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The existence and uniqueness of adapted solutions to the backward stochastic Navier-Stokes
equationwith artificial compressibility in two-dimensional bounded domains are shown byMinty-
Browder monotonicity argument, finite-dimensional projections, and truncations. Continuity of
the solutions with respect to terminal conditions is given, and the convergence of the system to an
incompressible flow is also established.

1. Introduction

The Navier-Stokes equation (NSE for short), named in honor of Navier and Stokes, who
were responsible for its formulation, is an acknowledged model for equation of motion for
Newtonian fluid. It is closely connected to the theory of hydrodynamic turbulence, the time
dependent chaotic behavior seen in many fluid flows.

The well-posedness of the Navier-Stokes equation has been studied extensively by
Ladyzhenskaya [1], Constantin and Foias [2], and Temam [3], among others. Although some
ingenious approaches have been made, the problem has not been fully understood. The
nonlinearity, part of the cause of turbulence, made the problem extraordinarily difficult. In
hope of taking advantage of the noise, randomness has been introduced into the system and
some pioneer work has been done by Flandoli and Gatarek [4], Mikulevicius and Rozovsky
[5], Menaldi and Sritharan [6], and others. Although the introduction of randomness is
not very successful in overcoming the difficulty, it provides a more realistic model than
deterministic Navier-Stokes equations and is interesting in itself.

The vast majority of work on the Navier-Stokes equations is done for viscous
incompressible Newtonian fluids. In a suitable Hilbert space and under the incompressibility
assumption ∇ · u = 0, the two-dimensional stochastic Navier-Stokes equation in a bounded
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domain G ⊂ R
2 with no-slip condition reads

∂u + (u · ∇)udt − νΔudt = −∇pdt + f(t)dt + σ(t,u)dW(t), (1.1)

where ν is the constant viscosity, u is the velocity, p is the pressure, f is the external body
force and W is the infinite-dimensional Wiener process. The assumption of incompressibility
works well even for compressible fluids such as air at room temperature. But there are
extreme phenomena, such as the diffusion of sound, that are closely related to fluid
compressibility. Also the constraint caused by the incompressibility creates computational
difficulties for numerical approximation of the Navier-Stokes equations. The method of
artificial compressibility was first introduced by Temam [3] to surmount this obstacle. It also
describes the slight compressibility existed in most fluids. The model has its own interest,
and is given below with the parameter ε:

∂tuε − νΔuε + (uε · ∇)uε +
1
2
(∇ · uε)uε +∇pε = f,

ε∂tpε +∇ · uε = 0.
(1.2)

Backward stochastic Navier-Stokes equations (BSNSEs for short) arise as an inverse problem
wherein the velocity profile at a time T is observed and given, and the noise coefficient has
to be ascertained from the given terminal data. Such a motivation arises naturally when
one understands the importance of inverse problems in partial differential equations (see
Lions [7, 8]). Linear backward stochastic differential equations were introduced by Bismut
in 1973 [9], and the systematic study of general backward stochastic differential equations
(BSDEs for short)were put forward first by Pardoux and Peng [10], Ma, Protter, Yong, Zhou,
and several other authors in a finite-dimensional setting. Ma and Yong [11] have studied
linear degenerate backward stochastic differential equations motivated by stochastic control
theory. Later, Hu et al. [12] considered the semilinear equations as well. Backward stochastic
partial differential equations were shown to arise naturally in stochastic versions of the Black-
Scholes formula byMa and Yong [13]. A nice introduction to backward stochastic differential
equations is presented in the book by Yong and Zhou [14], with various applications.

The usual method of proving existence and uniqueness of solutions by fixed point
arguments does not apply to the stochastic system on hand since the drift coefficient in
the backward stochastic Navier-Stokes equation is nonlinear, non-Lipschitz and unbounded.
The drift coefficient is monotone on bounded L4(G) balls in V , which was first observed by
Menaldi and Sritharan [6]. The method of monotonicity is used in this paper to prove the
existence of solutions to BSNSEs. The proof of the uniqueness and continuity of solutions
also relies on the monotonicity assumption of the coefficients. Existence and uniqueness of
solutions are shown to hold under the H

1
0 boundedness on the terminal values.

The structure of the paper is as follows. The functional setup of the paper is introduced
and several frequently used inequalities are listed in Section 2. The a priori estimates for
the solutions of projected BSNSEs are given under different assumptions of the terminal
conditions and external body force in Section 3. The existence and uniqueness of solutions
of projected BSNSEs are shown in Section 4. Also the existence of solutions of BSNSEs under
suitable assumptions is shown by Minty-Browder monotonicity argument. The uniqueness
of the solution under the assumption that terminal condition is uniformly bounded in H1

sense is given in Section 5. The continuity of solutions and the convergence as ε approaches
zero are also studied.
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2. Preliminaries

Suppose that G is a domain bounded in R
2 with smooth boundary conditions. Let ε

be a positive parameter which vanishes to 0. The artificial state equation for a slightly
compressible medium is defined as

ρ = ρ0 + εp, (2.1)

where ρ is the density, p is the pressure, and ρ0 is the first approximation of the density. By
adjusting the equations of motion according to the state equation, we obtain the following
family of perturbed systems associated with the parameter ε:

∂tuε − νΔuε + (uε · ∇)uε +
1
2
(∇ · uε)uε +∇pε = f,

ε∂tpε +∇ · uε = 0,
(2.2)

where uε ∈ L
2 = L

2(G) is the velocity, pε ∈ L2 = L2(G) is the pressure, f ∈ L
2 is the external

body force, and ν is the kinematic viscosity. Readers may refer to Temam [3] for details.
Denote by (·, ·) the inner product of L

2, (·, ·)
H

1
0
the inner product of H

1
0 = H

1
0(G), H

−1

the dual space of H
1
0, and 〈·, ·〉 the duality pairing between H

1
0 and H

−1. Let | · | be the norm
of L

2 and let ‖ · ‖ be the norm of H
1
0. Without causing any confusion, we also use the same

notations to denote the norms of L2 andH1
0 = H1

0(G). For any x ∈ L
2 and y ∈ H

1
0, there exists

x′ ∈ H
−1, such that (x,y) = 〈x′,y〉. Then the mapping x 	→ x′ is linear, injective, compact and

continuous. A similar result holds forH−1 and L2.
Suppose that (Ω,F, P) is a complete probability space. Let W(t) be an L

2-valued Q-
Wiener process, where Q is a trace class operator on L

2. Let {ej}∞j=1 ∈ L
2 ∩ H

1
0 ∩ L

4 be
a complete orthonormal system in L

2 such that there exists a nondecreasing sequence of
positive numbers {λj}∞j=1, limj→∞λj = ∞ and −Δej = λjej for all j. Let Qek = qkek with
∑∞

k=1 qk < ∞, and {bk(t)} be a sequence of independent standard Brownian motions in R.
Then Wiener process W(t) is taken as W(t)=

∑∞
k=1

√
qkb

k(t)ek.
Let Q be a trace class operator on L2. Similarly, we can define a complete orthonormal

system {ej}∞j=1, a nondecreasing sequence of positive numbers {κj}∞j=1 such that −Δej = κjej ,

and positive numbers q′j such that Qej = q′jej and
∑∞

j=1 q
′
j < ∞. Let W(t)=

∑∞
j=1

√
q′jb

j(t)ej .

ThenW(t) is an L2-valued Q-Wiener process. From now on, let {Ft} be the natural filtration
of {W(t)} and {W(t)}, augmented by all the P -null sets of F. A complete definition of Hilbert
space-valued Wiener processes can be found in [15].

With inner product

〈F,G〉LQ
= tr(FQG∗) = tr(GQF∗) (2.3)

for all F andG ∈ LQ, let LQ denote the space of linear operators E such that EQ
1/2 is a Hilbert-

Schmidt operator from L
2 to L

2. Similarly, we define LQ for Q, the trace class operator on
L2.
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To be realistic in nature, let us introduce randomness into the system to obtain

∂uε(t)
∂t

− νΔuε(t) + (uε(t) · ∇)uε(t) +
1
2
(∇ · uε(t))uε(t) +∇pε(t) = f(t) + σ(t)

dW(t)
dt

,

ε∂pε(t) +∇ · uε(t)dt = 0,

uε(0) = u0, pε(0) = p0,

(2.4)

where u0 and p0 are initial conditions, and σ(dW/dt) is the noise term. Here (1/2)(∇ · uε)uε
is called the stabilization term.

If a terminal time T is given and the terminal conditions are specified as uε(T) = ξ and
pε(T) = η, one obtains a backward system:

duε(t) + νÂuε(t)dt + B̂(uε(t))dt +∇pε(t)dt = f(t)dt + Zε(t)dW(t),

εdpε(t) +∇ · uε(t)dt = Zε(t)dW(t),

uε(T) = ξ, pε(T) = η

(2.5)

for 0 ≤ t ≤ T , where Âu � −Δu and B̂(u,v) � (u · ∇)v + (1/2)(∇ · u)v, with the notation
B̂(u) � B̂(u,u). The processes Zε and Zε are in spaces LQ and LQ, respectively.

Let τ be a Ft-stopping time when the observations are available. Suppose that
the observed velocity and pressure at τ are uε(τ) = ξ ∈ L2

Fτ
(Ω;L2) and p(τ) = η ∈

L2
Fτ
(Ω;L2), respectively. Then we introduce the backward stochastic Navier-Stokes equation

with artificial compressibility and stabilization in random duration:

duε(t) + νÂuε(t)dt + B̂(uε(t))dt +∇pε(t)dt = f(t)dt + Zε(t)dW(t),

εdpε(t) +∇ · uε(t)dt = Zε(t)dW(t),

uε(τ) = ξ, pε(τ) = η

(2.6)

for 0 ≤ t ≤ τ , where the Ft-stopping time τ is assumed to be bounded by a time T > 0. Note
that processes Zε and Zε measure the randomness that is inherent in the hydrodynamical
system. It is this randomness that has possibly led us to the observations at time τ . For
instance, in wind tunnel experiments, the form and the magnitude of the randomness has
to be ascertained from the velocity observations. This backward system helps us to make
an attempt at uncertainty quantification. Here f is taken to be deterministic and is always
assumed to be in L2(0, T ;H−1).

Definition 2.1. A quaternion of Ft-Adapted processes (uε,Zε, pε, Zε) is called a solution of
backward Navier-Stokes equation (2.6) if it satisfies the integral form of the system

uε(t ∧ τ) = ξ +
∫ τ

t∧τ

{
νÂuε(s) + B̂(uε(s)) +∇pε(s) − f(s)

}
ds −

∫ τ

t∧τ
Zε(s)dW(s),

εpε(t ∧ τ) = εη +
∫ τ

t∧τ
∇ · uε(s)ds −

∫ τ

t∧τ
Zε(s)dW(s),

(2.7)
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P-a.s., and the following holds:

(a) uε ∈ L2
F(Ω;L∞(0, τ ;L2)) ∩ L2

F(Ω;L2(0, τ ;H1
0));

(b) Zε ∈ L2
F(Ω;L2(0, τ ;LQ));

(c) pε ∈ L2
F(Ω;L∞(0, τ ;L2)) ∩ L2

F(Ω;L2(0, τ ;H1
0));

(d) Zε ∈ L2
F(Ω;L2(0, τ ;LQ)).

The following simple results are frequently used and given as lemmas. Readers may
refer to Temam [3] for similar proofs.

Lemma 2.2. For any u,v,w ∈ H
1
0 and p ∈ L2, one has

(1) 〈Âu,w〉 =
∑

i,j

∫
G ∂iuj∂iwjdx = 〈Âw,u〉 = (u,w)

H
1
0
,

(2) 〈(u · ∇)v,w〉 =
∑

i,j

∫
G ui(∂ivj)wjdx,

(3) 〈(u · ∇)v,w〉 = −〈(∇ · u)w,v〉 − 〈(u · ∇)w,v〉,
(4) 〈B̂(u,v),w〉 = −〈B̂(u,w),v〉,
(5) 〈−∇p,u〉 = −∑i

∫
G ∂ip uidx=

∫
G p∂iuidx = 〈p,∇ · u〉.

Remark 2.3. Sometimes 〈B̂(u,v),w〉 is denoted by b̂(u,v,w).

Lemma 2.4. The following results hold for any real-valued smooth functions φ and ψ with compact
support in R

2:

∣
∣φψ
∣
∣2 ≤ C∥∥φ∂1φ

∥
∥

L1

∥
∥ψ∂2ψ

∥
∥

L1 ,

∥
∥φ
∥
∥4

L4 ≤ C
∣
∣φ
∣
∣2
∣
∣∇φ∣∣2.

(2.8)

Proposition 2.5. For any u and v in H
1
0 and w ∈ L

4, one has

∣
∣
∣b̂(u,v,w)

∣
∣
∣ ≤ ‖u‖

L4‖v‖‖w‖
L4 +

1
2
‖u‖‖v‖

L4‖w‖
L4 . (2.9)

Below is a backward version of the Gronwall inequality used frequently in this paper,
and the proof is straightforward.

Lemma 2.6. Suppose that g(t), α(t), β(t), and γ(t) are integrable functions, and β(t), γ(t) are
nonnegative functions. For 0 ≤ t ≤ T , if

g(t) ≤ α(t) + β(t)
∫T

t

γ
(
ρ
)
g
(
ρ
)
dρ, (2.10)

then

g(t) ≤ α(t) + β(t)
∫T

t

α
(
η
)
γ
(
η
)
e
∫η
t β(ρ)γ(ρ)dρdη. (2.11)
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In particular, if α(t) ≡ α, β(t) ≡ β and γ(t) ≡ 1, then

g(t) ≤ αeβ(T−t). (2.12)

3. A Priori Estimates

The purpose of the this paper is to show the existence and uniqueness of the randomly
stopped backward stochastic Navier-Stokes equation (2.6). We employ Galerkin’s method
by defining orthogonal projections PN : L

2 → L
2
N , where L

2
N = span{e1, e2, . . . , eN}, for all

N ∈ N. An important result is that the Galerkin-type approximations converge weakly to the
solution of the Navier-Stokes equation.

First of all, let us establish some a priori estimates. Let us define the projected operators
ÂN � PNÂ and B̂N � PNB̂. Under projection PN , let us construct a finite dimensional system.
Let

W
N(t) � PNW(t) =

N∑

i=1

√
qib

i(t)ei, WN(t) � PNW(t) =
N∑

i=1

√
q′ib

i(t)ei,

fN(t) � PNf(t), ξN � E
(
PNξ | FN

τ

)
, ηN � E

(
PNη | FN

τ

)
,

(3.1)

where {FN
t } is the natural filtration of {WN(t)} and {WN(t)}. The projected system with

solution (uNε ,Z
N
ε , p

N
ε , Z

N
ε ) is defined as follows:

duNε (t) = −νÂNuNε (t)dt − B̂N
(
uNε (t)

)
dt − ∇pNε (t)dt + fN(t)dt + ZNε (t)dW

N(t),

εdpNε (t) +∇ · uNε (t)dt = ZN
ε (t)dWN(t),

uNε (τ) = ξN, pNε (τ) = ηN

(3.2)

for 0 ≤ t ≤ τ .

Proposition 3.1. Let ξ ∈ L∞
Fτ
(Ω;L2), η ∈ L∞

Fτ
(Ω;L2), and f ∈ L2(0, T ;H−1). Then for any solution

of system (3.2), the following is true:

(
uNε ,Z

N
ε

)
∈
{
L∞
F
(
[0, τ] ×Ω;L2

)
∩ L2

F
(
Ω;L2

(
0, τ ;H1

0

))}
× L2

F
(
Ω;L2(0, τ ;LQ)

)
,

(
pNε , Z

N
ε

)
∈
{
L∞
F
(
[0, τ] ×Ω;L2

)
∩ L2

F
(
Ω;L2

(
0, τ ;H1

0

))}
× L2

F
(
Ω;L2(0, τ ;LQ

))
.

(3.3)

Proof. Applying the Itô formula to |pNε (t)|2 to get

d
∣
∣
∣pNε (t)

∣
∣
∣
2
= −2

ε

〈
∇ · uNε (t), pNε (t)

〉
dt +

2
ε

〈
ZN
ε (t)dWN(t), pNε (t)

〉
+

1
ε2

tr
[
ZN
ε (t)Q

(
ZN
ε (t)
)∗]

dt

=
2
ε

〈
∇pNε (t),uNε (t)

〉
dt +

2
ε

〈
ZN
ε (t)dWN(t), pNε (t)

〉
+

1
ε2

tr
[
ZN
ε (t)Q

(
ZN
ε (t)
)∗]

dt,

(3.4)
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thus we get

2
〈
∇pNε (t),uNε (t)

〉
dt = εd

∣
∣
∣pNε (t)

∣
∣
∣
2 − 2
〈
ZN
ε (t)dWN(t), pNε (t)

〉
− 1
ε

∥
∥
∥ZN

ε (t)
∥
∥
∥
2

LQ
dt. (3.5)

By means of the Itô formula, one has

∣
∣
∣uNε (t ∧ τ)

∣
∣
∣
2
=
∣
∣
∣ξN
∣
∣
∣
2
+ 2
∫ τ

t∧τ

〈
νÂNuNε (s) + B̂N

(
uNε (s)

)
+∇pNε (s) − fN(s),uNε (s)

〉
ds

− 2
∫ τ

t∧τ
〈ZNε (s)dW

N(s),uNε (s)〉 −
∫ τ

t∧τ

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds.

(3.6)

Clearly,

〈
B̂N
(
uNε (s)

)
,uNε (s)

〉
= 0, (3.7)

and Lemma 2.2 yields

∣
∣
∣2
〈
fN(s),uNε (s)

〉∣
∣
∣ ≤
∥
∥
∥fN(s)

∥
∥
∥
2

H−1
+
∥
∥
∥uNε (s)

∥
∥
∥
2
=
∣
∣
∣fN(s)

∣
∣
∣
2

H−1
+ 〈ÂNuNε (s),uNε (s)〉. (3.8)

For 0 < r ≤ t, taking the conditional expectation with respect to Fr∧τ , and by (3.5), the above
two equation and along with the fact that ‖uε(s)‖2 = 〈Âuε(s),uε(s)〉, one gets

EFr∧τ
∣
∣
∣uNε (t ∧ τ)

∣
∣
∣
2
+ EFr∧τ

∫ τ

t∧τ

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds + EFr∧τ

∫ τ

t∧τ

∥
∥
∥uNε (s)

∥
∥
∥
2
ds

≤ EFr∧τ
∣
∣
∣ξN
∣
∣
∣
2
+ 2(ν + 1)EFr∧τ

∫ τ

t∧τ

〈
ÂNuNε (s),uNε (s)

〉
ds + EFr∧τ

∫ τ

t∧τ

∥
∥
∥fN(s)

∥
∥
∥
2

H−1
ds

+ εEFr∧τ

∫ τ

t∧τ
d
∣
∣
∣pNε (s)

∣
∣
∣
2 − 1

ε
EFr∧τ

∫ τ

t∧τ

∥
∥
∥ZN

ε (s)
∥
∥
∥
2

LQ
ds,

(3.9)

P-a.s. Since Âej = λjej and λi ≤ λj for i < j, one gets

〈
ÂNuNε (s),uNε (s)

〉
≤ λN

∣
∣
∣uNε (s)

∣
∣
∣
2
. (3.10)
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Thus

EFr∧τ
∣
∣
∣uNε (t ∧ τ)

∣
∣
∣
2
+ εEFr∧τ

∣
∣
∣pNε (t ∧ τ)

∣
∣
∣
2
+ EFr∧τ

∫ τ

t∧τ

∥
∥
∥uNε (s)

∥
∥
∥
2
ds

+ EFr∧τ

∫ τ

t∧τ

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds +
1
ε
EFr∧τ

∫ τ

t∧τ

∥
∥
∥ZN

ε (s)
∥
∥
∥
2

LQ
ds

≤ EFr∧τ
∣
∣
∣ξN
∣
∣
∣
2
+ εEFr∧τ

∣
∣
∣ηN
∣
∣
∣
2
+ 2(ν + 1)λN

∫T

t

EFr∧τ
∣
∣
∣uNε (s ∧ τ)

∣
∣
∣
2
ds

+ EFr∧τ

∫ τ

0

∥
∥
∥fN(s)

∥
∥
∥
2

H−1
ds,

(3.11)

P-a.s., and by Lemma 2.6, the backward Gronwall inequality, and letting r = t, we get

∣
∣
∣uNε (t ∧ τ)

∣
∣
∣
2
+ ε
∣
∣
∣pNε (t ∧ τ)

∣
∣
∣
2
+ EFt∧τ

∫ τ

t∧τ

∥
∥
∥uNε (s)

∥
∥
∥
2
ds

+ EFt∧τ

∫ τ

t∧τ

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds +
1
ε
EFt∧τ

∫ τ

t∧τ

∥
∥
∥ZN

ε (s)
∥
∥
∥
2

LQ
ds

≤
(

EFt∧τ
∣
∣
∣ξN
∣
∣
∣
2
+ εEFt∧τ

∣
∣
∣ηN
∣
∣
∣
2
+ EFt∧τ

∫ τ

0

∥
∥
∥fN(s)

∥
∥
∥
2

H−1
ds

)

e2(ν+1)λN(T−t),

(3.12)

P-a.s. Because of the integrability of ξ, η, and f, there exists a constant KN , depending on N
only, s.t.

∣
∣
∣uNε (t)

∣
∣
∣
2
+ ε
∣
∣
∣pNε (t)

∣
∣
∣
2
+ E
∫ τ

0

∥
∥
∥uNε (s)

∥
∥
∥
2
ds + E

∫ τ

0

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds + E
∫ τ

0

∥
∥
∥ZN

ε (s)
∥
∥
∥
2

LQ
ds ≤ KN,

(3.13)

for all t ∈ [0, τ], P-a.s.
Similarly, making use of (3.4), it follows that pNε ∈ L2

F(Ω;L2(0, τ ;H1
0)).

Proposition 3.2. Let ξ ∈ LnFτ
(Ω;L2), η ∈ LnFτ

(Ω;L2), and f ∈ L2(0, T ;H−1), for all n ∈ N and
n ≥ 2. The following is true for any solution of system (3.2):

uNε ∈ L∞
(
0, τ ;LnF

(
Ω;L2

))
∩ LnF

(
Ω;Ln

(
0, τ ;H1

0

))
,

pNε ∈ L∞
(
0, τ ;LnF

(
Ω;L2

))
∩ LnF

(
Ω;Ln

(
0, τ ;H1

0

))
.

(3.14)

Proof. Let us prove it by the method of mathematical induction. Similar to Proposition 3.1, it
is easy to obtain the result for n = 2. Suppose that it is true for allm ≤ n − 1. Let us show that
the proposition holds form = n.
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An application of the Itô formula to |uNε (t)|n yields

∣
∣
∣uNε (t ∧ τ)

∣
∣
∣
n

=
∣
∣
∣ξN
∣
∣
∣
n
+ n
∫ τ

t∧τ

∣
∣
∣uNε (s)

∣
∣
∣
n−2〈

νÂNuNε (s) + B̂N
(
uNε (s)

)
+∇pNε (s) − fN(s),uNε (s)

〉
ds

− n
∫ τ

t∧τ

∣
∣
∣uNε (s)

∣
∣
∣
n−2〈

ZNε (s)dW
N(s),uNε (s)

〉
− n2 − n

2

∫ τ

t∧τ

∣
∣
∣uNε (s)

∣
∣
∣
n−2∥∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds.

(3.15)

Clearly |∇pNε (s)| ≤ C‖pNε (s)‖ ≤ C
√
κN |pNε (s)|, where κN , as stated in Section 2, is the

eigenvalue of −Δ for eN . Taking the expectation, one obtains

E
∣
∣
∣uNε (t ∧ τ)

∣
∣
∣
n
+ E
∫ τ

t∧τ

∥
∥
∥uNε (s)

∥
∥
∥
n
ds ≤ E

∣
∣
∣ξN
∣
∣
∣
n
+ λn/2N E

∫ τ

t∧τ

∣
∣
∣uNε (s)

∣
∣
∣
n
ds

+ nE
∫ τ

t∧τ

∣
∣
∣uNε (s)

∣
∣
∣
n−2〈

νÂNuNε (s) +∇pNε (s) − fN(s),uNε (s)
〉
ds

≤ E
∣
∣
∣ξN
∣
∣
∣
n
+
(
νλNn + λn/2N

)
E

∫ τ

t∧τ

∣
∣
∣uNε (s)

∣
∣
∣
n
ds + nE

∫ τ

t∧τ

∣
∣
∣uNε (s)

∣
∣
∣
n−1∣∣
∣∇pNε (s)

∣
∣
∣ds

+
n

2
E

∫ τ

t∧τ

∣
∣
∣uNε (s)

∣
∣
∣
n−2(∥∥

∥fN(s)
∥
∥
∥
2

H−1
+ λN

∣
∣
∣uNε (s)

∣
∣
∣
2
)

ds

≤ E
∣
∣
∣ξN
∣
∣
∣
n
+
(
νλNn + λn/2N +

n

2
λN
)
E

∫ τ

t∧τ

∣
∣
∣uNε (s)

∣
∣
∣
n
ds

+ nC
√
κN

{

E

∫ τ

t∧τ

∣
∣
∣uNε (s)

∣
∣
∣
n
ds

}(n−1)/n{
E

∫ τ

t∧τ

∣
∣
∣pNε (s)

∣
∣
∣
n
ds

}1/n

+
n

2

∫T

t

∥
∥
∥fN(s)

∥
∥
∥
2

H−1
E

{

1[t∧τ,τ]
∣
∣
∣uNε (s)

∣
∣
∣
n−2}

ds

≤ E
∣
∣
∣ξN
∣
∣
∣
n
+
n

2

{

sup
0≤t≤τ

E
∣
∣
∣uNε (t)

∣
∣
∣
n−2
}∫T

t

∥
∥
∥fN(s)

∥
∥
∥
2

H−1
ds

+
(
νλNn + λn/2N +

n

2
λN + (n − 1)C

√
κN
)∫T

t

E
∣
∣
∣uNε (s ∧ τ)

∣
∣
∣
n
ds

+ C
√
κN

∫T

t

E
∣
∣
∣pNε (s ∧ τ)

∣
∣
∣
n
ds

≤ K +K(n,N)
∫T

t

E
∣
∣
∣uNε (s ∧ τ)

∣
∣
∣
n
ds +K(n,N)

∫T

t

E
∣
∣
∣pNε (s ∧ τ)

∣
∣
∣
n
ds,

(3.16)
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whereK is a constant, andK(n,N) is a constant depending on n andN. Both constants may
vary throughout the proof. But we keep the same notations for simplicity. Applying the Itô
formula to |pNε (t)|n, one obtains

εE
∣
∣
∣pNε (t ∧ τ)

∣
∣
∣
n
+ E
∫ τ

t∧τ

∥
∥
∥pNε (s)

∥
∥
∥
n
ds

≤ εE
∣
∣
∣ηN
∣
∣
∣
n
+ κn/2N E

∫ τ

t∧τ

∣
∣
∣pNε (s)

∣
∣
∣
n
ds − nE

∫ τ

t∧τ

∣
∣
∣pNε (s)

∣
∣
∣
n−2〈∇pNε (s),uNε (s)

〉
ds

≤ εE
∣
∣
∣ηN
∣
∣
∣
n
+ κn/2N E

∫ τ

t∧τ

∣
∣
∣pNε (s)

∣
∣
∣
n
ds + nC

√
κNE

∫ τ

t∧τ

∣
∣
∣pNε (s)

∣
∣
∣
n−1∣∣
∣uNε (s)

∣
∣
∣ds

≤ εE
∣
∣
∣ηN
∣
∣
∣
n
+ κn/2N E

∫ τ

t∧τ

∣
∣
∣pNε (s)

∣
∣
∣
n
ds + nC

√
κN

{

E

∫ τ

t∧τ

∣
∣
∣pNε (s)

∣
∣
∣
n
ds

}(n−1)/n

×
{

E

∫ τ

t∧τ

∣
∣
∣uNε (s)

∣
∣
∣
n
ds

}1/n

≤ K +K(n,N)
∫T

t

E
∣
∣
∣pNε (s ∧ τ)

∣
∣
∣
n
ds +K(n,N)

∫T

t

E
∣
∣
∣uNε (s ∧ τ)

∣
∣
∣
n
ds.

(3.17)

Adding up (3.16) and (3.17), one gets

E
{∣
∣
∣uNε (t ∧ τ)

∣
∣
∣
n
+ ε
∣
∣
∣pNε (t ∧ τ)

∣
∣
∣
n}

+ E
∫ τ

t∧τ

{∥
∥
∥uNε (s)

∥
∥
∥
n
+
∥
∥
∥pNε (s)

∥
∥
∥
n}
ds

≤ K +K(n,N)
∫T

t

E
{∣
∣
∣uNε (s ∧ τ)

∣
∣
∣
n
+
∣
∣
∣pNε (s ∧ τ)

∣
∣
∣
n}
ds.

(3.18)

An application of the Gronwall inequality (2.11) yields the result.

4. Existence of Solutions

The following lemma states the monotonicity of drift coefficients. The proof involves
Proposition 2.5 and is straightforward.

Lemma 4.1. Assume u,v ∈ H
1
0 and w ∈ L

4. The following inequalities are true:

(a) |〈B̂(u),w〉| ≤ 2‖u‖3/2|u|1/2‖w‖
L4 ,

(b) |〈B̂(u) − B̂(v),u − v〉| ≤ (ν/2)‖u − v‖2 + (27/2ν3)|u − v|2‖v‖4
L4 ,

(c) 〈νÂ(u − v) + B̂(u) − B̂(v),u − v〉 + (27/2ν3)‖v‖4
L4 |u − v|2 ≥ (ν/2)‖u − v‖2.

Furthermore, ifw ∈ H
1
0, then there exists a constant C depending on ν, such that

(d) 〈νÂ(u − v) + B̂(u) − B̂(v),u − v〉 + C‖v‖2|u − v|2 ≥ (ν/2)‖u − v‖2.
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Corollary 4.2. For any u and v ∈ L
4, let

h1(t) =
27
ν3

∫ t

0
‖u(s)‖4

L4ds,

h2(t) =
27
ν3

∫ t

0
‖v(s)‖4

L4ds.

(4.1)

Then

〈

νÂ(u − v) + B̂(u) − B̂(v) +
1
2
ḣi(t)(u − v),u − v

〉

≥ 0, i = 1, 2. (4.2)

The proposition below is used in the proof of the existence, and we provide a brief
proof. Readers may refer to [14, 16] for a similar and detailed proof.

Proposition 4.3. Let ξ ∈ L∞
Fτ
(Ω;L2), η ∈ L∞

Fτ
(Ω;L2), and f ∈ L2(0, T ;H−1). Then the projected

system (3.2) admits a unique adapted solution (uNε ,Z
N
ε , p

N
ε , Z

N
ε ) in

{
L∞
F
(
[0, τ] ×Ω;L2

)
∩ L2

F
(
Ω;L2

(
0, τ ;H1

0

))}
× L2

F
(
Ω;L2(0, τ ;LQ)

)

×
{
L∞
F
(
[0, τ] ×Ω;L2

)
∩ L2

F
(
Ω;L2

(
0, τ ;H1

0

))}
× L2

F
(
Ω;L2(0, τ ;LQ

))
.

(4.3)

Proof. For everyM ∈ N, let LM be a Lipschitz C∞ function which has the following property:

LM(‖u‖) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if ‖u‖ < M,

0 if ‖u‖ > M + 1,

0 ≤ LM(‖u‖) ≤ 1 otherwise.

(4.4)

Applying the truncation LM to B̂, it is easy to show that LMB̂ is Lipschitz and

∣
∣
∣LM(‖x‖)B̂N(x) − LM(‖y‖)B̂N(y)

∣
∣
∣ ≤ CN,M‖x − y‖ (4.5)

for any x,y ∈ L
2
N andM ∈ N. Let us define a truncated projected system:

duN,M
ε (t) = −νÂNuN,M

ε (t)dt − LM
(∥
∥
∥uN,M

ε (t)
∥
∥
∥
)
B̂N
(
uN,M
ε (t)

)
dt − ∇pN,M

ε (t)dt

+fN(t)dt + ZN,M
ε (t)dW

N(t),

εdpN,M
ε (t) +∇ · uN,M

ε (t)dt = ZN,M
ε (t)dWN(t),

uN,M
ε (τ) = ξN, pN,M

ε (τ) = ηN.

(4.6)
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For fixed p ∈ L∞
F ([0, τ] ×Ω;L2) ∩ L2

F(Ω;L2(0, τ ;H1
0)), let us map

duN,M
ε (t) = −νÂNuN,M

ε (t)dt − LM
(∥
∥
∥uN,M

ε (t)
∥
∥
∥
)
B̂N
(
uN,M
ε (t)

)
dt − ∇pN,M(t)dt

+fN(t)dt + ZN,M
ε (t)dW

N(t),

uN,M
ε (τ) = ξN

(4.7)

to R
N , and the image of the system is equivalent to the system. Since the coefficients in the

image system are Lipschitz, a well-known result in R
N (see [14, page 355]) guarantees the

existence of a unique adapted solution. Let the solution be (uN,M
ε ,ZN,M

ε ). Then for

εdpN,M
ε (t) +∇ · uN,M

ε (t)dt = ZN,M
ε (t)dWN(t)

pN,M
ε (τ) = ηN,

(4.8)

there is a unique adapted solution (pN,M
ε , ZN,M

ε ). Thus we can define an operator Ψ, such
that Ψ(p) = pN,M

ε . It can be shown that Ψ is a contraction mapping. Thus the unique adapted
solution of (4.6) can be obtained. Let us take the limit of the solution asM approaches infinity.
It can be shown that the limit is the unique solution of the projected system (3.2).

From now on, let us assume the external body force to be an operator and denote it by
F. We also assume the following coercivity and monotonicity hypotheses in this paper. Such
an approach is commonly used in studying the stochastic Euler equations so that a dissipative
effect arises. Also they are standard hypotheses in the theory of stochastic PDEs in infinite
dimensional spaces (see Chow [15], Kallianpur and Xiong [17], Prévôt and Röckner [18]).

Assumption A. (A.1) F: H
1
0 → H

−1 is a continuous operator.
(A.2) There exist positive constants α and β, such that

〈
νÂu − F(u),u

〉
≤ α|u|2 − β‖u‖2;

〈
νÂu − F(u), Âu

〉
≤ α‖u‖2 − β

∥
∥
∥Âu

∥
∥
∥
2
.

(4.9)

(A.3) For any u and v in H
1
0, a constant κ > ν, and a positive constant α,

〈
κÂ(u − v) − (F(u) − F(v)),u − v

〉
≤ α|u − v|2. (4.10)

(A.4) For any u ∈ H
1
0 and some positive constant α,

|〈F(u),u〉| ≤ α‖u‖2. (4.11)
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Remark 4.4. Assumption (A.2) is usually called the coercivity condition of the dissipative
term and the external body force. Assumption (A.3) is the monotonicity condition of
dissipative term and the external body force. The first half of the inequality is used in the
proof of the uniqueness in Section 5. The second half of the inequality is used in the proof
of the existence in Section 4. Assumption (A.4) is the linear growth condition of the external
body force.

Under above assumptions, we adjust systems (2.6) and (3.2) to the following two
systems:

duε(t) + νÂuε(t)dt + B̂(uε(t))dt +∇pε(t)dt = F(uε(t))dt + Zε(t)dW(t),

εdpε(t) +∇ · uε(t)dt = Zε(t)dW(t),

uε(τ) = ξ, pε(τ) = η,

(4.12)

duNε (t) = −νÂNuNε (t)dt − B̂N
(
uNε (t)

)
dt − ∇pNε (t)dt + FN

(
uNε (t)

)
dt + ZNε (t)dW

N(t),

εdpNε (t) +∇ · uNε (t)dt = ZN
ε (t)dWN(t),

uNε (τ) = ξN, pNε (τ) = ηN

(4.13)

for 0 ≤ t ≤ τ . The existence and uniqueness of an adapted solution of (4.13) can be easily
checked in the same fashion as in Proposition 4.3.

Lemma 4.5. Assume u and v ∈ L
4. Then the following inequality is true:

∣
∣
∣
〈
B̂(u) − B̂(v),u − v

〉∣
∣
∣ ≤ (κ − ν)‖u − v‖2 + 27

16(κ − ν)3
|u − v|2‖v‖4

L4 . (4.14)

Corollary 4.6. Let u and v ∈ L
4. Define

l1(t) �
∫T

t

{

2α +
27

8(κ − ν)3
‖u(s)‖4

L4

}

ds,

l2(t) �
∫T

t

{

2α +
27

8(κ − ν)3
‖v(s)‖4

L4

}

ds.

(4.15)

Then

〈

νÂ(u − v) + B̂(u) − B̂(v) − (F(u) − F(v)) +
1
2
l̇i(t)(u − v),u − v

〉

≤ 0, i = 1, 2. (4.16)

Remark 4.7. To prove Corollary 4.6, the monotonicity assumption (A.3) is used.
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Proposition 4.8. (i) Let ξ ∈ L∞
Fτ
(Ω;L2) and η ∈ L∞

Fτ
(Ω;L2). Then for any solution of system (4.13),

the following is true:

(
uNε ,Z

N
ε

)
∈
{
L∞
F
(
[0, τ] ×Ω;L2

)
∩ L2

F
(
Ω;L2

(
0, τ ;H1

0

))}
× L2

F
(
Ω;L2(0, τ ;LQ)

)
,

(
pNε , Z

N
ε

)
∈ L∞

F
(
[0, τ] ×Ω;L2

)
× L2

F
(
Ω;L2(0, τ ;LQ

))
.

(4.17)

Moreover, there exists a constant K, independent ofN, such that

sup
t∈[0,τ]

∣
∣
∣uNε (t)

∣
∣
∣
2
+ E
∫ τ

0

∥
∥
∥uNε (s)

∥
∥
∥
2
ds + ε sup

t∈[0,τ]

∣
∣
∣pNε (t)

∣
∣
∣
2

+ E
∫ τ

0

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds + E
∫ τ

0

∥
∥
∥ZN

ε (s)
∥
∥
∥
2

LQ
ds ≤ K,

(4.18)

P-a.s.
(ii) Let ξ ∈ L2

Fτ
(Ω;L2) and η ∈ L2

Fτ
(Ω;L2). The following is true for any solution of system

(4.13):

(
uNε ,Z

N
ε

)
∈
{
L∞
(
0, τ ;L2

F
(
Ω;L2

))
∩ L2

F
(
Ω;L2

(
0, τ ;H1

0

))}
× L2

F
(
Ω;L2(0, τ ;LQ)

)
,

(
pNε , Z

N
ε

)
∈ L∞

(
0, τ ;L2

F
(
Ω;L2

))
× L2

F
(
Ω;L2(0, τ ;LQ

))
.

(4.19)

Moreover, there exists a constant K, independent ofN, such that

sup
t∈[0,τ]

E
∣
∣
∣uNε (t)

∣
∣
∣
2
+ E
∫ τ

0

∥
∥
∥uNε (s)

∥
∥
∥
2
ds + ε sup

t∈[0,τ]
E
∣
∣
∣pNε (t)

∣
∣
∣
2

+ E
∫ τ

0

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds + E
∫ τ

0

∥
∥
∥ZN

ε (s)
∥
∥
∥
2

LQ
ds ≤ K.

(4.20)

Proof. (i) Similar to the proof of Proposition 3.1, utilizing Assumption (A.2), (3.6) becomes

∣
∣
∣uNε (t ∧ τ)

∣
∣
∣
2

=
∣
∣
∣ξN
∣
∣
∣
2
+ 2
∫ τ

t∧τ

〈
νÂNuNε (s) + B̂N

(
uNε (s)

)
+∇pNε (s) − FN

(
uNε (s)

)
,uNε (s)

〉
ds

− 2
∫ τ

t∧τ

〈
ZNε (s)dW

N(s),uNε (s)
〉
−
∫ τ

t∧τ

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds

≤
∣
∣
∣ξN
∣
∣
∣
2
+ 2
∫ τ

t∧τ

{

α
∣
∣
∣uNε (s)

∣
∣
∣
2 − β

∥
∥
∥uNε (s)

∥
∥
∥
2
+
〈
∇pNε (s),uNε (s)

〉}

ds

− 2
∫ τ

t∧τ

〈
ZNε (s)dW

N(s),uNε (s)
〉
−
∫ τ

t∧τ

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds.

(4.21)
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For 0 < r ≤ t, taking the conditional expectation with respect to Fr∧τ , one gets

EFr∧τ
∣
∣
∣uNε (t ∧ τ)

∣
∣
∣
2
+ EFr∧τ

∫ τ

t∧τ

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds + 2βEFr∧τ

∫ τ

t∧τ

∥
∥
∥uNε (s)

∥
∥
∥
2
ds

≤ EFr∧τ
∣
∣
∣ξN
∣
∣
∣
2
+ 2αEFr∧τ

∫ τ

t∧τ

∣
∣
∣uNε (s ∧ τ)

∣
∣
∣
2
ds + εEFr∧τ

∫ τ

t∧τ
d
∣
∣
∣pNε (s)

∣
∣
∣
2

− 1
ε
EFr∧τ

∫ τ

t∧τ

∥
∥
∥ZN

ε (s)
∥
∥
∥
2

LQ
ds,

(4.22)

P-a.s. By the backward Gronwall inequality, and letting r = t, we get (4.18).
(ii) The proof is similar to (i).

Proposition 4.9. Suppose that ξ ∈ L∞
Fτ
(Ω;H1

0) and η ∈ L∞
Fτ
(Ω;H1

0). Then for any solution
(uε,Zε, pε, Zε) of system (4.13), there exists a constant K0, such that

sup
t∈[0,τ]

‖uε(t)‖2 + sup
t∈[0,τ]

∥
∥pε
∥
∥2 ≤ K0. (4.23)

Proof. The proof involves an application of the Itô formula to ‖uε(t)‖2, and the second half of
the coercivity assumption. We skip the proof since it is similar to Proposition 3.1.

Theorem 4.10. Let ξ ∈ L∞
Fτ
(Ω;H1

0) and η ∈ L∞
Fτ
(Ω;H1

0). For system (4.12), there exists a solution
(uε,Zε, pε, Zε) in

L∞
F
(
[0, τ] ×Ω;H1

0

)
× L2

F
(
Ω;L2(0, τ ;LQ)

)
× L∞

F
(
[0, τ] ×Ω;H1

0

)
× L2

F
(
Ω;L2(0, τ ;LQ

))
.

(4.24)

Proof. We have the following steps.

Step 1 (The limits). Clearly, by Proposition 4.8, there exist uε, pε, Zε, and Zε, such that

uNk
ε

w−→ uε in L2
F
(
Ω;L2

(
0, τ ;H1

0

))
,

pNk
ε

w−→ pε in L∞
F
(
[0, τ] ×Ω;L2

)
,

ZNk
ε

w−→ Zε in L2
F
(
Ω;L2(0, τ ;LQ)

)
,

ZNk
ε

w−→ Zε in L2
F
(
Ω;L2(0, τ ;LQ

))
,

(4.25)

for a subsequenceNk. Since Â is a continuous map from H
1
0 to H

−1,

∥
∥
∥Âuε

∥
∥
∥

H−1
≤ C‖uε‖ (4.26)
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for all uε ∈ H
1
0 and some constant C. Thus combined with the assumptions on F, one knows

that

νÂNkuNk
ε − FNk

(
uNk
ε

)
w−→ A in L2

F
(
Ω;L2

(
0, τ ;H−1

))
(4.27)

for some function A and some subsequenceNk. By Lemma 4.1,

∥
∥
∥B̂N(uNε (t))

∥
∥
∥

H−1
= sup

‖w‖=1

∣
∣
∣
〈
B̂N
(
uNε (t)

)
,w
〉∣
∣
∣

≤ sup
‖w‖=1

2
∥
∥
∥uNε (t)

∥
∥
∥
3/2∣∣
∣uNε (t)

∣
∣
∣
1/2

‖w‖
L4

≤ K
∥
∥
∥uNε (t)

∥
∥
∥
3/2
.

(4.28)

Thus

B̂Nk

(
uNk
ε

)
w−→ B in L4/3

F
(
Ω;L4/3

(
0, τ ;H−1

))
(4.29)

for some function B and some subsequenceNk. For every t, we define

Lt : L2
F
(
Ω;L2(0, τ ;LQ)

)
−→ L2

F
(
Ω;L2

(
0, τ ;H−1

))

M 	−→
∫ τ

t∧τ
M(s)dW(s).

(4.30)

It can be shown that Lt is a bounded linear operator. Hence

∫ τ

t∧τ
ZNk
ε (s)dW

Nk(s) w−→
∫ τ

t∧τ
Zε(s)dW(s) in L2

F
(
Ω;L2

(
0, τ ;H−1

))
. (4.31)

Similarly, one can prove that

∫ τ

t∧τ

{
νÂNkuNk

ε (s) − FNk

(
uNk
ε (s)

)
+ B̂Nk

(
uNk
ε (s)

)}
ds

w−→
∫ τ

t∧τ
{A(s) + B(s)}ds (4.32)

in L4/3
F (Ω;L4/3(0, τ ;H−1)) and

∫ τ

t∧τ
ZNk
ε (s)dWNk(s) w−→

∫ τ

t∧τ
Zε(s)dW(s) in L2

F
(
Ω;L2

(
0, τ ;H−1

))
. (4.33)
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Also

Lp : L∞
F
(
[0, τ] ×Ω;L2

)
−→ L2

F
(
Ω;L2

(
0, τ ;H−1

))
,

p 	−→
∫ τ

t∧τ
∇p(s)ds

(4.34)

is a bounded linear operator. Since pNk
ε ∈ L∞

F ([0, τ] ×Ω;L2), we have

∫ τ

t∧τ
∇pNk

ε (s)ds w−→
∫ τ

t∧τ
∇pε(s)ds in L2

F
(
Ω;L2

(
0, τ ;H−1

))
. (4.35)

Similarly,

∫ τ

t∧τ
∇ · uNk

ε (s)ds w−→
∫ τ

t∧τ
∇ · uε(s)ds in L2

F
(
Ω;L2

(
0, τ ;H−1

))
. (4.36)

To sum up,

uε(t ∧ τ) = ξ +
∫ τ

t∧τ

{
A(s) + B(s) +∇pε(s)

}
ds −

∫ τ

t∧τ
Zε(t)dW(s),

εpε(t ∧ τ) = εη +
∫ τ

t∧τ
∇ · uε(s)ds −

∫ τ

t∧τ
Zε(s)dW(s)

(4.37)

hold P-a.s.

Step 2 (The Itô formula). For convenience, let us denote Nk by N again. Let M ≤ N and
(H1

0)M = PM(H1
0). For any v ∈ L∞

F ([0, τ] ×Ω; (H1
0)M) and some constant K, such that ‖v‖ ≤ K

uniformly, define

r(t) =
∫T

t

{

2α +
27

8(κ − ν)3
K4

}

ds. (4.38)

Applying the Itô formula to e−r(t)|uNε (t)|2, we get

∣
∣
∣ξN
∣
∣
∣
2 − e−r(0)

∣
∣
∣uNε (0)

∣
∣
∣
2
=
∫ τ

0
−ṙ(s)e−r(s)

∣
∣
∣uNε (s)

∣
∣
∣
2
ds

+ 2
∫ τ

0
e−r(s)

〈
−νÂNuNε (s) − B̂N

(
uNε (s)

)
− ∇pNε (s)

+FN
(
uNε (s)

)
,uNε (s)

〉
ds

+ 2
∫ τ

0
e−r(s)

〈
ZNε (s)dW

N(s),uNε (s)
〉
+
∫ τ

0
e−r(s)

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds.

(4.39)
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By taking the expectation, we get

E
∣
∣
∣ξN
∣
∣
∣
2 − Ee−r(0)

∣
∣
∣uNε (0)

∣
∣
∣
2
+ 2E

∫ τ

0
e−r(s)

〈
∇pNε (s),uNε (s)

〉
ds

= E
∫ τ

0
e−r(s)

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds

− 2E
∫ τ

0
e−r(s)

〈

νÂNuNε (s) − FN
(
uNε (s)

)
+ B̂N

(
uNε (s)

)
+
1
2
ṙ(s)uNε (s),uNε (s)

〉

ds.

(4.40)

Clearly, limN→∞E|ξN |2 = E|ξ|2. By (3.5), it is clear that

2E
∫ τ

0
e−r(s)

〈
∇pNε (s),uNε (s)

〉
ds = εE

∣
∣
∣ηN
∣
∣
∣
2 − εEe−r(0)

∣
∣
∣pNε (0)

∣
∣
∣
2 − 1

ε
E

∫ τ

0
e−r(s)

∥
∥
∥ZN

ε (s)
∥
∥
∥
2

LQ
ds.

(4.41)

Because of (4.40) and (4.41), one gets the following:

lim
N→∞

2E
∫ τ

0
e−r(s)

〈

νÂNuNε (s) − FN
(
uNε (s)

)
+ B̂N

(
uNε (s)

)
+
1
2
ṙ(s)uNε (s),uNε (s)

〉

ds

= −E|ξ|2 + lim
N→∞

Ee−r(0)
∣
∣
∣uNε (0)

∣
∣
∣
2
+ lim
N→∞

E

∫ τ

0
e−r(s)

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds

− εE∣∣η∣∣2 + ε lim
N→∞

Ee−r(0)
∣
∣
∣pNε (0)

∣
∣
∣
2
+
1
ε
lim
N→∞

E

∫ τ

0
e−r(s)

∥
∥
∥ZN

ε (s)
∥
∥
∥
2

LQ
ds

≥ 2E
∫ τ

0
e−r(s)

〈

A(s) + B(s) +
1
2
ṙ(s)uε(s),uε(s)

〉

ds.

(4.42)

Note that one gets the last inequality by applications of the Itô formula to (4.37), and the fact
that

lim
N→∞

Ee−r(0)
∣
∣
∣uNε (0)

∣
∣
∣
2 ≥ Ee−r(0)|uε(0)|2,

lim
N→∞

Ee−r(0)
∣
∣
∣pNε (0)

∣
∣
∣
2 ≥ Ee−r(0)∣∣pε(0)

∣
∣2,

lim
N→∞

E

∫ τ

0
e−r(s)

∥
∥
∥ZNε (s)

∥
∥
∥
2

LQ

ds ≥ E
∫ τ

0
e−r(s)‖Zε(s)‖2LQ

ds,

lim
N→∞

E

∫ τ

0
e−r(s)

∥
∥
∥ZN

ε (s)
∥
∥
∥
2

LQ
ds ≥ E

∫ τ

0
e−r(s)‖Zε(s)‖2LQds.

(4.43)
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Step 3 (Monotonicity). By Corollary 4.6, we get

E

∫ τ

0
e−r(s)

〈

νÂuNε (s) + B̂
(
uNε (s)

)
− F
(
uNε (s)

)
+
1
2
ṙ(s)uNε (s),uNε (s) − v(s)

〉

ds

≤ E
∫ τ

0
e−r(s)

〈

νÂv(s) + B̂(v(s)) − F(v(s)) +
1
2
ṙ(s)v(s),uNε (s) − v(s)

〉

ds.

(4.44)

Note that v ∈ L∞
F ([0, τ] ×Ω; (H1

0)M) whereM ≤N. An application of (4.42) yields

E

∫ τ

0
e−r(s)〈A(s) + B(s) +

1
2
ṙ(s)uε(s),uε(s) − v(s)〉ds

≤ E
∫ τ

0
e−r(s)〈νÂv(s) + B̂(v(s)) − F(v(s)) +

1
2
ṙ(s)v(s),uε(s) − v(s)〉ds.

(4.45)

Since the above inequality is true for all M ∈ N and K > 0, it remains true for all
v ∈ L∞

F ([0, τ] ×Ω;H1
0). Thus let v = uε + λwwhere w ∈ L∞

F ([0, τ] ×Ω;H1
0) and λ > 0, and

E

∫ τ

0
e−r(s)〈A(s) + B(s) − νÂuε(s) − B̂(uε(s) + λw(s)) + F(uε(s) + λw(s)), λw(s)〉ds

≥ E
∫ τ

0
e−r(s)〈λνÂw(s) +

λ

2
ṙ(s)w(s), λw(s)〉ds.

(4.46)

By the fact that

〈B̂(uε(t) + λw(t)),w(t)〉

= −〈B̂(uε(t) + λw(t),w(t)),uε(t) + λw(t)〉

= −〈B̂(uε(t) + λw(t),w(t)),uε(t)〉

= −〈B̂(uε(t),w(t)),uε(t)〉 − λ
〈
B̂(w(t),w(t)),uε(t)

〉

= 〈B̂(uε(t)),w(t)〉 + λ
〈
B̂(w(t),uε(t)),w(t)

〉
,

(4.47)

we have

E

∫ τ

0
e−r(s)

〈
A(s) + B(s) − νÂuε(s) − B̂(uε(s)) + F(uε(s) + λw(s)),w(s)

〉
ds

≥ λE
∫ τ

0
e−r(s)

〈

νÂw(s) + B̂(w(s),uε(s)) +
1
2
ṙ(s)w(s),w(s)

〉

ds.

(4.48)
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Letting λ → 0, and by the arbitrariness of w and the fact that F is continuous, we know that

A(s) + B(s) = νÂuε(s) + B̂(uε(s)) − F(uε(s)) P-a.s., (4.49)

and this completes the proof.

5. Uniqueness, Continuity and Convergence of Solutions

5.1. Uniqueness and Continuity

The backwardNavier-Stokes equation is well-posed if the regularity of the terminal condition
in Proposition 4.9 is imposed. Only the uniqueness and continuity are left to check. Let us first
prove the following lemma.

Lemma 5.1. For any u and v in H
1
0 and w ∈ L

4, one has

∣
∣
∣
〈
B̂(u) − B̂(v),w

〉∣
∣
∣ ≤ C(‖u‖L4 + ‖v‖

L4)‖u − v‖‖w‖
L4 + C(‖u‖ + ‖v‖)‖u − v‖

L4‖w‖
L4 . (5.1)

Proof. By Proposition 2.5,

∣
∣
∣
〈
B̂(u) − B̂(v),w

〉∣
∣
∣

=
∣
∣
∣−
〈
B̂(u,w),u

〉
+
〈
B̂(v,w),v

〉∣
∣
∣

=
∣
∣
∣−
〈
B̂(u,w),u − v

〉
−
〈
B̂(u,w),v

〉
+
〈
B̂(v,w),v

〉∣
∣
∣

=
∣
∣
∣−
〈
B̂(u,w),u − v

〉
−
〈
B̂(u − v,w),v

〉∣
∣
∣

=
∣
∣
∣
〈
B̂(u,u − v),w

〉
+
〈
B̂(u − v,v),w

〉∣
∣
∣

≤ ‖u‖
L4‖u − v‖‖w‖

L4 +
1
2
‖u‖‖u − v‖

L4‖w‖
L4 + ‖u − v‖

L4‖v‖‖w‖
L4

+
1
2
‖u − v‖‖v‖

L4‖w‖
L4

≤ C(‖u‖
L4 + ‖v‖

L4)‖u − v‖‖w‖
L4 + C(‖u‖ + ‖v‖)‖u − v‖

L4‖w‖
L4 .

(5.2)

Theorem 5.2. Let ξ ∈ L∞
Fτ
(Ω;H1

0) and η ∈ L∞
Fτ
(Ω;H1

0). System (4.12) admits a unique adapted
solution in

L∞
F
(
[0, τ]×Ω;H1

0

)
×L2

F
(
Ω;L2(0, τ ;LQ)

)
×L∞

F
(
[0, τ]×Ω;H1

0

)
×L2

F
(
Ω;L2(0, τ ;LQ

))
. (5.3)
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Also the solution is continuous with respect to the terminal conditions in

L∞
(
[0, τ];L2

F
(
Ω;L2

))
× L2

F
(
Ω;L2(0, τ ;LQ)

)
× L∞

(
[0, τ];L2

F
(
Ω;L2

))
× L2

F
(
Ω;L2(0, τ ;LQ

))
.

(5.4)

Proof. The existence of an adapted solution is shown in Theorem 4.10. Suppose that
(uε1,Zε1, pε1, Zε1) and (uε2,Zε2, pε2, Zε2) are solutions of system (4.12) according to terminal
conditions (ξ1, η1) and (ξ2, η2), respectively. The regularity of the solutions is guaranteed by
Proposition 4.9. Denote

uε = uε1 − uε2, Zε = Zε1 − Zε2, Zε = Zε1 − Zε2,

pε = pε1 − pε2, ξ = ξ1 − ξ2, η = η1 − η2.
(5.5)

Then one has

duε(t) + νÂuε(t)dt +
(
B̂(uε1(t)) − B̂(uε2(t))

)
dt +∇pε(t)dt,

= (F(uε1(t)) − F(uε2(t)))dt + Zε(t)dW(t),

εdpε(t) +∇ · uε(t)dt = Zε(t)dW(t),

uε(τ) = ξ, pε(τ) = η.

(5.6)

Similar to Corollary 4.6, let us define

l(t) =
∫T

t

{

2α +
27

8(κ − ν)3
K2

0

}

ds, (5.7)

where K0 is the constant in Proposition 4.9. An application of the Itô formula to e−l(t)|uε(t)|2
and Corollary 4.6 imply

e−l(t∧τ)|uε(t ∧ τ)|2 +
∫ τ

t∧τ
e−l(s)

∥
∥
∥Zε(s)

∥
∥
∥
2

LQ

ds

=
∣
∣
∣ξ
∣
∣
∣
2
+ 2
∫ τ

t∧τ
e−l(s)

〈

νÂuε(s) −
(
B̂(uε1(s)) − B̂(uε2(s))

)
− (F(uε1(s)) − F(uε2(s)))

+
1
2
l̇(s)uε(s),uε(s)

〉

ds

+ 2
∫ τ

t∧τ
e−l(s)

〈∇pε(s),uε(s)
〉
ds − 2

∫ τ

t∧τ
e−l(s)

〈
Zε(s)dW(s),uε(s)

〉

≤
∣
∣
∣ξ
∣
∣
∣
2
+ ε
∫ τ

t∧τ
e−l(s)d

∣
∣pε(s)

∣
∣2 − 1

ε

∫ τ

t∧τ
e−l(s)

∥
∥
∥Zε(s)

∥
∥
∥
2

LQ
ds

− 2
∫ τ

t∧τ
e−l(s)〈Zε(t)dW(s), pε(s)〉ds − 2

∫ τ

t∧τ
e−l(s)〈Zε(s)dW(s),uε(s)〉.

(5.8)
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Taking the expectation, the above inequality becomes

E|uε(t ∧ τ)|2 + εE
∣
∣pε(t ∧ τ)

∣
∣2 + E

∫ τ

t∧τ

∥
∥
∥Zε(s)

∥
∥
∥
2

LQ

ds +
1
ε
E

∫ τ

t∧τ

∥
∥
∥Zε(s)

∥
∥
∥
2

LQ
ds

≤ e−l(0)
{

E
∣
∣
∣ξ
∣
∣
∣
2
+ εE

∣
∣η
∣
∣2
}

.

(5.9)

Thus we have proved the uniqueness and continuity of system (4.12).

Remark 5.3. The uniqueness and continuity with weaker terminal conditions, such as when
the terminal conditions are uniformly bounded in L2 sense, are still open. The difficulty lies
in the nonadaptiveness nature of the backward system. For instance, the function l1 defined
in Corollary 4.6 is not Ft adapted. This is why we defined another function l(t) in the proof of
the uniqueness based on the H

1
0-bound of the solution. Fortunately, l(t) is Ft adapted and has

similar properties as l1(t). One can also show the uniqueness and continuity using Lemma 5.1,
without introducing the function l(t).

5.2. The Convergence of the Solution As ε Approaches Zero

It is very interesting to study the asymptotic behavior of stochastic Navier-Stokes systemwith
artificial compressibility. We are going to show that as artificial compressibility vanishes, the
limit of the solution becomes the solution of the corresponding Navier-Stokes system for a
viscous incompressible flow given below:

du(t) = −νAu(t)dt − B(u(t))dt − ∇p(t) + F(t)dt + Z(t)dW(t),

∇ · u(t) = 0, u(τ) = ξ, p(τ) = η,
(5.10)

where Au � −(Δu) and B(u,v) � ((u · ∇)v) with the notation B(u) = B(u,u) (see Temam
[3]).

Theorem 5.4. Assume the conditions in Theorem 4.10(ii). Then as ε approaches 0, the first three
elements in the solution of (4.12), (uε,Zε, pε), converge to (u,Z, p), the solution of (5.10).

Proof. Similar to Step 1 of the proof of Theorem 4.10, we know that there exist u, p, Z and a
sequence of positive numbers {εi}∞i=1 such that εi → 0, uεi

w−→ u, pεi
w−→ p and Zεi

w−→ Z in
corresponding spaces.

From (4.18) and (4.20), one knows that along a subsequence,

E

〈√
εi
dpεi
dt

, h

〉

−→ E

〈
dD

dt
, h

〉

(5.11)

for some D ∈ L2
F(Ω;L2(0, τ ;L2)) and for all h ∈ L2

F(Ω;L2(0, τ ;L2)). Thus we get

E〈εi
dpεi
dt

, h〉 −→ 0 (5.12)
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in the sense of distribution. Since

〈
εdpεi(t) +∇ · uεi(t)dt, h(t)

〉
= 〈Zεi(t)dW(t), h(t)〉, (5.13)

we know that

E

∫ τ

0
〈∇ · u(t), h(t)〉dt = lim

i→∞
E

∫ τ

0
〈∇ · uεi(t), h(t)〉dt = − lim

i→∞
E

∫ τ

0

〈
εdpεi(t), h(t)

〉
= 0 (5.14)

for all h ∈ L2
F(Ω;L2(0, τ ;L2)). So ∇ · u = 0 P-a.s. This shows that the limiting system is

incompressible.
Similar to Steps 2 and 3 in the proof of Theorem 4.10, we are able to show that (u,Z, p)

solves (5.10).
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