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So far there are not many results on the stability for stochastic functional differential equations
with infinite delay. Themain aim of this paper is to establish some new criteria on the stability with
general decay rate for stochastic functional differential equations with infinite delay. To illustrate
the applications of our theories clearly, this paper also examines a scalar infinite delay stochastic
functional differential equations with polynomial coefficients.

1. Introduction

Stability is one of the central problems for both deterministic and stochastic dynamic systems.
Due to introduction of stochastic factors, stochastic stability mainly includes almost sure
stability and the moment stability. In a series of papers (see [1–5]), Mao et al. examined
the moment exponential stability and almost sure exponential stability for various stochastic
systems.

In many cases we may find that the Lyapunov exponent equals zero, namely, the
equation is not exponentially stable, but the solution does tend to zero asymptotically. By
this phenomenon,Mao [6] considered polynomial stability of stochastic system, which shows
that solution tends to zero polynomially. Then in [7], he extended these two classes of stability
into the general decay stability.

In general, time delay and system uncertainty are commonly encountered and are
often the source of instability (see [8]). Many studies focused on stochastic systems with
delay. Especially, infinite delay systems have received the increasing attention in the recent
years since they play important roles in many applied fields (cf. [7, 9–13]). Under the
Lipschitz condition and the linear growth condition, Wei and Wang [14] built the existence-
and-uniqueness theorem of global solutions to stochastic functional differential equations



2 International Journal of Stochastic Analysis

with infinite delay. There is also some other literature to consider stochastic functional
differential equations with infinite delay and we here only mention [15–17].

However, to the best knowledge of the authors, there are not many results on the
stability with general decay rate for stochastic functional equations with infinite delay. It is
therefore interesting to consider the stability of infinite delay stochastic systems. The main
aim of this paper is to establish some new criteria for pth moment stability and almost surely
asymptotic stability with general decay rate of the global solution to stochastic functional
differential equations with infinite delay

dx(t) = f(t, x(t), xt)dt + g(t, x(t), xt)dw(t), (1.1)

where f = (f1, . . . , fd)
T : R+ × R

d × Cb((−∞, 0];Rd) → R
d, and g = [gij]d×r : R+ × R

d ×
Cb((−∞, 0];Rd) → R

d×r are Borel measurable functionals, and w(t) is an r-dimensional
Brownian motion. Without the linear growth condition, we will show that (1.1) has the
following properties.

(i) This equation almost surely admits a global solution on [0,∞).

(ii) There exists a pair of positive constants p and q such that this global solution has
properties

lim sup
t→∞

ln E|x(t, ξ)|p

lnψ(t)
� −q,

lim sup
t→∞

ln |x(t, ξ)|
lnψ(t)

� −
q

p
, a.s.,

(1.2)

where ψ(t) is a general decay function defined in the next section, namely, this
solution is pth moment and almost surely asymptotically stable with general decay
rate.

In the next section, we introduce some necessary notation and definitions. Section 3
gives the main result of this paper by establishing a new criteria for pth moment stability
and almost surely asymptotic stability with general decay rate for the global solution of
(1.1). To make our results more applicable, Section 4 gives the further result. To illustrate
the application of our result, Section 5 considers a scalar stochastic functional differential
equation with infinite delay in detail.

2. Preliminaries

Throughout this paper, unless otherwise specified, we use the following notation. Let
(Ω,F, {Ft}t�0,P) be a complete probability space with the filtration {Ft}t�0 satisfying the
usual conditions, that is, it is right continuous and increasing while F0 contains all P-null
sets. w(t) is an r-dimensional Brownian motion defined on this probability space.

Let R+ = [0,+∞), R++ = (0,+∞), and R− = (−∞, 0]. Let |x| be the Euclidean norm
of vector x ∈ R

n. If A is a vector or matrix, its transpose is denoted by AT. For a matrix A,
its trace norm is denoted by |A| =

√
trace(ATA). Denote by Cb = Cb(R−;Rd) the family of

all bounded continuous functions ϕ from R− to R
d with the norm ‖ϕ‖ = sup−∞<θ�0|ϕ(θ)|,
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which forms a Banach space. In this paper, const always represents some positive constants
whose precise value is not important. If x(t) is an R

d-valued stochastic process on R, for any
t � 0, define xt = xt(θ) = {x(t + θ) : θ ∈ R−}. C2(Rd,R) denotes the family of continuously
twice differentiable R-valued functions defined on R

d. For any V (x) ∈ C2(Rd,R+), define an
operator LV : R+ × R

d × Cb → R by

LV
(
t, x, ϕ

)
= Vx(x)f

(
t, x, ϕ

)
+
1
2
trace

[
gT(t, x, ϕ

)
Vxx(x)g

(
t, x, ϕ

)]
, (2.1)

where

Vx(x) =
(
∂V (x)
∂x1

,
∂V (x)
∂x2

, . . . ,
∂V (x)
∂xd

)
, Vxx(x) =

[
∂2V (x)
∂xi∂xj

]

d×d
. (2.2)

If x(t) is a solution of (1.1), for any V (x) ∈ C2(Rd,R), applying the Itô formula yields

dV (x(t)) = LV (x(t))dt + Vx(x(t))g(t, x(t), xt)dw(t), (2.3)

where LV (x(t)) = LV (t, x(t), xt).
Let us introduce the following ψ-type function, which will be used as the decay

function.

Definition 2.1. The function ψ : R → (0,∞) is said to be the ψ-type function if it satisfies the
following conditions:

(i) it is continuous and nondecreasing in R and differentiable in R+,

(ii) ψ(0) = 1 and ψ(∞) = ∞,

(iii) φ := supt�0ψ1(t) <∞, where ψ1(t) = ψ′(t)/ψ(t),
(iv) for any θ � 0 and t � 0, ψ(t) � ψ(−θ)ψ(t + θ).

It is is easy to find that functions ψ(t) = eγt and ψ(t) = (1 + t+)γ for any γ, γ > 0 are
ψ-type functions.

For any p, q � 0 and ϕ ∈ Cb, define

Tp,q

(
ϕ
)
=
∫0

−∞
ψq(θ)

∣∣ϕ(θ)
∣∣pdθ (2.4)

and C(p, q) = {ϕ ∈ Cb : Tp,q(ϕ) <∞}. Denote byM0 the family of all probability measures on
R−. For any μ ∈M0 and ε � 0, define

Mε =

{

μ ∈M0 : με :=
∫0

−∞
ψε(−θ)dμ(θ) <∞

}

. (2.5)

We also impose the following standard assumption on coefficients f and g.
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Assumption 2.2. Let f and g satisfy the Local Lipschitz condition. That is, for every integer
n � 1, there is kn > 0 such that

∣
∣f
(
t, x, ϕ

)
− f
(
t, x, ϕ

)∣∣ ∨
∣
∣g
(
t, x, ϕ

)
− g
(
t, x, ϕ

)∣∣ � kn
(
|x − x| +

∥
∥ϕ − ϕ

∥
∥), (2.6)

for all t � 0 and those x, x ∈ R
n, ϕ, ϕ ∈ Cb with |x| ∨ |x| ∨ ‖ϕ‖ ∨ ‖ϕ‖ � n.

Let us present the continuous semimartingale convergence theory (cf. [18]).

Lemma 2.3. Let M(t) be a real-value local martingale with M(0) = 0 a.s. Let ζ be a nonnegative
F0-measurable random variable. If X(t) is a nonnegative continuous Ft-adapted process and satisfies

X(t) ≤ ζ +M(t) for t ≥ 0, (2.7)

then EX(t) ≤ ζ and X(t) is almost surely bounded, namely, limt→∞X(t) <∞, a.s.

3. Main Results

In this section, we establish the stability result with general decay rate for (1.1). This result
includes the global existence and uniqueness of the solution, the pth moment stability, and
almost surely asymptotic stability with general decay rate.

In order for a stochastic differential equation to have a unique global solution for
any given initial value, the coefficients of this equation are generally required to satisfy
the linear growth condition and the local Lipschitz condition (see [18, 19]) or a given non-
Lipschitz condition and the linear growth condition (cf. [20, 21]). These show that the linear
growth condition plays an important role to suppress the potential explosion of solutions
and guarantee existence of global solutions. References [16, 22] extended these two classes
conditions to infinite delay cases. However, many well-known infinite delay systems such
that the Lotka-Volterra (see [13]) do not satisfy the linear growth condition. It is therefore
necessary to examine the global existence of the solution for (1.1).

It is well known for stochastic differential equations that the linear growth condition
for global solutions may be replaced by the use of the Lyapunov functions [23, 24]. By this
idea, this paper establishes the existence-and-uniqueness theorem for (1.1).

For i = 1, 2, . . . , k, let ζi, αi ∈ R+ and probability measures μi ∈ Mε. Define Γε : R
n ×

Cb → R as

Γε
(
x, ϕ
)
=

k∑

i=0

ζi

(∫0

−∞

∣∣ϕ(θ)
∣∣αidμi(θ) − μiε|x|αi

)

, (3.1)

where μiε is defined by (2.5). Then the following theorem follows.

Theorem 3.1. Assume that there exist positive constants a, p, ε, ζi, αi and probability measures
μi ∈ Mε, where i = 1, 2, . . . , k, such that for any x ∈ R

d and ϕ ∈ Cb, the function V (x) = |x|p
satisfies

LV
(
t, x, ϕ

)
� Γε
(
x, ϕ
)
− a|x|p. (3.2)
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Under Assumption 2.2, there exists a constant q > 0 such that for any ξ ∈ C(α̂, q), where α̂ =
min0�i�k{αi}, (1.1) almost surely admits a unique global solution x(t) on [0,∞) and this solution
has the properties (1.2).

Proof. For sufficiently small q ∈ (0, ε), fix the initial data ξ ∈ C(α̂, q). We divide this proof into
the two steps.

Step 1 (existence and uniqueness of the global solution). Under Assumption 2.2, (1.1) has a
unique maximal local solution x(t) on [0, ρe) (see [21]), where ρe is the explosion time. If we
can show ρe = ∞, a.s., then x(t) is actually a global solution. Let n0 be a positive integer such
that supθ�0|ξ(θ)| < n0. For each integer n � n0, define the stopping time

σn = inf
{
t ∈
[
0, ρe
)
: |x(t)|p � n

}
. (3.3)

Obviously, σn is increasing and σn → σ∞ � ρe as n → ∞. Thus, to prove ρe = ∞ a.s., it is
sufficient to show that σ∞ = ∞ a.s., which is equivalent to the statement that for any t > 0,
P(σn � t) → 0 as n → ∞.

For any t � 0, define tn = t ∧ σn. Applying the Itô formula to ψq(t)V (x(t)) yields

nP(σn � t) = E
[
I{σn�t}V (x(tn))

]

� EV (x(tn))

� E
[
ψq(tn)V (x(tn))

]

= const + E
∫ tn

0
L
[
ψq(s)V (x(s))

]
ds

= const + E
∫ tn

0
ψq(s)

[
LV (x(s)) + qψ1(s)V (x(s))

]
ds

� const + E
∫ tn

0
ψq(s)

[
LV (x(s)) + qφV (x(s))

]
ds

� const + E
∫ tn

0
ψq(s)

[
Γε(x(s), xs) − a|x(s)|p + qφV (x(s))

]
ds.

(3.4)

Note that by (2.5), μiε ≥ μiq for q ≤ ε. By the Fubini theorem and a substitution technique, we
have

∫ tn

0
ψq(s)Γε(x(s), xs)ds

=
k∑

i=0

ζi

[∫0

−∞
dμi(θ)

∫ tn

0
ψq(s)|x(s + θ)|αids − μiε

∫ tn

0
ψq(s)|x(s)|αids

]
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�
k∑

i=0

ζi

[∫0

−∞
dμi(θ)

∫ tn+θ

θ

ψq(s − θ)|x(s)|αids − μiq
∫ tn

0
ψq(s)|x(s)|αids

]

�
k∑

i=0

ζi

[∫0

−∞
ψq(−θ)dμi(θ)

∫ tn+θ

θ

ψq(s)|x(s)|αids − μiq
∫ tn

0
ψq(s)|x(s)|αids

]

�
k∑

i=0

ζi

[

μiq

∫ tn

−∞
ψq(s)|x(s)|αids − μiq

∫ tn

0
ψq(s)|x(s)|αids

]

=
k∑

i=0

ζiμiq

∫0

−∞
ψq(θ)|ξ(θ)|αidθ.

(3.5)

Noting that ξ ∈ C(α̂, q), we have ξ ∈ C(αi, q), which implies that for all i = 1, . . . , k,

∫0

−∞
ψq(θ)|ξ(θ)|αidθ <∞. (3.6)

Hence, there exists

∫ tn

0
ψq(s)Γε(x(s), xs)ds <∞. (3.7)

By (3.4) and (3.7), we have

nP(σn � t) � const + E
∫ tn

0
ψq(s)

[
qφV (x(s)) − a|x(s)|p

]
ds. (3.8)

Choosing q sufficiently small such that qφ � a, by (3.8) we have nP(σn � t) � const, which
implies that P(σn � t) → 0 as n → ∞.

Step 2 (Proof of (1.2)). Define

h(t) = ψq(t)V (x(t)). (3.9)

By the Itô formula and (3.2),

h(t) = h(0) +
∫ t

0
ψq(s)

[
LV (x(s)) + qψ1(s)V (x(s))

]
ds +M(t)

� h(0) +
∫ t

0
ψq(s)

[
Γε(x(s), xs) − a|x|p + qφV (x(s))

]
ds +M(t),

(3.10)



International Journal of Stochastic Analysis 7

where

M(t) =
∫ t

0
ψq(s)Vx(x(s))g(s, x(s), xs)dw(s) (3.11)

is a continuous local martingale withM(0) = 0. Similar to (3.7), there exists

∫ t

0
ψq(s)Γε(x(s), xs)ds <∞. (3.12)

By (3.10), (3.12), noting that qφ � a,

h(t) � const +
∫ t

0
ψq(s)

(
qφ − a

)
|x(s)|pds +M(t)

� const +M(t).

(3.13)

By Lemma 2.3, we have

lim sup
t→∞

Eh(t) <∞, lim sup
t→∞

h(t) <∞, a.s., (3.14)

which implies the required assertions.

4. Further Result

In Theorem 3.1, it is not convenient to check condition (3.2) since it is not related to
coefficients f and g explicitly. To make our theory more applicable, let us impose the
following assumption on coefficients f and g.

Assumption 4.1. There exist positive constants σ, σ̃, α, β, ε, and nonnegative constants σ, λ, λ,
λ̃, σi, σi, λj , λj , αi, βj , such that for any x ∈ R

n, ϕ ∈ Cb,

xTf
(
t, x, ϕ

)
� −σ|x|α+2 + σ

∫0

−∞

∣∣ϕ(θ)
∣∣α+2dμ(θ) − σ̃|x|2

+
k∑

i=0

(

σi|x|αi+2 + σi
∫0

−∞

∣∣ϕ(θ)
∣∣αi+2dμi(θ)

)

,

(4.1)

∣∣g
(
t, x, ϕ

)∣∣ � λ|x|β+1 + λ
∫0

−∞

∣∣ϕ(θ)
∣∣β+1dν(θ) + λ̃|x|

+
l∑

j=0

(

λj |x|βj+1 + λj
∫0

−∞

∣∣ϕ(θ)
∣∣βj+1dνj(θ)

)

,

(4.2)

where 0 � α0 < α1 < · · · < αk < α, 0 � β0 < β1 < · · · < βl < β, 2β � α, and μ, μi, ν, νj ∈Mε.
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We also need the following lemma.

Lemma 4.2. Let α, p > 0. Assume that α0, α1, . . . , αk, c0, c1, . . . , ck are nonnegative constants such
that 0 � α0 � α1 � · · · � αk � α, b > c =:

∑k
i=0 ck and a > cρ, where

ρ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if α0 = 0,

0, if α0 = α,

(α − α0)
(
αα00
αα

)1/(α−α0)

, if α0 ∈ (0, α),

(4.3)

then, there is a ∈ (0, a) such that for all t � 0,

atp + btα+p −
k∑

i=0

cit
αi+p � atp. (4.4)

Proof. Noting that a > cρ, choose the constant ã such that

cρ < ã < a. (4.5)

If we can show that for any t ∈ [0,∞), F(t) =: ã + btα −
∑k

i=0 cit
αi � 0, then the inequality

a + btα −
k∑

i=0

cit
αi � a − ã (4.6)

holds. Let a = a − ã. This is equivalent to prove that

atp + btα+p −
k∑

i=0

cit
αi+p � atp. (4.7)

For all t ∈ (1,+∞), there exists F(t) � ã + btα − ctα. By ã > cρ � 0 and b > c, we have
F(t) � ã + btα − ctα > 0.

For all t ∈ [0, 1], there exists F(t) � F∗(t) =: ã+btα−ctα0 . To prove F(t) � 0, we consider
three cases of α0, respectively.

Case 1. α0 = 0. By α0 = 0, we have F∗(t) = ã + btα − c and ã ∈ (c, a). Then there exists
F(t) � F∗(t) > 0.

Case 2. α0 = α. By α0 = α, we have F∗(t) = ã + btα − ctα and ã ∈ (0, a). Noting b > c, we obtain
F(t) � F∗(t) > 0.
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Case 3. α0 ∈ (0, α). Without the loss of generality, we assume that c > 0. Obviously, on (0,+∞)
the derivative function F ′

∗(t) = bαt
α−1−cα0tα0−1 has a unique null point t0 =: (α0c/αb)1/(α−α0) <

1. We can compute that

F∗(t0) = ã + b
(α0c
αb

)α/(α−α0)
− c
(α0c
αb

)α0/(α−α0)

= ã − c
( c
b

)α0/(α−α0)
(α − α0)

(
αα00
αα

)1/(α−α0)

.

(4.8)

Since 0 < α0 < α and b > c, we know that

0 <
( c
b

)α0/(α−α0)
< 1. (4.9)

By (4.8) and (4.9), we obtain that F∗(t0) > ã − cρ > 0. Then we have that for any t ∈ [0, 1],
F(t) � F∗(t) � F∗(t0) > 0. The proof is completed.

For the purpose of simplicity, we introduce the following notations:

σ· =
k∑

i=0

σi, σ · =
k∑

i=0

σi, λ· =
l∑

j=0

λj , λ· =
l∑

j=0

λj ,

Q = σ − σ· − σ · − σ, S = λ + λ + λ̃ + λ· + λ·

(4.10)

Then the following theorem follows.

Theorem 4.3. Let Assumptions 2.2 and 4.1 hold. Assume that

2Q > S
(
S − λ̃

)
, (4.11)

2σ̃ − 2ρ(σ· + σ ·) > S
[
λ̃ + ρ

(
S − λ̃

)]
, (4.12)

where ρ is defined by Lemma 4.2 except that α0 is replaced by α0 ∧ 2β. For any

p ∈
(
2, p1 ∧ p2

)
, (4.13)

where

p1 = 1 +
2Q

S
(
S − λ̃

) , p2 = 1 +
2σ̃ − 2ρ(σ· + σ ·)

S
[
λ̃ + ρ

(
S − λ̃

)] , (4.14)

there exists a positive constant q such that for any initial data ξ ∈ C((α0 ∧ 2β0) + p, q), (1.1) admits
a unique global solution x(t) on [0,∞) and this solution has the properties (1.2).
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Proof. Define V (x) = |x|p for p > 2. Applying (2.1) gives

LV
(
t, x, ϕ

)
= p|x|p−2xTf +

p

2
(
p − 2
)
|x|p−4

∣
∣
∣gTx
∣
∣
∣
2
+
p

2
|x|p−2

∣
∣g
∣
∣2

� p|x|p−2xTf +
p

2
(
p − 1
)
|x|p−2

∣
∣g
∣
∣2

=: I1 + I2.

(4.15)

By (4.1) and the Young inequality,

I1 = p|x|p−2xTf

� p|x|p−2
[

−σ|x|α+2 + σ
∫0

−∞

∣∣ϕ(θ)
∣∣α+2dμ(θ) − σ̃|x|2

+
k∑

i=0

(

σi|x|αi+2 + σi
∫0

−∞

∣∣ϕ(θ)
∣∣αi+2dμi(θ)

)]

� −p
(
σ − σ

p − 2
α + p

)
|x|α+p − pσ̃|x|p + pσ α + 2

α + p

∫0

−∞

∣∣ϕ(θ)
∣∣α+pdμ(θ)

+ p
k∑

i=0

(
σi + σi

p − 2
αi + p

)
|x|αi+p + p

k∑

i=0

σi
αi + 2
αi + p

∫0

−∞

∣∣ϕ(θ)
∣∣αi+pdμi(θ).

(4.16)

Recall the following elementary inequality: for any λj � 0 and xj ∈ R, j = 0, 1, . . . , n, applying
the Hölder inequality yields

⎛

⎝
n∑

j=0

λjxj

⎞

⎠

2

�
n∑

j=0

λj
n∑

j=0

λjx
2
j . (4.17)

By (4.2) and (4.17), applying the Young inequality and the Hölder inequality, we have

I2 =
p

2
(
p − 1
)
|x|p−2

∣∣g
∣∣2

�
p
(
p − 1
)

2
|x|p−2

[

λ|x|β+1 + λ
∫0

−∞

∣∣ϕ(θ)
∣∣β+1dν(θ) + λ̃|x|

+
l∑

j=0

(

λj |x|βj+1 + λj
∫0

−∞

∣∣ϕ(θ)
∣∣βj+1dνj(θ)

)⎤

⎦

2
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�
Sp
(
p − 1
)

2

[(
λ + λ

p − 2
2β + p

)
|x|2β+p + λ

2β + 2
2β + p

∫0

−∞

∣
∣ϕ(θ)

∣
∣2β+pdν(θ) + λ̃|x|p

+
l∑

j=0

(

λj + λj
p − 2
2βj + p

)

|x|2βj+p +
l∑

j=0

λj
2βj + 2
2βj + p

∫0

−∞

∣
∣ϕ(θ)

∣
∣2βj+pdνj(θ)

⎤

⎦.

(4.18)

Substituting (4.16) and (4.18) into (4.15) yields

LV
(
t, x, ϕ

)
� Γε
(
x, ϕ
)
−
p

2
H(x), (4.19)

where

Γε
(
x, ϕ
)
=

k∑

i=0

pσi
αi + 2
αi + p

(∫0

−∞

∣∣ϕ(θ)
∣∣αi+pdμi(θ) − μiε|x|αi+p

)

+ pσ
α + 2
α + p

(∫0

−∞

∣∣ϕ(θ)
∣∣α+pdμ(θ) − με|x|α+p

)

+
l∑

j=0

Sp
(
p − 1
)

2
λj

2βj + 2
2βj + p

(∫0

−∞

∣∣ϕ(θ)
∣∣2βj+pdνj(θ) − νjε|x|2βj+p

)

+
Sp
(
p − 1
)

2
λ
2β + 2
2β + p

(∫0

−∞

∣∣ϕ(θ)
∣∣2β+pdν(θ) − νε|x|2β+p

)

,

(4.20)

whose expression is similar to (3.1) and

H(x) = a|x|p + b(ε)|x|α+p − c̃(ε)|x|2β+p −
k∑

i=0

ci(ε)|x|αi+p −
l∑

j=0

c̃j(ε)|x|2βj+p, (4.21)

in which

a = 2σ̃ − S
(
p − 1
)
λ̃,

b(ε) = 2σ − 2σ
p − 2
α + p

− 2σ
α + 2
α + p

με,

c̃(ε) = S
(
p − 1
)
(
λ + λ

p − 2
2β + p

+ λ
2β + 2
2β + p

με

)
,

ci(ε) = 2σi + 2σi
p − 2
αi + p

+ 2σi
αi + 2
αi + p

μiε,

c̃j(ε) = S
(
p − 1
)
(

λj + λj
p − 2
2βj + p

+ λj
2βj + 2
2βj + p

νjε

)

.

(4.22)
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Let c(ε) = c̃(ε) +
∑k

i=0 ci(ε) +
∑l

j=0 c̃j(ε). Note that b(0) = 2(σ − σ), c̃(0) = S(p − 1)(λ + λ),

ci(0) = 2(σi + σi), c̃j(0) = S(p − 1)(λj + λj), c(0) = S(p − 1)(S − λ̃) + 2(σ. + σ.). By (4.13), we
obtain that c̃(0) > 0, c(0) > 0, and c̃j(0) > 0 for all 0 � j � l. By (4.11) and (4.13), we have
b(0) > c(0). By (4.12) and (4.13), we obtain a(0) > ρc(0). Choose sufficiently small ε such that

a > ρc(ε), b(ε) > c(ε). (4.23)

By (4.23) and Lemma 4.2, there exists a constant a ∈ (0, a) such that

a|x|p � a|x|p + b(ε)|x|α+p − c̃(ε)|x|2β+p −
k∑

i=0

ci(ε)|x|αi+p −
l∑

j=0

c̃j(ε)|x|2βj+p. (4.24)

By (4.19), (4.21), and (4.24), we therefore have

LV
(
t, x, ϕ

)
� Γε
(
x, ϕ
)
−
p

2
a|x|p, (4.25)

which implies that condition (3.2) is satisfied. By (4.20), (4.25), and the fact that 0 � α0 <
α1 < · · · < αk < α and 0 � β0 < β1 < · · · < βl < β, applying Theorem 3.1 yields that there
exists q > 0, such that for any ξ ∈ C((α0 ∧ 2β0) + p, q), the desired assertions hold. The proof is
completed.

5. A Scalar Case

To illustrate the application of our result, this section considers a scalar stochastic functional
differential equations

dx(t) =

[
n∑

r=1

xr(t)ur(t) +
∑

0�r<r+s�n

xr(t)
∫0

−∞
xs(t + θ)urs(t, θ)dθ

]

dt

+

[
m∑

k=1

xk(t)vk(t) +
∑

0�k<k+l�m

xk(t)
∫0

−∞
xl(t + θ)vkl(t, θ)dθ

]

dw(t),

(5.1)

where for r = 1, 2, . . . , n and k = 1, 2, . . . , m, ur(t), vk(t) ∈ C(R+), for 0 � r < r + s � n and
0 � k < k + l � m,urs(t, θ), vkl(t, θ) ∈ C(R+ × R−), n � 3 is an odd number, m � 2, and
2m � n + 1. In this section,

∑
0≤r<r+s≤n :=

∑n
r=0
∑n

s=0 with r + s ≤ n and
∑

0≤k<r+l≤m has similar
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explanation. Assume

u1(t) � −a1 < 0,

un(t) � −an < 0,

|ur(t)| � ar, where 2 � r � n − 1,

|urs(t, θ)| � ars2ε(1 − θ)−1−2ε, where 0 � r < r + s � n,

(5.2)

|vk(t)| � bk, where 1 � k � m,

|vkl(t, θ)| � bkl2ε(1 − θ)−1−2ε, where 0 � k < k + l � m,
(5.3)

in which ar , ars, bk, bkl are nonnegative constants and ε > 0. Define

f
(
t, x, ϕ

)
=

n∑

r=1

xr(t)ur(t) +
∑

0�r<r+s�n

xr(t)
∫0

−∞
ϕs(θ)urs(t, θ)dθ,

g
(
t, x, ϕ

)
=

m∑

k=1

xk(t)vk(t) +
∑

0�k<k+l�m

xk(t)
∫0

−∞
ϕl(θ)vkl(t, θ)dθ.

(5.4)

It is obvious that f(t, x, ϕ) and g(t, x, ϕ) satisfy the local Lipschtiz condition. By (5.4), (5.1)
can be rewritten as (1.1).

Choose the Ψ-type function ψ(t) = 1 + t+. Let dμ(θ) = 2ε(1 − θ)−1−2εdθ. It is obvious
that
∫0
−∞dμ(θ) = 1 and

∫0

−∞
ψε(−θ)dμ(θ) =

∫0

−∞

[
1 + (−θ)+

]ε2ε(1 − θ)−1−2εdθ =
∫0

−∞
2ε(1 − θ)−1−εdθ = 2 <∞, (5.5)

which shows that μ ∈Mε.
By (5.2) and the Young inequality, we have that

xTf
(
t, x, ϕ

)
� −a1|x|2 +

n−2∑

i=1

ai+1|x|i+2 − an|x|n+1 +
∑

0�r<r+s�n

ars|x|r+1
∫0

−∞

∣∣ϕ(θ)
∣∣sdθ

� −a1|x|2 +
n−2∑

i=1

ai+1|x|i+2 − an|x|n+1

+
∑

0�r<r+s�n

ars

(
r + 1

r + s + 1
|x|r+s+1 + s

r + s + 1

∫0

−∞

∣∣ϕ(θ)
∣∣r+s+1dμ(θ)

)
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= −
(

an −
∑

0�r<r+s=n

(r + 1)ars
n + 1

)

|x|n−1+2 +
∑

0�r<r+s=n

sars
n + 1

∫0

−∞

∣
∣ϕ(θ)

∣
∣n−1+2dμ(θ)

− a1|x|2 +
1
2
a01|x|2 +

n−2∑

i=1

(

ai+1 +
∑

0�r<r+s=i+1

(r + 1)ars
i + 2

)

|x|i+2

+
n−2∑

i=0

∑

0�r<r+s=i+1

sars
i + 2

∫0

−∞

∣
∣ϕ(θ)

∣
∣i+2dμ(θ)

=: −σ|x|α+2 + σ
∫0

−∞

∣
∣ϕ(θ)

∣
∣α+2dμ(θ) − σ̃|x|2

+
n−2∑

i=0

(

σi|x|αi+2 + σi
∫0

−∞

∣
∣ϕ(θ)

∣
∣αi+2dμ(θ)

)

,

(5.6)

which shows that condition (4.1) holds with

σ = an −
∑

0�r<r+s=n

(r + 1)ars
n + 1

, σ =
∑

0�r<r+s=n

sars
n + 1

, σ̃ = a1,

σi = ai+1 +
∑

1�r<r+s=i+1

(r + 1)ars
i + 2

, σi =
∑

1�r<r+s=i+1

sars
i + 2

,

α = n − 1, αi = i.

(5.7)

By (5.3) and the Young inequality, we get that

∣∣g
(
t, x, ϕ

)∣∣ � b1|x| +
m−1∑

j=1

bj |x|j + bm|x|m +
∑

0�k<k+l�m

bkl|x|k
∫0

−∞

∣∣ϕ(θ)
∣∣ldθ

� b1|x| +
m−1∑

j=1

bj |x|j + bm|x|m +
∑

0�k<k+l�m

bkl

(
k

k + l
|x|k+l + l

k + l

∫0

−∞

∣
∣ϕ(θ)

∣∣k+ldμ(θ)

)

=

(

bm +
∑

0�k<k+l=m

kbkl
m

)

|x|m−1+1 +
∑

0�k<k+l=m

lbkl
m

∫0

−∞

∣∣ϕ(θ)
∣∣m−1+1dμ(θ) + b1|x|

+
m−2∑

j=1

⎛

⎝bj+1 +
∑

0�k<k+l=j+1

kbkl
j + 1

⎞

⎠|x|j+1 +
m−2∑

j=0

∑

0�k<k+l=j+1

lbkl
j + 1

∫0

−∞

∣∣ϕ(θ)
∣∣j+1dμ(θ)

=: λ|x|β+1 + λ
∫0

−∞

∣∣ϕ(θ)
∣∣β+1dμ(θ) − λ̃|x|

+
m−2∑

j=0

(

λj |x|βj+1 + λj
∫0

−∞

∣∣ϕ(θ)
∣∣βj+1dμ(θ)

)

,

(5.8)
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which shows that condition (4.2) holds with

λ = bm +
∑

0�k<k+l=m

kbkl
m

, λ =
∑

0�k<k+l=m

lbkl
m

, λ̃ = b1,

λj =
∑

0�k<k+l=j+1

lbkl
j + 1

, λj =

⎧
⎪⎪⎨

⎪⎪⎩

0, if j = 0,

bj+1 +
∑

0�k<k+l=j+1

kbkl
j + 1

, if 1 � j � m − 2,

β = m − 1, βj = j.

(5.9)

By 2m � n+1,we have 2(m−1) � n−1,which implies 2β � α. It is easy to see that σ, σ̃,
λ, λ, and λ̃ are positive, and σi, σi, λj , λj , are nonnegative, where 0 � i � n − 2, 0 � j � m − 2.

By the parameters in Theorem 4.3, we can compute

ρ = 1, σ· + σ · =
n−1∑

i=2

ai +
∑

0�r<r+s�n−1
ars,

S = b· +
∑

0�k<k+l�m

bkl, Q = an −
(

n−1∑

i=2

ai +
∑

0�r<r+s�n

ars

)

,

S − λ0 =
m∑

j=2

bj +
∑

0�k<k+l�m

bkl.

(5.10)

In Assumption 4.1, the parameter σ is positive, so it is required that

an >
∑

0�r<r+s=n

(r + 1)ars
n + 1

. (5.11)

Let

W1 =
n−1∑

i=2

ai +
∑

0�r<r+s�n−1
ars,

W2 = b· +
∑

0�k<k+l�m

bkl,

W3 =
n−1∑

i=2

ai +
∑

0�r<r+s�n

ars.

(5.12)
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To apply Theorem 4.3, it is necessary to test that (4.11)–(4.13) are satisfied. This requires that

a1 > W1 +
1
2
W2

2 , (5.13)

an > W3 +
1
2
W2(W2 − b1). (5.14)

Obviously, (5.11) can be obtained from (5.14). By (4.14),

p1 = 1 +
2(an −W3)
W2(W2 − b1)

, p2 = 1 +
2(a1 −W1)

W2
2

. (5.15)

Thus, we have the following corollary from Theorem 4.3.

Corollary 5.1. Let conditions (5.2), (5.3), (5.13), and (5.14) be satisfied, whereW1,W2, andW3 are
given in (5.12). For any p ∈ (2, p1 ∧ p2), where p1 and p2 are given in (5.15), there exist q > 0, for
any ξ ∈ C(p, q), (5.1) has a unique global solution x(t) = x(t, ξ), and this solution has properties

lim sup
t→∞

ln E|x(t, ξ)|p

ln(1 + t+)
� −q,

lim sup
t→∞

ln |x(t, ξ)|
ln(1 + t+)

� −
q

p
, a.s.

(5.16)
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with damped stochastic perturbations,” Electronic Journal of Probability, vol. 8, pp. 1–22, 2003.

[10] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, vol. 74 of
Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.

[11] X.-Z. He, “The Lyapunov functionals for delay Lotka-Volterra-type models,” SIAM Journal on Applied
Mathematics, vol. 58, no. 4, pp. 1222–1236, 1998.



International Journal of Stochastic Analysis 17

[12] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematics
in Science and Engineering, Academic Press, Boston, Mass, USA, 1993.

[13] F. Wu and Y. Xu, “Stochastic Lotka-Volterra population dynamics with infinite delay,” SIAM Journal
on Applied Mathematics, vol. 70, no. 3, pp. 641–657, 2009.

[14] F. Wei and K. Wang, “The existence and uniqueness of the solution for stochastic functional
differential equations with infinite delay,” Journal of Mathematical Analysis and Applications, vol. 331,
no. 1, pp. 516–531, 2007.

[15] S. V. Antonyuk and V. K. Yasinskiı̆, “Stability of solutions of stochastic functional-differential
equations with Poisson switchings and the entire prehistory,” Cybernetics and Systems Analysis, vol.
45, no. 1, pp. 111–122, 2009.

[16] Y. Ren andN. Xia, “Existence, uniqueness and stability of the solutions to neutral stochastic functional
differential equations with infintie delay,”Applied Mathematics and Computation, vol. 210, no. 1, pp. 72–
79, 2009.

[17] S. Zhou, Z. Wang, and D. Feng, “Stochastic functional differential equations with infinite delay,”
Journal of Mathematical Analysis and Applications, vol. 357, no. 2, pp. 416–426, 2009.

[18] X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, UK, 2nd edition, 1997.
[19] L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York, NY, USA, 1974.
[20] S. Fang and T. Zhang, “A study of a class of stochastic differential equations with non-Lipschitzian

coefficients,” Probability Theory and Related Fields, vol. 132, no. 3, pp. 356–390, 2005.
[21] X. Mao, Exponential Stability of Stochastic Differential Equations, vol. 182 of Monographs and Textbooks in

Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1994.
[22] S. Zhou and M. Xue, “The existence and uniqueness of the solutions for neutral stochastic functional

differential equations with infinite delay,” Mathematica Applicata, vol. 21, no. 1, pp. 75–83, 2008.
[23] V. B. Kolmanovskiı̆ and V. R. Nosov, Stability and Periodic Modes of Control Systems with after Effect,

Nauka, Moscow, Russia, 1981.
[24] X. Mao and M. J. Rassias, “Khasminskii-type theorems for stochastic differential delay equations,”

Stochastic Analysis and Applications, vol. 23, no. 5, pp. 1045–1069, 2005.


