trajectories. The random number of times that X takes the value y in the set A is defined as

NX
A(y) = #

{
s ∈ A ⊂ R

d : X(s) = y
}
. (2.4)

Let pX(s) denote the marginal density of X(s). By using formula (2.3), Fubini’s Theorem and
duality we get for a.s. y ∈ R

d

E

[
NX

A(y)
]
=
∫

A

E[|det∇X(s)|X(s) = y]pX(s)(y)ds. (2.5)

The fact that this formula is true for all y ∈ R
d is not trivial. The book by Azaı̈s andWschebor

[7, page 163] contains a definitive proof. The motivated reader can also read the interesting
discussion given in Sections 11.2 and 11.4 of Adler and Taylor’s recent book [14] and the
references therein.
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We will study below the more difficult case when function g has a domain whose
dimension is greater than the dimension of the rank, namely, g : R

d → R
j (d > j) is a

continuously differentiable function, with Jacobian ∇g(·) defining the level set

CQ(y) =
{
x ∈ Q : g(x) = y

}
= g−1(y) ∩Q, (2.6)

where Q is a compact set of R
d. The following two results are well known as the Coarea

formula (cf. Federer [12, pages 247–249] and Cabaňa [9]). The reader may consult the
excellent set of lectures by Weizsäker and Geibler of the University of Kaiserslautern [13]
for an up to data exposition.

Theorem 2.1. Let f : R
j → R be a continuous and bounded function. Restricted to the set

{
x ∈ R

d : ∇g(x) has rank j
}
, (2.7)

the following formula holds:

∫

Q

f
(
g(x)

)
det
(
∇g(x)∇g(x)T

)1/2
dx =

∫

Rj
f(y)σd−j

(
CQ(y)

)
dy. (2.8)

Corollary 2.2. Let Y : R
d → R be a continuous and bounded function under restriction (2.7), then

∫

Rj
f(y)

[∫

CQ(y)
Y (x)dσd−j(x)

]
dy =

∫

Rd

f
(
g(x)

)
Y (x)det

(
∇g(x)∇g(x)T

)1/2
dx. (2.9)

Remark 2.3. Formula (2.8) and (2.9) hold true without restriction (2.7). In fact it can be proved
that for

A ⊂
{
x ∈ R

d : ∇g(x) has rank < j
}
, (2.10)

σd−j(g−1(y) ∩A) = 0 holds for almost all y. This also implies that

∣∣∣∣∣

∫

A∩CQ(y)
Ydσd−j

∣∣∣∣∣ ≤ ‖Y‖∞σd−j
(
g−1(y) ∩A

)
= 0. (2.11)

Let us define for a compact Q the functions

G(y) = σd−j
(
g−1(y) ∩Q

)
, F(y) =

∫

CQ(y)
Y (x)dσd−j(x). (2.12)

The following lemma holds true.
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Lemma 2.4. Under hypothesis of Theorem 2.1, functions G and F are continuous.

The following results are simple consequences of Theorem 2.1 and Corollary 2.2.
Let X : Ω × R

d → R
j (d > j) be a stationary random field belonging to C1(Rd,Rj) and

suppose that for all x ∈ R
d, the density of X(x), pX(x)(·) exists (in the Gaussian case this holds

whenever VarX(x) > 0). We have

(i) For almost all y ∈ R
j ,

E
[
σd−j
(CQ(y)

)]
=
∫

Q

pX(x)(y)E
[
det
(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]
dx. (2.13)

(ii) For almost all y ∈ R
j ,

E

[∫

CQ(y)
Y (x)dσd−j(x)

]
=
∫

Q

pX(x)(y)E
[
Y (x)det

(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]
dx.

(2.14)

Let us remark that formula (2.13) and (2.14) hold for almost all y ∈ R
j . However in

applications, as we will see in the next sections, they are needed for a fixed y. We will prove
in what follows that the formulas hold for all y.

Define the set Dr = {x : ∇X(x) has rank j}. We will establish the continuity of the
left-hand side term in formulas (2.13) and (2.14) restricting ourselves first to this set. Thus let
us define CDr

Q (y) = CQ(y)∩Dr. The following theoremwas proved in 1985 by Cabaňa [9]. The
article was written in Spanish and had a very limited diffusion. We give a new and slightly
more general proof. We point out that Theorems 6.8 and 6.9 of [7] yield the same result as our
Theorem 2.8. However, in this book the proofs of these results are only sketched.

Before stating the proof we include two useful conditions.

(i) A1: for all x ∈ R
d, pX(x)(·) exists and is continuous. For a continuous function H :

R
d × R

j → R the following expression:

∫

Q

pX(x)(y)E[H(∇X(x)) | X(x) = y]dx (2.15)

is a continuous function in the y variable.

(ii) A2: the expression

∫

Q

pX(x)(y)E[Y (x)H(∇X(x)) | X(x) = y]dx (2.16)

is a continuous function in the y variable. Let us note that if Y (x) = Y (∇X(x)), then
A1 is sufficient for A2 to hold.
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Theorem 2.5. Consider X : Ω × R
d → R

j(d > j) a random field belonging to C1(Rd,Rj).

(i) Then under A1 for all y ∈ R
j ,

E

[
σd−j
(
CDr

Q (y)
)]

=
∫

Q

pX(x)(y)E
[
det
(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]
dx. (2.17)

(ii) If Y is an almost sure continuous function under A2, for all y ∈ R
j one has

E

[∫
CDr
Q (y) Y (x)dσd−j(x)

]
=
∫

Q

pX(x)(y)E
[
Y (x)det

(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]
dx.

(2.18)

Proof. We begin proving formula (2.17). Let the differentiable function ψ : R
+ → [0, 1] be

such that ψ(t) = 1 If 0 ≤ t ≤ 1 and ψ(t) = 0 if t ≥ 2. Let us define the function

Ỹm(∇X(x)) = ψ
(

1
m

det
(
∇X(x)∇X(x)T

))
ψ

⎛
⎜⎝

1

mdet
(
∇X(x)∇X(x)T

)

⎞
⎟⎠, (2.19)

Ỹm(∇X(x)) = 0 if x ∈ {y : det (∇X(x)∇X(x))T > 2m} ∪ {y : 1/(det(∇X(x)∇X(x)T )) > 2m}.
For x belonging to the complement of this set and defining λ1(x) ≤ λ2(x) ≤ · · · ≤ λj(x)

the eigenvalues of ∇X(x)∇X(x)T , it holds

det (∇X(x)∇X(x))T ≤ 2m,
1

det
(
∇X(x)∇X(x)T

) ≤ 2m, (2.20)

and moreover, defining V = ker(∇X(x)) and V ⊥ its orthogonal subspace, we have

∥∥∥(∇X(x)|V⊥)
−1
∥∥∥ =

1
√
λ1(x)

=

⎛
⎜⎝

∏j

i=2λi(x)

det
(
∇X(x)∇X(x)T

)

⎞
⎟⎠

1/2

≤ √
2m × ‖∇X(x)|V⊥‖(j/2).

(2.21)

Observe that the hypothesis of continuity of ∇X(x)|V⊥ and the compactness of Q imply a
uniform bound for the inverse. Lemma 2.4 implies that the following function:

F̃n,mX (y) := ψ
(
1
n
σd−j
(
CDr

Q (y)
))∫

CDrQ (y)
Ỹm(∇X(x))dσd−j(x) (2.22)

is a.s. continuous, also the sequence F̃n,mX is nondecreasing in both indexes. Moreover, the

inequality F̃n,mX (y) ≤ n yields that E[F̃n,mX (y)] is a continuous function. Using formula (2.9)
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applied to the field X and the function F̃n,mX , we have

∫

Rj

ψ

(
1
n
σd−j
(
CDr

Q (y)
))∫

CDrQ (y)
Ỹm(∇X(x))dσd−j(x)dy

=
∫

Q

ψ

(
1
n
σd−j CDr

Q (X(x))
)
Ỹm(∇X(x))det

(
∇X(x)∇X(x)T

)1/2
dx.

(2.23)

From this we have that for almost all y ∈ R
j ,

E

[
F̃n,mX (y)

]

=
∫

Q

pX(x)(y)E
[
ψ

(
1
n
σd−jCDr

Q (X(x))
)
Ỹm(∇X(x))det

(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]
dx.

(2.24)

Thus,

E

[
F̃n,mX (y)

]
≤
∫

Q

E

[
det
(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]
pX(x)(y)dx. (2.25)

Condition A1 implies that the function in the right-hand side is continuous, hence the
inequality holds for all y. Taking limits as n → ∞ and m → ∞ and using Beppo-Levi’s
Theorem, we have that

E

[
σd−j
(
CDr

Q (y)
)]

≤
∫

Q

E

[
det
(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]
pX(x)(y)dx. (2.26)

To prove the other inequality, let yN → y be such that for allN equality (2.24) holds. This is
possible because the equality is satisfied for almost all y. Thus by applying Fatou’s Lemma,
we obtain

E

[
F̃n,mX (y)

]
= lim

N→∞
E

[
F̃n,mX (yN)

]

= lim
N→∞

∫

Q

E

[
ψ

(
1
n
σd−j
(
CDr

Q (yN)
))

×E

[
Ỹm(∇X(x))det

(
∇X(x)∇X(x)T

)1/2 | X(x) = yN
]]
pX(x)(yN)dx

≥
∫

Q

E

[
ψ

(
1
n
σd−j
(
CDr

Q (y)
))

×E

[
Ỹm(∇X(x))det

(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]]
pX(x)(y)dx.

(2.27)
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By using Fatou’s Lemma again and that ψ(·/n) is a nondecreasing sequence, we obtain

lim
m→∞

lim
n→∞

E

[
F̃n,mX (y)

]
=
∫

Q

E

[
det
(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]
pX(x)(y)dx. (2.28)

Finally

Fn,mX (y) ≤
∫

CDrQ (y)
Ỹm(∇X(x))dσd−j(x) ≤ σd−j

(
CDr

Q (y)
)
<∞ a.s. (2.29)

Moreover Fn,mX (y) ↑ ∫CDrQ (y) Ỹm(∇X(x))dσd−j(x) when n → ∞. Clearly applying Beppo-Levi’s

Theorem we get

E

[
σd−j
(
CDr

Q (y)
)]

= lim
m→∞

lim
n→∞

E

[
F̃n,mX (y)

]

≥
∫

Q

E

[
det
(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]
pX(x)(y)dx.

(2.30)

Obtaining formula (2.17), formula (2.18) follows by approximating Y uniformly by a nonde-
creasing sequence of simple functions.

The following two propositions of Azaı̈s and Wschebor [7, pages 132–134] provide
the arguments to improve Cabaña’s result. In the book, however, the hypothesis is a little
different.

Proposition 2.6. Let X : U ⊂ R
d → R

m+k be a random field and I a subset ofU, and let u ∈ R
m+k.

One supposes that X satisfies the following conditions:

(1) the random field ∇X is α-Hölder continuous withm/(m + k) < α ≤ 1;

(2) for each x ∈ U, the random vector X(x) has a density pX(x)(y) such that pX(x)(y) ≤ C, for
x ∈ I and y in some neighborhood of u;

(3) the Hausdorff dimension of I is smaller than or equal tom.

Then, almost surely, there is no point x ∈ I such that X(x) = u.

Proposition 2.7. Let X : U ⊂ R
d → R

j be a random field and U an open set of R
d and y ∈ R

j .
Suppose that ∇X is a.s. α-Hölder continuous with 1 − (1/(d + j)) < α ≤ 1 and moreover for all
x ∈ U the random vector (X(x),∇X(x)) has a bounded continuous density pX(x),∇X(x)(u, ẏ), for u in
a neighborhood of y and (x, ẏ) varying in a compact set ofU × R

d×j . Then

P
{
ω : ∃x X(x) = y, rank ∇X(x) < j

}
= 0. (2.31)



International Journal of Stochastic Analysis 9

Theorem 2.8. Under the hypotheses of Theorem 2.5 and that ∇X(·) is a.s α-Hölder continuous with
1 − (1/(d + j)) < α ≤ 1, one has the following.

(1) Under A1, for all y ∈ R
j ,

E
[
σd−j
(CQ(y)

)]
=
∫

Q

pX(x)(y)E
[
det
(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]
dx. (2.32)

(2) Under A2 and if Y is an almost sure continuous function, for all y ∈ R
j one has

E

[∫

CQ(y)
Y (x)dσd−j(x)

]
=
∫

Q

pX(x)(y)E
[
Y (x)det

(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]
dx.

(2.33)

In what follows we give two examples under which the hypotheses A1 and A2 hold.

(1) Suppose that X(x) is a Gaussian field verifying the hypothesis of Theorem 2.8 and
that Var(X(x)) > 0 for each x. By considering the regression model,

∇X(x) = α(x)X(x) + Γ(x)ξ(x) (2.34)

with a Gaussian ξ(x) ⊥ X(x), where

α(x) = E

[
∇X(x)X(x)T

](
E

[
X(x)X(x)T

])−1
,

Γ(x)Γ(x)T = E

[
∇X(x)∇X(x)T

]
− E

[
∇X(x)X(x)T

](
E

[
X(x)X(x)T

])−1
E

[
X(x)∇X(x)T

]
,

(2.35)

the following equality in law is satisfied:

L(∇X(x) | X(x) = y) = yTα(x) + Γ(x)ξ(x). (2.36)

This result entails that the expression

E

[
det
(
∇X(x)∇X(x)T

)1/2 | X(x) = y
]
= yTα(x)α(x)Ty + Γ(x)Γ(x)T (2.37)

is a continuous function of variable y. Moreover, the hypothesis Var(X(x)) > 0 yields the
continuity in y of pX(x)(y).
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(1) Finally let us consider the case of the real envelope of the stationary Gaussian
field ζ(t, x, y). As in [16], we define the envelope of the Gaussian field ζ(t, x, y) as
follows. Let us consider the random spectral measureM(λ1, λ2, ω) restricted to the
Airy manifold Λ defined below in (3.1). In this manner if we restrict the stochastic
integral to the setΛ+ = {(λ1, λ2, ω) : ω ≥ 0, |�k| = (ω2/g)}. By using polar coordinates
we can write

ζ
(
t, x, y

)
= 2
∫∞

0

∫π

−π
cos
(∣∣∣�k
∣∣∣ cosΘx +

∣∣∣�k
∣∣∣ sinΘy +ωt

)
dc(ω,Θ). (2.38)

We define the Hilbert transform of ζ as the Gaussian field

ζ̂
(
t, x, y

)
= 2
∫∞

0

∫π

−π
sin
(∣∣∣�k
∣∣∣ cosΘx +

∣∣∣�k
∣∣∣ sinΘy +ωt

)
dc(ω,Θ). (2.39)

The real envelope E(t, x, y) is defined as

E
(
t, x, y

)
=
√
ζ2
(
t, x, y

)
+ ζ̂2
(
t, x, y

)
. (2.40)

It holds

E
[∥∥∇E(t, x, y)∥∥E(t, x, y) = u

]
=

1
u

E

[∥∥∥∇ζ(0, 0, 0) +∇ζ̂(0, 0, 0)
∥∥∥
]
. (2.41)

This expression is continuos whenever u > 0. Moreover the density of E(0, 0, 0), in
the point u, is the Rayleigh density (1/σ2

ζ )ue
−u2/2σ2

ζ , that exists and is continuous if
σ2
ζ
= Var(ζ(0, 0, 0)) > 0.

3. Representation with Integrals and the Directional Spectrum

In this section, we study a generalization of the Gaussian random fields defined in (1.2) that
model the waves of the sea. We use its representation as a stochastic integral which also yields
the spectral representation of a stationary mean zero Gaussian random field. The approach
will be somewhat informal in order to make the reading easier. The interested reader can
consult Krée and Soize “Mecanique Aleatorie,” [17, pages 366–376], or the very readable
article [18] in which. Lindgren gives a definitive treatment for this type of spectral stochastic
integral models.

Another way of looking at Longuet-Higgins’ model is

ζ
(
t, x, y

)
=
∫

Λ
ei(λ1x+λ2y+ωt)dM(λ1, λ2, ω), where Λ is the Airy manifold

{
λ21 + λ

2
2 =

ω4

g2

}
,

(3.1)
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g is the gravitational constant andM is a randomGaussian orthogonal measure defined onΛ.
Defining �k = (λ1, λ2) and the following change of variable |�k| = (ω2/g) and λ1 = (ω2/g) cosΘ
and λ2 = (ω2/g) sinΘ (see [17]), we obtain

ζ
(
t, x, y

)
=
∫∞

−∞

∫π

−π
ei(|

�k| cosΘ x+|�k| sinΘ y+ωt)dc(ω,Θ)

=
∫∞

−∞

∫π

−π
exp
[
i
(
�k · �x +ωt

)]
dc(ω,Θ),

(3.2)

where dc(ω,Θ) is a random measure. The covariance function, K(τ,X, Y ), is defined as

K(τ,X, Y ) = E
[
ζ
(
t, x, y

)
ζ
(
t + τ, x +X, y + Y

)]
. (3.3)

Then by using that

E

[
dc(ω,Θ)dc(ω′,Θ′)

]
= Ŝ(ω,Θ)δ(ω −ω′)δ(Θ −Θ′)dωdω′ dΘdΘ′, (3.4)

where Ŝ(ω,Θ) is the two-dimensional spectrum of the wave surface and δ represents Dirac’s
delta function. Then,

K(τ,X, Y ) =
∫∞

−∞

∫π

−π
exp
[
i
(
�k · �X +ωτ

)]
Ŝ(ω,Θ)dωdΘ. (3.5)

This procedure is justified formally in [17, 18]. If in (3.5) we let X = 0 and Y = 0, then we
obtain

K(τ) := K(τ, 0, 0) =
∫∞

−∞

∫π

−π
Ŝ(ω,Θ)eiωτdωdΘ, (3.6)

or equivalently K(τ) =
∫∞
−∞ Ŝ(ω)eiωτdω, where Ŝ(ω) =

∫π
−π Ŝ(ω,Θ)dΘ. Function Ŝ(ω)

represents the frequency spectrum of the sea surface. This spectrum contains the distribution
of the wave energy in the frequency domain. The autocorrelation function K(τ) for the
elevation surface ζ(t), in a fixed location, is a real even function.

Definition 3.1. The spectral moments of order ijk are defined as

mijk =
∫∞

0

∫π

−π
uivjωkS(ω,Θ)dΘdω, (3.7)

where u = (ω2/g) cos(Θ −Θ0), v = (ω2/g) sin(Θ −Θ0), and g is the gravitational constant. If
in (3.7) i = j = 0, then

m00k =
∫∞

0

∫π

−π
ωkS(ω,Θ)dΘdω, (3.8)
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and this can be rewritten as m00k =
∫∞
0 ωkS(ω)dω. The previous relation corresponds to the

one-dimensional moment of order k,mk =
∫∞
0 ωkS(ω)dω. Alsomij1 andmij2 will be denoted

by

m′
ij =
∫∞

0

∫π

−π
ωuivjS(ω,Θ)dΘdω, m′′

ij =
∫∞

0

∫π

−π
ω2uivjS(ω,Θ)dΘdω, (3.9)

respectively.

4. Velocity of the Specular Points in an Arbitrary Direction

We are now able to study the dynamical behavior of the specular points. Thus let ζ(t, x, y)
be the random field (3.2) representing the sea height and suppose that it belongs a.s. to
C3(R3,R). We observe the random field (∂ζ/∂x)(t, x, y) in a fixed direction, y = 0, for
instance. The place where reflection occurs, when the surface ζ(t, x, 0) is illuminated by a
light source, placed in (0, h1) and observed in (0, h2), for each fixed t is the level curve

∂ζ

∂x
(t, x, 0) = ζx(t, x) = kx, (4.1)

where k = (1/2)[(1/h1) + (1/h2)]. This condition is approximately true, whenever kζ and ζx
are both small quantities, see [4, page 845].

A consequence of the implicit function theorem is

(ζxx − k)dx + ζxtdt = 0, (4.2)

that is,

c =
dx

dt
= − ζxt

(ζxx − k) . (4.3)

This expression defines the velocity of the specular points. Thus let us define the number of
specular points in [0,M] having a speed in [α1, α2] as Ñsp(s, 0, α1, α2), where

Ñsp(s, u, α1, α2) := #
{
x ≤M : ζx(s, x) = kx + u;α1 ≤ ζxt

(ζxx − k) ≤ α2
}

for 0 ≤ s ≤ t. (4.4)

Now, define the latter number per unit time as

Nsp(u, α1, α2, t) :=
1
t

∫ t

0
Ñsp(s, u, α1, α2)ds. (4.5)

Notice that the processZ(t) = Ñsp(t, u, α1, α2) is stationary, has finite mean, and it is Riemann
integrable, as a function of t. Define At = σ{ζ(τ, x, 0) : τ > t, x ∈ [0,M]} and the σ-algebra
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of invariant events A = ∩At. Under the hypothesis that for each x ∈ [0,M], K(t, x, 0) → 0
whenever t → 0 the σ-algebra A is trivial. By the Birkoff-Khintchine Ergodic Theorem, we
have

∫ t
0 Z(s)ds

t
−→ EB[Z(0)], (4.6)

where B is the σ-algebra of t-invariants associated to Z. Since for each t, Bt = σ{Z(τ) :
τ > t } ⊂ At, it follows that B ⊂ A, so that EB[Z(0)] = E[Z(0)] = E[Ñsp(0, u, α1, α2)] (for
references, see [19, page 151]).

Our interest here is to compute the Palm distribution of the number of specular points
having speed between [α1, α2] defined as

F(α2) − F(α1) = lim
t→∞

Nsp(0, α1, α2, t)
Nsp(0,−∞,∞, t)

=
E

[
Ñsp(0, 0, α1, α2)

]

E

[
Ñsp(0, 0,−∞,∞)

] . (4.7)

The last equality, as we have seem, is a consequence of the Ergodic Theorem. We will show
the following result.

Proposition 4.1. Let ζ(t, x, y) be a Gaussian random field (3.2) and assume that it belongs to
C3(R3,R) and for each pair (x, y), K(t, x, y) → 0 whenever t → 0. The Palm distribution F
defined above satisfies

F(α2) − F(α1) =
E
[
1[α1,α2](ζxt(0, 0)/(ζxx(0, 0) − k))|ζxx(0, 0) − k|

]
√
m400R(k)

, (4.8)

where R(k) := (
√
2/π)(e−k

2/2m400 + (k/
√
m400)

∫k/√m400

0 e−v
2/2dv).

Proof. For a continuous and bounded function h, we have

∫∞

−∞
h(u)Nsp(u, α1, α2, t)du =

1
t

∫ t

0

∫∞

−∞
h(u)Ñsp(s, u, α1, α2)duds, (4.9)

and by the area formula (2.3), we have

∫∞

−∞
h(u)Nsp(u, α1, α2, t)du

=
1
t

∫ t

0

∫M

0
h(ζx(s, x) − kx)1[α1,α2]

(
ζxt(s, x)

(ζxx(s, x) − k)
)
|(ζxx(s, x) − k)|dx ds.

(4.10)
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Taking expectations, by stationarity and duality, for almost all u, it follows that

E
[
Nsp(u, α1, α2, t)

]

=
∫M

0
pζx(0,0)(u + kx)E

[
1[α1,α2]

(
ζxt(0, 0)

(ζxx(0, 0) − k)
)
|ζxx(0, 0) − k| | ζx(0, 0) = u + kx

]
dx.

(4.11)

This may be written, in the Gaussian case, by independence, as

E
[
Nsp(u, α1, α2, t)

]
=
∫M

0

exp
{
−(u + kx)2/2m200

}

√
2πm200

dx

× E

[
1[α1,α2]

(
ζxt(0, 0)

(ζxx(0, 0) − k)
)
|ζxx(0, 0) − k|

]
.

(4.12)

The formula is true for all u as it follows analogously to the result shown by Azaı̈s and
Wschebor [7, page 163].

For the specular points, the interesting level is u = 0, thus we obtain that the
expectation of the number of specular points having speed between α1 and α2 is

∫M

0
pζx(0,0)(kx)E

[
1[α1,α2]

(
ζxt(0, 0)

(ζxx(0, 0) − k)
)
|ζxx(0, 0) − k| | ζx(0, 0) = kx

]
dx, (4.13)

which in the Gaussian case may be written as

E
[
Nsp(0, α1, α2, t)

]
= E

[
Ñsp(0, 0, α1, α2)

]
=
∫M

0

exp
{−k2x2/2m200

}
√
2πm200

dx

× E

[
1[α1,α2]

(
ζxt(0, 0)

(ζxx(0, 0) − k)
)
|ζxx(0, 0) − k|

]
.

(4.14)

Moreover, the expectation of the number of specular points per unit of timeNsp(0,−∞,∞, t)
is easily computed yielding formula (2.14) of [4, page 846]

E
[
Nsp(0,−∞,∞, t)

]
=
∫M

0

exp
{−k2x2/2m200

}
√
2πm200

dxE|ζxx(0, 0) − k|

= R(k)
√

m400

2πm200

∫M

0
exp

{
− k2x2

2m200

}
dx,

(4.15)

where R(k) :=
√
2/π(e−k

2/2m400 + (k/
√
m400)

∫k/√m400

0 e−v
2/2dv).

As the process ζ satisfies that K(t, x, 0) → 0, we obtain (4.8) by simple division.



International Journal of Stochastic Analysis 15

Let us now define px,t(ξ1, ξ2) the Gaussian density of the random vector (ζxt(0, 0),
ζxx(0, 0)). We may write (4.8) as

F(α2) − F(α1) = 1√
m400R(k)

∫α2

α1

∫∞

−∞
(ξ2 − k)2px,t(c(ξ2 − k), ξ2)dc dξ2. (4.16)

Remark 4.2. Differentiating the previous expression one obtains the density of the velocity of
the specular points:

p̂k(c) =
1√

m400R(k)

∫∞

−∞
(ξ2 − k)2px,t(c(ξ2 − k), ξ2)dξ2. (4.17)

If k = 0 we recover formula (2-5-19) of [2] (modified in order to consider the case of specular
points)

p̂0(c) =
Δ2

2m2
004

(
(c − c)2 + Δ2m

−2
400

)−3/2
, (4.18)

where

Δ2 =

[
det

(
m200 m110

m110 m020

)]−1
,

c = −m301

m400
.

(4.19)

5. Number of Specular Points in Two Dimensions

The specular points in two dimensions are described, as we have seen in the last section in
the one-dimensional case, by the condition (ζx(t, x, y), ζy(t, x, y)) = (kx, ky) at point (x, y)
and for a fixed time t.

Defining the vectorial process

Z
(
t, x, y

)
=
(
ζx
(
t, x, y

) − kx, ζy
(
t, x, y

) − ky), (5.1)

we say that we have a specular point if Z = 0 and the number of such points in a fixed time t
and in a region Ω ⊂ R

2 will be

NZ
Ω(0, 0) = #

{(
x, y
) ∈ Ω : Z

(
t, x, y

)
= (0, 0)

}
. (5.2)
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We denote as in formula (2.5) x = (x, y) and w = (w1, w2). Then applying this formula to the
process Z, we get for almost all (w1, w2)

E

[
NZ

Ω(w1, w2)
]
=
∫

Ω
pZ(0,x,y)(w1, w2)E

[∣∣Δ
(
t, x, y

)∣∣/Z
(
0, x, y

)
= (w1, w2)

]
dx dy, (5.3)

where Δ(t, x, y) = (ζxx(t, x, y) − k)(ζyy(t, x, y) − k) − ζ2xy(t, x, y).
This formula turns out to be valid for all (w1, w2) under the hypotheses of Theorem 6.2

in [7] (in our case ζ ∈ C3(R3) and VarZ > 0 will be enough) and in particular for the specular
points, that is when (w1, w2) = (0, 0),

E

[
NZ

Ω(0, 0)
]
=
∫

Ω
pZ(0,x,y)(0, 0)E

[|Δ(0, 0, 0)|/Z(x, y) = (0, 0)
]
dx dy. (5.4)

The independence property allows writing

E

[
NZ

Ω(0, 0)
]
= E[|Δ(0, 0, 0)|]

∫

Ω
pZ(0,x,y)(0, 0)dx dy, (5.5)

obtaining finally the following result.

Proposition 5.1. Let the stationary mean zero Gaussian random field ζ(t, x, y) ∈ C3(R3) a.s. and
VarZ > 0. Then,

E

[
NZ

Ω(0, 0)
]
= E

[∣∣∣(ζxx(0, 0, 0) − k)
(
ζyy(0, 0, 0) − k

) − (ζxy(0, 0, 0)
)2∣∣∣
] ∫

Ω
pZ(0,x,y)(0, 0)dx dy.

(5.6)

Remark 5.2. The Li and Wei formula (cf. [20]) provides a way to compute the expectation of
the absolute value of the determinant in the above formula, see Azaı̈s et al. [10], which one
will not pursue. Instead one will apply a Monte Carlo method. Let us consider the regression
model

ζyy(0, 0, 0) = αζxx(0, 0, 0) + βζxy(0, 0, 0) + σ1ε1, (5.7)

where

α =
m2

220 −m310m130

m400m220 −m2
310

β =
m400m130 −m310m220

m400m220 −m2
310

, (5.8)

ε1 =N(0, 1) ⊥ (ζxx(0, 0, 0), ζxy(0, 0, 0)) and σ2 = −m400 + α2m400 + β2m220 + 2αβm220. Therefore
it yields

E[|Δ(0, 0, 0)|]=E

[∣∣∣(ζxx(0, 0, 0)− k)
((
ζxx(0, 0, 0)+βζxy(0, 0, 0)+σε1

)−k) −(ζxy(0, 0, 0)
)2∣∣∣
]
.

(5.9)
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This last expression can be evaluated readily by usingMonte Carlo. Indeed let �εi = (εi1, ε
i
2, ε

i
3)
t,

i = 1, . . . ,N, be a sample of standard Gaussian vectors in R
3. We have

lim
N→∞

1
N

N∑

i=1

∣∣∣∣∣∣∣

(√
m400ε

i
3 − k

)

×
⎛

⎝

⎛

⎝

⎛

⎝α
√
m400ε

i
3 + β

⎛

⎝
(
m220 −

m2
310

m400

)1/2

εi2 +
m310√
m400

εi3

⎞

⎠ + σεi1

⎞

⎠

⎞

⎠ − k
⎞

⎠

−
⎛

⎝
(
m220 −

m2
310

m400

)1/2

εi2 +
m310√
m400

εi3

⎞

⎠
2
∣∣∣∣∣∣∣
= E[|Δ(0, 0, 0)|].

(5.10)

6. Movement and Velocity of the Specular Points

In this section wewill compute the density of the velocity of the specular points in two spatial
dimensions. Let us consider the random field Z(t, x, y) = (ζx(t, x, y)− kx, ζy(t, x, y)− ky); the
number of specular points of the field ζ(t, x, y), in a fixed time t and in a region Ω ⊂ R

2, was
defined in (5.2) and denoted as NZ

Ω(0, 0). We have already computed the expectation of the
number of specular points

E

[
NZ

Ω(0, 0)
]
= E[|Δ(0, 0, 0)|]

∫

Ω
pZ(0,x,y)(0, 0)dx dy. (6.1)

The condition satisfied for the specular points (i.e., (ζx(t, x, y), ζy(t, x, y)) = (kx, ky)) and the
implicit function theorem entails

ζxt = −(ζxx − k)dx
dt

− ζxy
dy

dt
,

ζyt = −ζxy dx
dt

− (ζyy − k
)dy
dt
.

(6.2)

Let us define as Longuet-Higgins cx = dx/dt and cy = dy/dt. The objective is to find the
Palm distribution associated to the velocity field (cx, cy) = (dx/dt), (dy/dt). The following
computations, in the case k = 0, are essentially contained in the very original and seminal
work of Longuet-Higgins [2].

Now define for u = (u1, u2):

Ñsp(s,u, v1, v2, v3, v4) = #
{(
x, y
) ∈ Ω : Z

(
s, x, y

)
= u;v1 ≤ cx ≤ v2;v3 ≤ cy ≤ v4

}
(6.3)

for 0 ≤ s ≤ t and Ω a compact set in R
2.
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Consider

Nsp(u, v1, v2, v3, v4, t) :=
1
t

∫ t

0
Ñsp(s,u, v1, v2, v3, v4)ds. (6.4)

Let g be a continuous bounded function. On the one hand, using (2.3), we have

∫

R2
g(u)Nsp(u, v1, v2, v3, v4, t)du =

1
t

∫ t

0

∫

R2
g(u)Ñsp(s,u, v1, v2, v3, v4)duds

=
1
t

∫ t

0

∫

Ω
g
(
Z
(
s, x, y

) − u
)
1[v1,v2](cx)1[v3,v4]

(
cy
)∣∣Δ
(
t, x, y

)∣∣dx dy ds.

(6.5)

Let us denote by p(ξ4, ξ5, ξ6, ξ7, ξ8) the density of the Gaussian random vector

(
ζxx(0), ζxy(0), ζyy(0), ζxt(0), ζyt(0)

)
. (6.6)

It follows that

p
(
ξ4, ξ5, ξ6, cx, cy

)
:= p
(
ξ4, ξ5, ξ6,−(ξ4 − k)cx − ξ5cy,−ξ5cx − (ξ6 − k)cy

)
(6.7)

is the density function of the random vector (ζxx(0), ζxy(0)ζyy(0), cx(0), cy(0)). Taking
expectations in (6.5), using duality and putting u = 0 (under the hypothesis ζ ∈ C3(R3,R)
and Var ζ > 0 the formula holds for all levels u (cf. [7, page 163]) we obtain

E
[
Nsp(0, v1, v2, v3, v4, t)

]

=
∫

Ω
pZ(0,0,0)

(−kx,−ky)dx dy

×
∫v2

v1

∫v4

v3

∫

R3
p
(
ξ4, ξ5, ξ6, cx, cy

)∣∣∣(ξ4 − k)(ξ6 − k) − ξ25
∣∣∣ dξ4dξ5dξ6dcxdcy.

(6.8)

Hence, analogously as in Section 4 and by using the same arguments that lead to apply the
Ergodic Theorem, the Palm distribution of a specular point having the components of its
velocity cx ∈ [υ1, υ2] and cy ∈ [υ3, υ4] is

lim
t→∞

Nsp(0, v1, v2, v3, v4, t)
Nsp(0,−∞,∞,−∞,∞, t)

=

∫v2
v1

∫v4
v3

∫
R3 p
(
ξ4, ξ5, ξ6, cx, cy

)∣∣(ξ4 − k)(ξ6 − k) − ξ25
∣∣dξ4dξ5dξ6dcxdcy

E|Δ(0, 0, 0)| .

(6.9)

We can summarize the above computations in the following result.
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Proposition 6.1. Let ζ(t, x, y) be a mean stationary Gaussian field which is a.s. three times continu-
ously differentiable and Var ζ > 0. Assume also that its covariance function satisfies K(t, x, y) → 0
for each (x, y) whenever t → 0. Hence the Palm distribution of a specular point having the
components of its velocity cx ∈ [υ1, υ2] and cy ∈ [υ3, υ4] is

F(υ3, υ4) − F(υ1, υ2) =
∫v2
v1

∫v4
v3

∫
R3 p
(
ξ4, ξ5, ξ6, cx, cy

)∣∣(ξ4 − k)(ξ6 − k) − ξ25
∣∣dξ4dξ5dξ6dcxdcy

E|Δ(0, 0, 0)| .

(6.10)

Remark 6.2. Taking derivatives one gets the density of the speed of the two-dimensional
specular points

p̂(x,y,k)
(
cx, cy

)
=

∫
R3 p
(
ξ4, ξ5, ξ6, cx, cy

)∣∣(ξ4 − k)(ξ6 − k) − ξ25
∣∣dξ4dξ5dξ6

E|Δ(0, 0, 0)| . (6.11)

In the particular case (infinite distance), where k = 0, we obtain the Longuet-Higgins
formula (see [2, pages 362–365]). Nevertheless, formula (6.11) is well suited for numerical
computations, for k /= 0.

7. Another Application of Rice Formula

7.1. Angle between the Normal and the Level Curves Defining
a Crest in Direction θ

Let ζ(t, x) := ζ(t, x, y) be again a stationary zero mean Gaussian random field modeling the
height of the sea waves, here t ∈ R

+ and x = (x, y) ∈ R
2. Let us recall that such a field has the

spectral representation given in (3.1). Also in (3.5), we give an expression for its covariance
function. In this expression, the function Ŝ(ω,Θ) is known as the directional spectral function
and if it does not depend on Θ the random field ζ is called isotropic.

In what follows, we will get information about the crest of the waves in a direction θ.
Let us define, as in [8], the crest of the waves ζ in direction θ at time s as the level set

CQ(s, θ) =
{(
x, y
) ∈ Q : ζ′θ

(
s, x, y

)
= 0; ζ′′θθ

(
s, x, y

)
< 0
}
, (7.1)

where ζ′θ and ζ
′′
θθ

denote the first and second derivatives in the direction θ, respectively. This
set is the zero level set CZθ

Q (s, 0) of the field

Zθ

(
s, x, y

)
= ζx
(
s, x, y

)
cos θ + ζy

(
s, x, y

)
sin θ, (7.2)

under the additional condition that Z′′
θθ(s, x, y) < 0. If θ̂ is the direction orthogonal to θ, we

can express the gradient of Z′′
θ
(s, x, y) with respect to θ and its orthogonal, denoted as ∇θ, as

∇θZθ

(
s, x, y

)
=
(
∂θZθ

(
s, x, y

)
, ∂θ̂Zθ

(
s, x, y

))

=
∥∥∇θZθ

(
s, x, y

)∥∥(cosΦ
(
s, x, y

)
, sinΦ

(
s, x, y

))
,

(7.3)
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whereΦ(s, x, y) = arctan ∂θ̂Zθ(s, x, y)/∂θZθ(s, x, y). Thus taking into account that in the crest
Φ ∈ [π/2, 3π/2], ifH : [π/2, 3π/2] → R is a continuous function by using Theorem 2.8 we
get

1
t

∫ t

0

∫

CQ(s,θ)
H(Φ(s, x))dσ1(x)ds =

1
t

∫ t

0

∫

CZθQ (s,0)
H(Φ(s, x))1[−1,0)(cosΦ(s, x))dσ1(x)ds

−→ E

[∫

CZθQ (0,0)
H(Φ(0, x))1[−1,0)(cosΦ(0, x))dσ1(x)

]
.

(7.4)

To obtain the above result we assume, as in the precedent sections, that the covariance
K(t, x, y) of the stationary field ζ satisfies that for each (x, y)

K
(
t, x, y

) −→ 0 whenever t −→ ∞. (7.5)

This hypothesis allows us to place ourselves in the framework of the Ergodic Theorem.
Defining the Palm distribution νθ of the normal angle at the crest in the direction θ as the
following integral:

∫3π/2

π/2
H
(
ϕ
)
dνθ
(
ϕ
)
:= lim

t→∞

∫ t
0

∫
CQ(s,θ)

H(Φ(s, x))dσ1(x)
∫ t
0 σ1
(
CQ(s, θ)

)
ds

. (7.6)

Let us denote E(k) as the elliptic integral of the first kind. Also let us define γ2(θ) =
λ−(θ)/λ+(θ), where λ−(θ) ≤ λ+(θ) are the eigenvalues of the covariance matrix of the
Gaussian vector (∂θZθ(0, 0, 0), ∂θ̂Zθ(0, 0, 0)) and κ(θ) the angle that turn diagonal this matrix.
We get the following result.

Proposition 7.1. If the mean zero and stationary random field ζ is three times continuously
differentiable and hypothesis (7.5) holds, the Palm distribution νθ of the normal angle at the crest
in the direction θ satisfies

∫3π/2

π/2
H
(
ϕ
)
dνθ
(
ϕ
)
=

γ2(θ)

2E
(√

1 − γ2(θ)
)
∫3π/2

π/2

H
(
ϕ
)

(
1 − (1 − γ2(θ))sin2(ϕ − κ(θ))

)3/2dϕ. (7.7)

Proof. By using the Ergodic Theorem, we get

∫3π/2

π/2
H
(
ϕ
)
dνθ
(
ϕ
)
=

E

[∫
CZθQ (0,0)H(Φ(0, x))1[−1,0)(cosΦ(0, x))dσ1(x)

]

Eσ1
(
CQ(0, θ)

)

=
E

[∫
CZθQ (0,0)

H(Φ(0, x))1[−1,0)(cosΦ(0, x))dσ1(x)
]

(1/2)Eσ1
(
CZθ

Q (0, 0)
) .

(7.8)
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To get (7.7) it is enough to compute the two expectations in the last equality. Let us define
a(θ) = E(Z2

θ
(0, 0, 0)). First we consider the numerator. We have changing to polar coordinates

E

[∫

CZθ
Q (0,0)

H(Φ(0, x))1[−1,0)(cosΦ(0, x))dσ1(x)

]

=
λ−(θ)

(2π)2/3
√
a(θ)(λ+(θ)λ−(θ))

1/2

×
∫∞

0

∫3π/2

π/2
ρ2H

(
ϕ
)
e−(ρ

2/2λ+(θ)λ−(θ))(λ+cos2(ϕ−κ(θ))+λ−sin2(ϕ−κ(θ))dρ dϕ

=
λ−(θ)√

a(θ)λ+(θ)4π

∫3π/2

π/2
H
(
ϕ
) 1
(
1 − (1 − γ2(θ))sin2(ϕ − κ(θ))3/2

)dϕ.

(7.9)

For the denominator, we have H = 1 obtaining, (1/2)Eσ1(CZθ

Q (0, 0)) = (1/2π)(
√
λ+(θ)/

√
a(θ))E(

√
1 − γ2(θ)) . Thus (7.7) follows by a simple division.

Remark 7.2. Formula (7.7) can be developed further for the model where the directional
spectrum has the following representation Ŝ(ω,Θ) = f(ω)Ω(Θ), function Ω is usually called
the spreading function. This matter needs further research and we will not pursue this study
in this work.
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