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The standard Yule-Walker equations, as they are known for an autoregression, are generalized
to involve the moments of a moving-average process indexed on any number of dimensions.
Once observations become available, new moments estimators are set to imitate the theoretical
equations. These estimators are not only consistent but also asymptotically normal for any number
of indexes. Their variance matrix resembles a standard result from maximum Gaussian likelihood
estimation. A simulation study is added to conclude on their efficiency.

1. Introduction

At first, processes taking place on more than one dimension were considered on surfaces
or in the three-dimensional space for the sake of spatial dynamics. Next, the time series
Autoregressive Moving-Average model could be as well used to clothe the covariance
dependence of spatial point processes. Nevertheless, the assumptions of causality and
invertibility were based on conventional orderings of the vector indexes, as these were
introduced by Whittle [1] and generalized by Guyon [2], and they failed to look natural on
the spatial axes. The more general bilateral equations considered by Whittle [1] also related
to serious problems during the estimation of the parameters. Besag’s [3] automodels as well
as Besag’s [4] equations for observations on irregular sites moved in a new direction but the
weaknesses during the estimation remained.

The inclusion of the time axis has provided more convenience for the spatial analysis
that may be summarized in two ways. On the one hand when the observations are collected
on irregular sites, the asymptotic properties of the estimators for the spatial dependence
parameters can now be established as the number of timings only increases to infinity; for
example, Dimitriou-Fakalou [5] has proposed a methodology on how to proceed. On the
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other hand when the regular recordings are increasing towards all the spatial as well as
the time axes, the unilateral ordering of indexes can now be arranged in a meaningful way
and the causal and invertible ARMA model may be preferred as a natural spatiotemporal
equation.

Special cases of the ARMA model are the pure autoregressive and moving-average
equations and they both relate to useful properties as in the spectral density of interest. The
autoregressive process uses a spectral density with “finite denominator”, which for Gaussian
processes [3] translates into a finite conditional expectation of any value based on all other
values. A moving-average process uses a “finite numerator” in the spectral density, resulting
in the autocovariance function with nonzero values on a finite set of “lags” only.

For a causal and finite autoregressive equation, the method of moments estimators
according to the Yule-Walker equations almost coincides with the least squares or maximum
Gaussian likelihood estimators and their consistency as well as their asymptotic normality
may be established. Nevertheless, if the estimation for a pure moving-average or ARMA
multi-indexed process takes place using its infinite autoregressive representation, a problem
known as the “edge-effect” [2] resurrects and the asymptotic normality cannot be guaranteed.
A modification of the Gaussian likelihood, which has been written from the autoregressive
representation of each observation based on its “previous” ones, has been proposed by Yao
and Brockwell [6] to confine the edge-effect with a weak condition of a finite secondmoment,
but this works for the case of processes indexed on two dimensions only.

In this paper, for the multidimensional processes that may be clothed via an invertible
and finite moving-average equation, a new method of estimation is proposed imitating the
Yule-Walker equations. The finite number of nonzero autocovariances of the moving-average
process is used most advantageously to eliminate the edge-effect. As a result, the proposed
estimators are not only consistent but also asymptotically normal using relaxed conditions of
finite second moments.

2. Theoretical Yule-Walker Equations

For Z = {0,±1,±2, . . .} and d any positive integer, real-valued processes indexed on Z
d will

be considered, such as time series or spatial processes on one line transect (d = 1), spatial
processes in the plane (d = 2) or in the three-dimensional space, as well as the combination of
spatiotemporal processes on Z

2, Z3, or Z
4, respectively. For any v ∈ Z

d, an invertible moving-
average process {Y (v)} will be defined by the following equation:

Y (v) = ε(v) +
q∑

n=1

θinε(v − in), (2.1)

where {ε(v)} are uncorrelated, zero-mean random variables with positive and finite variance
σ2. In (2.1) a unilateral ordering of the fixed lags 0 < i1 < · · · < iq has been considered. For d =
1, this is the standard ordering of integer numbers and, for d = 2, the conventional unilateral
ordering has been introduced by Whittle [1]. Guyon [2] has generalized the ordering of two
vector indexes on Z

d, d ≥ 3. As for the invertibility condition, it is only imposed to make
sure that it can be written ε(v) = Y (v)+

∑
i>0 ΘiY (v− i),

∑
i>0 |Θi| < ∞ also using the ordering

i > 0. Anderson and Jury [7] have provided a sufficient condition on the invertibility of such
filters.
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For the complex numbers z1, . . . , zd and the vector z = (z1, . . . , zd), the polynomial
θ(z) ≡ 1+

∑q

n=1 θinz
in is considered, where zi = z(i1,...,id) ≡ zi11 , . . . , z

id
d
for i1, . . . , id ∈ Z. Similarly,

the backwards operators B1, . . . , Bd and the vector backwards operator B = (B1, . . . , Bd) are
considered, such that Biε(v) ≡ ε(v − i). So (2.1) may now be rewritten as

Y (v) = θ(B)ε(v). (2.2)

Writing z−1 ≡ (z−11 , . . . , z−1
d
), the autoregressive sequence {X(v)} may be defined from {ε(v)}

according to the following:

θ
(
B−1

)
X(v) ≡ X(v) +

q∑

n=1

θinX(v + in) = ε(v). (2.3)

The auto-regression is unilateral but not causal, in the sense that it can be written that X(v) =
ε(v)+

∑
i>0 Θiε(v+i),

∑
i>0 |Θi| < ∞ as a function of the “future” terms ε(v+i), i ≥ 0. Moreover,

writing the two polynomials

γ(z) = θ(z)θ
(
z−1

)
≡
∑

i∈F
γizi, c(z) = γ(z)−1 ≡

∑

i∈Zd

cizi, (2.4)

it holds that

Y (v) = γ(B)X(v) or X(v) = c(B)Y (v). (2.5)

The set F ≡ {in,−in, in − im, n,m = 1, . . . , q} in (2.4) has members the vector “lags”, where
{Y (v)} have nonzero autocorrelations. The set {in, in − im, n,m = 1, . . . , q, n > m} that uses
the “positive” lags of F will have cardinality q∗.

The relationship in (2.5) provides the way to write Yule-Walker equations for a
moving-average process. The processes {Y (v)} and {X(v)} are not only “caused” by the
same sequence {ε(v)}, one from its “past” and the other from its “future” values, but also
have “reverse” second-order dependence; that is, the spectral density of the auto-regression
is

gX(ω1, . . . , ωd) ≡ σ2

(2π)d
1

θ(z)θ
(
z−1

) =
σ2

(2π)d
c(z),

zk = e−iωk , ωk ∈ (−π,π), k = 1, . . . , d,

(2.6)

where according to (2.4), E(X(v)X(v − i)) = σ2ci and the spectral density of the moving-
average process is

gY (ω1, . . . , ωd) ≡ σ2

(2π)d
θ(z)θ

(
z−1

)
=

σ2

(2π)d
γ(z),

zk = e−iωk , ωk ∈ (−π,π), k = 1, . . . , d,

(2.7)
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which also implies that E(Y (v)Y (v − i)) = σ2γi. While the original Yule-Walker equations for
{X(v)} dictate

c0 +
q∑

n=1

θincin = 1, (2.8)

ci +
q∑

n=1

θinci−in = 0, i > 0, (2.9)

from (2.9), the following (q + 1) equations may be written for i > 0, that is,

ci + θi1ci−i1 + θi2ci−i2 + · · · + θiq ci−iq = 0,

θi1ci+i1 + θ2
i1
ci + θi1θi2ci+i1−i2 + · · · + θi1θiqci+i1−iq = 0,

...

θiq ci+iq + θiqθi1ci+iq−i1 + θiqθi2ci+iq−i2 + · · · + θ2
iq
ci = 0

(2.10)

and their sum
∑

j∈F γjci−j =
∑

j∈F γjcj−i =
∑

−j∈F γ−jc−j−i =
∑

j∈F γjcj+i = 0, which may be
rewritten as

∑

j+i∈F
cjγj+i = 0, i/= 0. (2.11)

Further to (2.11), it holds that

∑

j∈F
cjγj = 1 (2.12)

from (2.8) and (2.9). It is true that (2.11) and (2.12) are equivalent to γ(z)c(z) = 1. Like
the standard Yule-Walker equations, the general versions (2.11) and (2.12) are constructed
from the coefficients θi1 , . . . , θiq . As the finite number of nonzero autocovariances of {Y (v)}
is involved now, they will be used as theoretical prototypes to be imitated by their sample
analogues for the sake of estimation of the moving-average parameters.

Finally, as the assumption of invertibility of the moving-average equation used
for parameterization will be essential, it should be noted that Dimitriou-Fakalou [8] has
presented in detail the merits of a causal and invertible spatiotemporal ARMA model. As
a special case, the moving-average process {Yt(s)}, where t is the time index and s are spatial
indexes, may satisfy the equation Yt(s) = εt(s) +

∑qt
i=1

∑
j∈Mi

θi,jεt−i(s − j), where {εt(s)} are
zero mean, uncorrelated variables with identical, finite variance, qt is a finite positive integer,
M1, . . . ,Mqt have a finite cardinality, and it holds that

εt(s) = Yt(s) +
∑

i>0

∑

j

Θi,jYt−i(s − j),
∑

i>0

∑

j

∣∣Θi,j
∣∣ < ∞; (2.13)
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that is, the model is invertible. Note that, in either equation, no unnatural ordering is forced
over space as the unilateral conventions “run” over the past timings only. Hence the model
both uses a space-time unilateral ordering of indexes and is meaningful. As a result, for the
special case of a stationary process with autocovariance function identified to take zero values
after a reasonably small number of lags on all spatial and temporal dimensions, the invertible
moving-average equation should be preferred and the new results presented next will be
useful.

3. Method of Moments Estimators

For S ⊂ Z
d being a set of finite cardinality N, there are available {Y (v), v ∈ S} from (2.2)

with true parameters θ0 = (θi1,0, . . . , θiq,0)
τ that are to be estimated. The following condition

will be assumed to be true.

Condition C1. The parameter space Θ ⊂ R
q is a compact set containing the true value θ0 as

an inner point. Further, for any θ = (θi1 , . . . , θiq)
τ ∈ Θ the moving-average model (2.2) is

invertible.

Based on S, a set Fv will be defined for any v ∈ Z
d. More specifically, it will hold that

i ∈ Fv only if v − i ∈ S. Next, for the corrected set S∗ with N∗ elements, it will hold v ∈ S∗ if
v+ i ∈ S for every i ∈ F. Thus for any v ∈ S∗, it holds that F ⊆ Fv. The reduction from S to S∗

is essential as it will guarantee later that the edge-effect will fade away; this is because the set
S∗ ⊂ S includes the locations v that have all their “neighbors” v − i with E(Y (v)Y (v − i))/= 0
being available. As the source of the edge-effect is the speed of the absolute bias to zero, S∗

will guarantee that whatever “is missing” from the finite sample will not add at all to the bias
of the estimators.

By imitating (2.11) the estimators θ̂ = (θ̂i1 , . . . , θ̂iq)
τ
are set to be the solutions of

equations:

∑

v∈S∗

⎧
⎨

⎩
∑

j−in∈Fv

ĉjY (v + in − j)

⎫
⎬

⎭Y (v) ≡ 0, n = 1, . . . , q, (3.1)

where θ̂(z) ≡ 1 +
∑q

n=1 θ̂inz
in and ĉ(z) ≡ ∑

i∈Zd ĉizi ≡ {θ̂(z)θ̂(z−1)}−1. Using Proposition 3.1, the
equations

∑

v∈S∗

⎧
⎨

⎩
∑

j−(in−im)∈Fv

ĉjY (v + in − im − j)

⎫
⎬

⎭Y (v) ≡ 0, n,m = 1, . . . , q, n > m, (3.2)

will be used additionally, in order to make sure that the estimators are consistent. The
proposition guarantees that the use of q	 equations used as prototypes for estimation can
provide a unique way to compute the q parameters of the invertible equation.

Proposition 3.1. The polynomials θ0(z) = 1 +
∑q

n=1 θin,0z
in and θ0(z)

−1 = 1 +
∑

i>0 Θi,0zi with∑
i>0 |Θi,0| < ∞ as well as γ0(z) = θ0(z)θ0(z−1) ≡ ∑

j∈F γj,0zj and c0(z) = γ0(z)
−1 ≡ ∑

j∈Zd cj,0zj

are considered. For any θ = (θi1 , . . . , θiq)
τ ∈ Θ, such that it holds that θ(z) = 1 +

∑q

n=1 θinz
in
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and θ(z)−1 = 1 +
∑

i>0 Θizi with
∑

i>0 |Θi| < ∞, as well as γ(z) = θ(z)θ(z−1) ≡ ∑
j∈F γjzj and

c(z) = γ(z)−1 ≡ ∑
j∈Zd cjzj, the unique solution that satisfies the q	 equations

∑
j∈F γj,0cj−in = 0,

n = 1, . . . , q, and
∑

j∈F γj,0cj−(in−im) = 0, n,m = 1, . . . , q, n > m, is θin ≡ θin,0, n = 1, . . . , q.

For mathematical convenience, new variables depending on the sampling set are
defined HY (v) ≡ Y (v), v ∈ S and HY (v) ≡ 0, v /∈ S, and (3.1) may be rewritten as

∑

v∈S∗

⎧
⎨

⎩
∑

j∈Zd

cj,0HY (v + in − j)

⎫
⎬

⎭Y (v) − Jn
(
θ̂ − θ0

)
= 0, n = 1, . . . , q, (3.3)

or

∑

v∈S∗
{c0(B)HY (v + in)}Y (v) − Jn

(
θ̂ − θ0

)
= 0, n = 1, . . . , q, (3.4)

where the zero subindex relates to θ0. In (3.3) and (3.4), it is Jn = (Jn,1, . . . , Jn,q)with elements

Jn,m =
∑

v∈S∗

{
c0(B)

(
θ0(B)−1HY (v + in − im) + θ0

(
B−1

)−1
HY (v + in + im)

)}
Y (v)

+OP

(
N‖θ̂ − θ0‖2

)
, n,m = 1, . . . , q.

(3.5)

The last term in (3.5) will become more obvious when the properties of the estimators will
be established but for now it might be justified by a second-order Taylor expansion, where it
holds

(
θ̂in − θin,0

)(
θ̂im − θim,0

)

∥∥∥θ̂ − θ0

∥∥∥
2

−→ λn,m ∈ (0,∞), n,m = 1, . . . , q (3.6)

due to the fact that θ̂ will be shown to be consistent estimators in Theorem 4.1. Further, the
sums over S∗ involving the second derivatives of the Taylor expansion, when divided byN∗

or N (N∗/N → 1), will also tend in probability to the relevant finite expectations when
{ε(v)} will be assumed to be independent and identically distributed random variables with
a finite variance.

Finally by imitating (2.12), the estimator of the error variance may be defined as

σ̂2 ≡
∑

j∈F ĉj
∑

v∈S∗ Y (v)Y (v − j)

N∗ . (3.7)

Example 3.2. For the simplest one-dimensional case when q∗ = q = 1, it is demonstrated in
detail how to compute the new estimator; some other cases will briefly be considered later.
Suppose that are available {Y (1), . . . , Y (N)} from Y (v) = e(v) + θe(v − 1), where |θ| < 1,
θ /= 0, and {e(v)} are uncorrelated random variables with variance unity. The original set S ≡
{1, 2, . . . ,N} will be corrected to S∗ ≡ {2, 3, . . . ,N − 1} that it is the maximal set, such that
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for all v ∈ S∗ it holds that E(Y (v)Y (v∗)) = 0, v∗ /∈ S. Note that the “lags” on which the
autocorrelations of Y are not equal to zero are as in the set F = {1, 0,−1}; further, for any
v ∈ Z it holds that Fv = {v − 1, . . . , v −N} and, thus, for v ∈ S∗ it is true that F ⊆ Fv.

The autocovariance of the relevant auto-regression at the “lag” j ∈ Z is (−θ)|j|/(1−θ2) .
As a result, the estimator θ̂ will be the solution of the following equation:

0 = −θ̂
N−1∑

v=2

Y (v)2 +
N−1∑

v=2

Y (v)Y (v + 1) + θ̂2
N−1∑

v=2

Y (v)Y (v − 1) − θ̂
N−2∑

v=2

Y (v)Y (v + 2)

− θ̂3
N−1∑

v=3

Y (v)Y (v − 2) + θ̂2
N−3∑

v=2

Y (v)Y (v + 3) + θ̂4
N−2∑

v=4

Y (v)Y (v − 3) − · · ·

+
(
−θ̂

)N−4
Y (2)Y (N − 1) +

(
−θ̂

)N−2
Y (N − 2)Y (1).

(3.8)

Furthermore, when {e(v)} are independent and identically distributed random variables, it
will hold in probability that

∑
v Y (v)Y (v − i)/N → 0 for |i| = 2, 3, . . . and the estimator may

be approximated as a solution of the quadratic equation:

0 ≡ −θ̂
N−1∑

v=2

Y (v)2 +
N−1∑

v=2

Y (v)Y (v + 1) + θ̂2
N−1∑

v=2

Y (v)Y (v − 1). (3.9)

Later, it will be investigated whether the approximation is worthwhile. The estimator reduces
to

θ̂ =

∑N−1
v=2 Y (v)2 ±

√(∑N−1
v=2 Y (v)2

)2 − 4
(∑N−1

v=2 Y (v)Y (v − 1)
)(∑N−1

v=2 Y (v)Y (v + 1)
)

2
∑N−1

v=2 Y (v)Y (v − 1)
(3.10)

or

θ̂ =
1 ±

√
1 − 4ρ̂+ρ̂−

2ρ̂+
(3.11)

with

ρ̂+ =
∑N−1

v=2 Y (v)Y (v − 1)
∑N−1

v=2 Y (v)2
, ρ̂− =

∑N−1
v=2 Y (v)Y (v + 1)
∑N−1

v=2 Y (v)2
. (3.12)

For the actual nonzero auto-correlation ρ = θ/(1+θ2), it holds that |ρ| < 1/2 andD = 1−4ρρ >
0. As a result, if 0 < θ < 1 and 0 < ρ < 1/2, then 1/2ρ > 1, and the value

1 +
√
1 − 4ρρ
2ρ

=
1
2ρ

+

√
D

2ρ
(3.13)
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is bigger than 1. If, on the other hand, −1 < θ < 0, and −1/2 < ρ < 0 then 1/2ρ < −1 and the
same value is smaller than −1. Thus, the estimator is approximately

θ̂ =

∑N−1
v=2 Y (v)2 −

√(∑N−1
v=2 Y (v)2

)2 − 4
(∑N−1

v=2 Y (v)Y (v − 1)
)(∑N−1

v=2 Y (v)Y (v + 1)
)

2
∑N−1

v=2 Y (v)Y (v − 1)
.
(3.14)

Although the distribution of θ̂ is not known for small sample sizes and |ρ̂+|, |ρ̂−| risk to
be outside the (−0.5, 0.5) range with some positive probability, both the consistency and
the asymptotic normality will be established next. As opposed to what is known for the
maximum Gaussian likelihood estimators, the proposed estimators will be asymptotically
normal even for processes on more than one dimension. Thus, the new methods might be
more useful for higher number of dimensions as well as large sample sizes.

4. Properties of Estimators

The asymptotic normality of standard estimators for the parameters of stationary processes
indexed on Z

d, d ≥ 2, has not been established yet. More specifically as Guyon [2]
demonstrated, the bias of the genuine Gaussian likelihood estimators, computed from N
regular recordings increasing to infinity on all dimensions and at equal speeds, is of order
N−1/d. Nevertheless in order to secure the asymptotic normality, the absolute bias when
multiplied by N1/2 should tend to zero, which is only true for d = 1 as in Brockwell and
Davis [9].

Regarding the proposed estimators of this paper, their bias will stem from (3.3) as in
the expected value of

∑
v∈S∗{∑j∈Zd cj,0(Y (v+in−j)−HY (v+in−j))Y (v)}/N∗, n = 1, . . . , q, which

expresses what is “missing” from the sample. Even when the bias is multiplied byN∗1/2, the
random variable N∗−1/2∑

v∈S∗
∑

j−in/∈Fv
cj,0Y (v + in − j)Y (v), n = 1, . . . , q has a zero mean due

to the selection S∗ and the fact that the “finite” autocovariance function of a moving-average
process is being used. Thus, the edge-effect will not be an obstacle to establish the asymptotic
normality of the estimators.

A series of ARMA model-based arguments have been used before to deal with the
edge-effect by Yao and Brockwell [6] for two-dimensional processes as well as a weak
condition of finite second moments. Guyon [2], on the other hand, used the periodogram
as in the Gaussian likelihood of observations proposed by Whittle [1] and required that the
fourth moments would be finite. Dahlhaus and Künsch [10] improved certain weaknesses
of Guyon’s [2] modification on the likelihood but paid the price of having to reduce the
dimensionality to secure their results. The proposed estimators of this paper will also use the
weak condition of finite second moments, which is a great advantage, since they will refer to
moving-average processes on any number of dimensions.

Condition C2. (i) For a set S ≡ SN ⊂ Z
d of cardinality N, it is written N → ∞ if the length

M of the minimal hypercube including S, say S ⊆ CM, and the length m of the maximal
hypercube included in S, say Cm ⊆ S, are such thatM,m → ∞. (ii) Further, asM,m → ∞ it
holds that M/m is bounded away from ∞.
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Theorem 4.1. If {ε(v)} ∼ IID(0, σ2), then under Conditions C1 and C2(i) and as N → ∞, it holds
that

θ̂
P−→ θ0, σ̂2 P−→ σ2. (4.1)

From (3.3) and (3.4), all the q equations together may be written as

N1/2
(
θ̂ − θ0

)
=
(

J
N

)−1(
N−1/2 ∑

v∈S∗
HY (v)

)
, (4.2)

where Jτ = (Jτ1 , . . . , J
τ
q) and

HY (v) ≡

⎛
⎜⎜⎜⎝

c0(B)HY (v + i1)

...

c0(B)HY

(
v + iq

)

⎞
⎟⎟⎟⎠Y (v), v ∈ Z

d, (4.3)

which depends on the sampling set S. The next proposition reveals what happens to the part (J/N) in
(4.2). Then Theorem 4.3 establishes the asymptotic normality of the estimators.

Proposition 4.2. Let the polynomial θ0(z)
−1 = (1 +

∑q

n=1 θin,0z
in)

−1 ≡ ∑
i≥0 Θi,0zi, Θ0,0. If {ε(v)} ∼

IID(0, σ2), then under Conditions C1 and C2(i) and as N → ∞, it holds that

J
N

P→ σ2Θ0 ≡ σ2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

Θi2−i1,0 1 0 · · · 0

...
. . .

Θiq−i1,0 Θiq−i2,0 Θiq−i3,0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.4)

Theorem 4.3. For {W(v)} ∼ IID(0, 1), the auto-regression {η(v)} is defined by θ0(B)η(v) ≡ W(v).
Also the vector ξ ≡ (η(−i1), . . . , η(−iq))τ and the variance matrix

W∗
q ≡ Var

(
ξ | W(−i1 − i, i > 0, i/= i2 − i1, . . . , iq − i1

))
(4.5)

are considered. If {ε(v)} ∼ IID(0, σ2), then under Conditions C1 and C2 and as N → ∞, it holds
that

N1/2
(
θ̂ − θ0

)
D→ N

(
0,W∗−1

q

)
. (4.6)

5. Empirical Results

In this section, an empirical comparison of the proposed estimators to maximum Gaussian
likelihood estimators for moving-average processes is presented in detail. The theoretical
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Table 1: Approximate bias, variance, and Mean Squared Error of the Method of Moments and the
Maximum Likelihood Estimator for the MA(1) parameter from 1000 replications.

θ = 0.5 θ = −0.8
N = 30 Bias Var MSE Bias Var MSE
MME −0.403345 0.00020972 0.162897 0.0931052 0.00097912 0.00964771
MLE 0.01795 0.00015984 0.00048204 0.020949 0.00062347 0.00104331
N = 100 Bias Var MSE Bias Var MSE
MME −0.123812 0.00021444 0.0155439 0.0217928 0.00097912 0.00145404
MLE 0.00521 0.00031329 0.00034043 0.00599 0.00063936 0.00067524
N = 200 Bias Var MSE Bias Var MSE
MME −0.0422653 0.00021173 0.00199808 0.0123275 0.00097912 0.00113109
MLE −0.00116 0.00022068 0.00022202 0.00275 0.00062348 0.00063104
N = 300 Bias Var MSE Bias Var MSE
MME −0.00708814 0.00023768 0.00028792 −0.00166597 0.00097912 0.00098189
MLE 0.00313 0.00029131 0.00036115 0.00386 0.00065544 0.00067034

foundations in favour of the new estimators have been provided already when their
asymptotic normality on any number of dimensions has been established based on finite
second moments only. As a result, the speed of the bias to zero is not expected to cause them
to perform worse than maximum likelihood estimators, especially when the dimensionality
is large.

On the other hand, Theorem 4.3 attributes to the new estimators the variance matrix
W∗−1

q when, according to Hannan [11], efficient estimation results in W−1
q with Wq ≡ Var(ξ)

and the same notation as in Theorem 4.3. Wq and W∗
q are defined similarly but they are not,

in general, equal. It seems that as the number of moving-average parameters of the process
increases, the two types elements get closer. Nevertheless, as the pure moving-average model
will be preferredwhen it is parsimonious, a decision is made here whether the new estimators
are efficient then.

The investigation has started with the one-dimensional case by generating
{Y (1), . . . , Y (N)} from the model with one parameter only. The moments estimator has been
approximated as in the example earlier, while the minimizer of

∑
v∈S∗ e2∗(v) with respect

to the parameter θ has been considered to be the Gaussian likelihood estimator. The true
values θ = 0.5,−0.8 have been considered and the sample size has been set equal to
N = 30, 100, 200, 300. Very encouraging results for the efficiency of the proposed estimator
are presented in Table 1 as even when the sample size is still small, extreme differences in
the variances of the two types estimators cannot be detected. It is the bias of the moments
estimator that seems to be the only reason why it might be outperformed by the likelihood
estimator in terms of the Mean Squared Error. Nevertheless, the speed with which the bias
tends to zero is much faster as onewould expect and, eventually, the new estimator for θ = 0.5
performs better altogether.

Next for the two-dimensional case, {Y (u, v), u, v = 1, . . . , n} have been generated from

Y (u, v) = e(u, v) + βe(u − 1, v) + γe(u, v − 1),
∣∣β
∣∣ +

∣∣γ
∣∣ < 1, (5.1)
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with {e(u, v), u, v ∈ Z} being independent, Gaussian random variables with zero mean and
variance unity. Using similar arguments as in the example, the moments estimators of β and
γ might be derived by solving simultaneously

0 ≡
∑

Y (u, v)Y (u + 1, v)ĉ(0,0) +
∑

Y 2(u, v)ĉ(−1,0) +
∑

Y (u, v)Y (u − 1, v)ĉ(−2,0)

+
∑

Y (u, v)Y (u, v + 1)ĉ(−1,1) +
∑

Y (u, v)Y (u, v − 1)ĉ(−1,−1)

+
∑

Y (u, v)Y (u + 1, v − 1)ĉ(0,−1) +
∑

Y (u, v)Y (u − 1, v + 1)ĉ(−2,1),

0 ≡
∑

Y (u, v)Y (u, v + 1)ĉ(0,0) +
∑

Y 2(u, v)ĉ(0,−1) +
∑

Y (u, v)Y (u, v − 1)ĉ(0,−2)

+
∑

Y (u, v)Y (u + 1, v)ĉ(1,−1) +
∑

Y (u, v)Y (u − 1, v)ĉ(−1,−1)

+
∑

Y (u, v)Y (u + 1, v − 1)ĉ(1,−2) +
∑

Y (u, v)Y (u − 1, v + 1)ĉ(−1,0),

(5.2)

as well as the third equation

0 ≡
∑

Y (u, v)Y (u + 1, v − 1)ĉ(0,0) +
∑

Y 2(u, v)ĉ(−1,1) +
∑

Y (u, v)Y (u − 1, v + 1)ĉ(−2,2)

+
∑

Y (u, v)Y (u + 1, v)ĉ(0,1) +
∑

Y (u, v)Y (u − 1, v)ĉ(−2,1)

+
∑

Y (u, v)Y (u, v + 1)ĉ(−1,2) +
∑

Y (u, v)Y (u, v − 1)ĉ(−1,0),

(5.3)

which is needed to secure the consistency (Proposition 3.1). All of the sums above extend
over S∗ ≡ {2, . . . , n − 1} × {2, . . . , n − 1}. The estimators introduced here are β̂, γ̂ , and in the
three equations, it has been considered that ĉ(j,k) ≡ Corr(X(u, v), X(u − j, v − k)), where

X(u, v) + β̂X(u − 1, v) + γ̂X(u, v − 1) = e∗(u, v) (5.4)

and {e∗(u, v)} are zero mean, uncorrelated random variables all with variance unity. Under
the condition |β̂| + |γ̂ | < 1, a special form of “causality” X(u, v) ≡ ∑∞

j,k=0 Θ̂(j,k)e
∗(u −

j, v − k),
∑∞

j,k=0 |Θ̂(j,k)| < ∞ is implied and the standard Yule-Walker equations may

be used to easily write the needed autocorrelations ĉ, as functions of β̂ and γ̂ . Again,
the maximum likelihood estimators have been approximated by the minimizers of∑

u,v (Y (u, v) − βe(u − 1, v) − γe(u, v − 1))2 with respect to β and γ .
Table 2 verifies once more the conclusions drawn from the one-dimensional case. It

is safe to consider that the new estimators are efficient and this is very apparent in the case
that the parameters are in absolute value further away from zero (β = 0.5 and γ = 0.45). The
striking case with the small sample size of around 50 points observed in the plane reveals
that the variances of the moments estimators may even happen to be smaller. On the other
hand, the bias heavily affects the results for the MSE for small sample sizes. Nevertheless
as the sample size increases, the absolute bias of the likelihood estimators does not seem to
decrease at all versus the bias of the proposed estimators that speedily reaches the zero value.
As a result, the new estimators eventually equalize the MSE performance of the standard
estimators.
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Table 2:Approximate bias, variance, andmean squared error of themethod of moments and themaximum
likelihood estimators (based on N = n2 observations) for the two-dimensional MA parameters β and γ
from 1000 replications.

β = 0.5 γ = 0.45
n = 7 Bias Var MSE Bias Var MSE
MME 0.02842 0.00010879 0.00091649 −0.07858 0.00001209 0.0061869
MLE 0.0006 0.0002023 0.00020266 −0.00604 0.00006244 0.00009892
n = 30 Bias Var MSE Bias Var MSE
MME 0.0149 0.00037173 0.00059374 −0.00746 0.0002023 0.00025795
MLE −0.00184 0.0003022 0.00030558 0.00066 0.00016793 0.00016837
n = 100 Bias Var MSE Bias Var MSE
MME 0.00576 0.00025984 0.00029302 0.0065 0.00023986 0.00028211
MLE −0.00044 0.00022068 0.00022087 −0.00024 0.0002023 0.00020236

β = 0.15 γ = −0.3
n = 30 Bias Var MSE Bias Var MSE
MME 0.02638 0.00004406 0.00073996 0.03274 0.00001688 0.00108879
MLE 0.00012 0.00002248 0.00002249 0.00004 0.00010879 0.00010879
n = 100 Bias Var MSE Bias Var MSE
MME −0.0422653 0.00021173 0.00199808 0.0123275 0.00097912 0.00113109
MLE −0.00058 0.00002248 0.00002281 0.00026 0.00000402 0.00008408

Appendix

A. Outline Proofs

A.1. Proof of Proposition 3.1

Under the invertibility condition for the polynomials θ(z), there is a one-to-one
correspondence between the q coefficients θi1 , . . . , θiq and the q	 autocorrelations
ρi1 , . . . , ρiq , ρi2−i1 , . . . , ρiq−i1 , where ρj = γj/γ0, j ∈ Z

d. It is true that the coefficients θin,0,
n = 1, . . . , q, generate the numbers cj,0, j ∈ Z

d, and they are a solution to the q	 equations
of interest. If there is another solution, say θin,1, n = 1, . . . , q generating cj,1, j ∈ Z

d, then it
must hold that

∑

j∈F−{0}
ρj,0cj−in,1 = −cin,1, n = 1, . . . , q,

∑

j∈F−{0}
ρj,0cj−(in−im),1 = −cim−in,1, n,m = 1, . . . , q, n > m.

(A.1)

On the other hand, the general Yule-Walker equations for this solution imply that

∑

j∈F−{0}
ρj,1cj−in,1 = −cin,1, n = 1, . . . , q,

∑

j∈F−{0}
ρj,1cj−(in−im),1 = −cim−in,1, n,m = 1, . . . , q, n > m.

(A.2)
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Thus, the q	 linear equations with q∗ unknowns are derived as

∑

j∈F−{0}

(
ρj,0 − ρj,1

)
cj−in,1 = 0, n = 1, . . . , q,

∑

j∈F−{0}

(
ρj,0 − ρj,1

)
cj−(in−im),1 = 0, n,m = 1, . . . , q, n > m,

(A.3)

with a unique solution as it is explained next; the autocovariances cj,1, j ∈ Z
d refer to a

(weakly) stationary process, say {X1(v)}, with spectral density bounded away from 0 and
∞ under Condition C1 . Consequently, the variance matrix

[cln+lm,1 + cln−lm,1]
q	

n,m=1 =
C1

2
, ln ∈ {

ir , ir − im, r,m = 1, . . . , q, r > m
}
, n = 1, . . . , q	, (A.4)

where C1 ≡ [Cov(X1(v + ln) +X1(v − ln), X1(v + lm) +X1(v − lm))]
q	

n,m=1, is nonsingular and
there is a unique solution to the equations above, that is, ρj,1 = ρj,0, j ∈ F.

A.2. Proof of Theorem 4.1

For n = 1, . . . , q, (3.1)may be rewritten as

∑
v∈S∗

∑
j−in∈Fv

ĉjY (v + in − j)Y (v)

N∗

=

∑
j−in∈Zd ĉj

∑
v∈S∗ Y (v + in − j)Y (v)

N∗ −
∑

v∈S∗
∑

j−in/∈Fv
ĉjY (v + in − j)Y (v)

N∗ = 0.

(A.5)

Under the assumption that {ε(v)} are independent and identically distributed, it holds as

N → ∞ that
∑

v∈S∗ Y (v + in − j)Y (v)/N∗ P→ E{Y (v + in − j)Y (v)} = σ2γj−in,0, according to
Proposition 6.3.10 or theWeak Law of Large Numbers and Proposition 7.3.5 of Brockwell and
Davis [9], extended to include the cases d ≥ 2. Then for n = 1, . . . , q and the first of two terms
in (A.5), it may be written as

∑
j−in∈Zd ĉj

∑
v∈S∗ Y (v + in − j)Y (v)

N∗ − σ2
∑

j−in∈Zd

ĉjγj−in,0
P→ 0 (A.6)

or

∑
j−in∈Zd ĉj

∑
v∈S∗ Y (v + in − j)Y (v)

N∗ − σ2
∑

j−in∈F
ĉjγj−in,0

P→ 0. (A.7)
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For the next term, it may be written as

E

∣∣∣∣∣

∑
v∈S∗

∑
j−in/∈Fv

ĉjY (v + in − j)Y (v)

N∗

∣∣∣∣∣ ≤
∑

v∈S∗
∑

j−in/∈Fv
E
∣∣ĉjY (v + in − j)Y (v)

∣∣

N∗

≤
∑

v∈S∗
∑

j−in/∈Fv
E
(
ĉ2j

)1/2
E
(
Y (v + in − j)2Y (v)2

)1/2

N∗

=
E
(
Y (v)2

)∑
v∈S∗

∑
j−in/∈Fv

E
(
ĉ2j

)1/2

N∗ ,

(A.8)

due to the Cauchy-Schwartz inequality and the independence of the random variables
Y (v), Y (v − j), j /∈ F. Now for any θ ∈ Θ, it holds that cj ≡ cj(θ) is the corresponding
autocovariance function of a causal auto-regression. This guarantees that the autocovariance
function decays at an exponential rate and there are constants C(θ) > 0 and α(θ) ∈ (0, 1),

such that cj(θ)
2 ≤ C(θ)α(θ)

∑d
k=1 |jk |, j = (j1, . . . , jd). Similarly for the estimator θ̂, it holds that

ĉ2j ≤ C
(
θ̂
)
α
(
θ̂
)
≤ sup

θ∈Θ
C(θ)α(θ)

∑d
k=1 |jk | ≤ sup

θ∈Θ
C(θ)

{
sup
θ∈Θ

α(θ)

}∑d
k=1 |jk |

(A.9)

with probability one and E(ĉ2j ) ≤ supθ∈Θ C(θ){supθ∈Θ α(θ)}
∑d

k=1 |jk |. For the case of
observations on a hyperrectangle and under Condition C2(ii) , it can be easily verified that∑

v∈S∗
∑

j−in/∈Fv
E(ĉ2j ) = O(N(d−1)/d), for example, the arguments of Yao and Brockwell [6]

when d = 2. In general, it can be written as Condition C2(i) that

∑
v∈S∗

∑
j−in/∈Fv

E
(
ĉ2j

)

N∗ −→ 0,

∑
v∈S∗

∑
j−in/∈Fv

ĉjY (v + in − j)Y (v)

N∗
P−→ 0. (A.10)

After combining the results for the two terms in (A.5), it can be written that

∑
v∈S∗

∑
j−in∈Fv

ĉjY (v + in − j)Y (v)

N∗ − σ2
∑

j−in∈F
ĉjγj−in,0

P−→ 0, n = 1, . . . , q, (A.11)

where the first term has been set equal to zero. Thus,
∑

j−in∈F ĉjγj−in,0
P→ 0 exactly like the

theoretical analogue
∑

j−in∈F cj,0γj−in,0 = 0 implies. Since q	 instead of q equations have been

used, there is a unique solution θ0, according to Proposition 3.1 and θ̂
P→ θ0 as N → ∞ and

C2(i) holds. Finally, the consistency for θ̂ implies, according to (3.7), that

σ̂2 P−→ σ2
∑

j∈F
cj,0γj,0 = σ2 since

∑

j∈F
cj,0γj,0 = 1. (A.12)
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A.3. Proof of Proposition 4.2

According to (3.5), for the (n,m)th element of J/N, n,m = 1, . . . , q, it suffices to look at

∑
v∈S∗

{
c0(B)

(
θ0(B)−1HY (v + in − im) + θ0

(
B−1)−1HY (v + in + im)

)}
Y (v)

N
+ oP (1),

(A.1)

where the last term tends to zero in probability, thanks to the consistency of the estimators
from the use of all the q	 equations. For the polynomial

d0(z) ≡ θ0(z)−1c0(z) = θ0(z)−1c0
(
z−1

)
≡
∑

i∈Zd

di,0zi, (A.2)

the second term in (A.1) can be written as

∑
v∈S∗

(
d0
(
B−1)HY (v + in + im)

)
Y (v)

N
=
∑

v∈S∗
(
d0
(
B−1)Y (v + in + im)

)
Y (v)

N
+ oP (1). (A.3)

This comes straight from the fact that

E

∣∣∣∣∣
1
N

∑

v∈S∗

{
∑

−in−im−i/∈Fv

di,0Y (v + in + im + i)

}
Y (v)

∣∣∣∣∣

≤ 1
N

∑

v∈S∗

∑

−in−im−i/∈Fv

|di,0|E|Y (v + in + im + i)Y (v)|

= (E|Y (v|)2 1
N

∑

v∈S∗

∑

−in−im−i/∈Fv

|di,0| −→ 0,

(A.4)

as N → ∞ and Condition C2(i) holds. The limit comes from the same argument, as for the
proof of the consistency for the estimators. For example, if condition C2(ii) is true, it may
be written

∑
v∈S∗

∑
i/∈Fv

|di,0| = O(N(d−1)/d), since for any i = (i1, . . . , id) ∈ Z
d, it holds that

|di,0| ≤ Cα
∑d

k=1 |ik | for constants C > 0 and α ∈ (0, 1). Similar action might be taken for the first
term in (A.1).

For the auto-regression {X(v)} as it was defined in (2.3), it can be seen immediately
that Y (v) is uncorrelated to X(v + i), i > 0, since these are linear functions of “future” error
terms only. In general, it can be written according to (2.5) that

E(Y (v)X(v − i)) =
∑

j∈F
γj,0E(X(v − j)X(v − i)) = σ2

∑

j∈F
γj,0cj−i,0 (A.5)

and back to the general Yule-Walker equations. Thus,

E(Y (v)X(v)) = σ2, E(Y (v)X(v − i)) = 0, i/= 0, (A.6)
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and Y (v) is uncorrelated to X(v − i), i/= 0. As a result, it holds for n,m = 1, . . . , q, that

E

((
θ0
(
B−1

)−1
c0(B)Y (v + in + im)

)
Y (v)

)
= E

((
θ0
(
B−1

)−1
X(v + in + im)

)
Y (v)

)
= 0,

(A.7)

and, for n ≥ m, that

E
((

θ0(B)−1c0(B)Y (v + in − im)
)
Y (v)

)
= E

((
θ0(B)−1X(v + in − im)

)
Y (v)

)
= σ2Θin−im,0.

(A.8)

The proof is completed when it is seen that both Y (v) and X(v) are linear functions of
members from the sequence {ε(v)} and, thus,

∑
v∈S∗

(
θ0
(
B−1)−1c0(B)Y (v + in + im)

)
Y (v)

N
P−→ E

((
θ0
(
B−1

)−1
X(v + in + im)

)
Y (v)

)
,

∑
v∈S∗

(
θ0(B)−1c0(B)Y (v + in − im)

)
Y (v)

N
P−→ E

((
θ0(B)−1X(v + in − im)

)
Y (v)

)
.

(A.9)

A.4. Proof of Theorem 4.3

From (3.3), (4.2), and (4.3) and for n = 1, . . . , q, it can be written that

N−1/2 ∑

v∈S∗

∑

j∈Zd

cj,0HY (v + in − j)Y (v) = N−1/2 ∑

v∈S∗

∑

j∈Zd

cj,0Y (v + in − j)Y (v) + oP (1). (A.1)

The convergence in probability to zero of the remainder might be justified by the fact that its
expected value is equal to zero due to the selection S∗, and that its variance is

Var(N−1/2 ∑

v∈S∗

∑

j−in/∈Fv

cj,0Y (v + in − j)Y (v)) ≡ Var(
∑

v∈S∗ ũn(v))
N

, (A.2)

where

ũn(v) ≡
∑

j−in/∈Fv

cj,0Y (v + in − j)Y (v), n = 1, . . . , q, v ∈ Z
d, (A.3)

given the sampling set S. First, {ε(v)} are independent and identically distributed and then

E
(
ũn(v)2

)
= E

(
Y (v)2

)
E

⎛
⎜⎝

⎛

⎝
∑

j−in/∈Fv

cj,0Y (v + in − j)

⎞

⎠
2
⎞
⎟⎠ (A.4)
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without the assumption of a finite third or fourth moment. Under Condition C2(ii), it can be
written that

∑

v∈S∗
Var(ũn(v)) =

∑

v∈S∗
E
(
ũn(v)2

)
= O

(
N(d−1)/d

)
, (A.5)

and a similar argument may be used for the cross-terms due to the Cauchy-Schwartz
inequality. For the case d = 2 and recordings on a rectangle, there is a justification for that
by Yao and Brockwell [6]. Thus, Var(N−1/2∑

v∈S∗ ũn(v)) → 0 as N → ∞ and Condition C2
holds, which guarantees the convergence in probability to zero.

Equation (4.2)may now be rewritten as

N1/2
(
θ̂ − θ0

)
=
(

J
N

)−1(
N−1/2 ∑

v∈S∗
U(v)

)
+ oP (1), (A.6)

where U(v)τ ≡ (X(v + i1), . . . , X(v + iq))Y (v), v ∈ Z
d. It holds that Y (v) is a linear function of

ε(v − i), i = 0, i1, . . . , iq, and X(v) is a function of ε(v + i), i ≥ 0. Then for n,m = 1, . . . , q, it
can be written for j ≥ 0 that

E(X(v + in)Y (v)X(v + im + j)Y (v + j))

= E(E(X(v + in)Y (v)X(v + im + j)Y (v + j) | ε(v + im + j + i), i ≥ 0))

= E(Y (v)Y (v + j))E(X(v + in)X(v + im + j)) = σ4γj,0cj+im−in,0.

(A.7)

Thus, for X(v) ≡ (X(v + i1), . . . , X(v + iq))
τ , Cj,0 ≡ E(X(v)X(v + j)τ)/σ2, it can be written that

E(U(v)) = 0 and

Cov(U(v),U(v + j)) ≡ E
(
U(v)U(v + j)τ

)
= σ4γj,0Cj,0, j ≥ 0. (A.8)

Now, for any positive integer K, the set

BK ≡ {(i1, i2, . . . , id) : i1 = 1, . . . , K, ik = 0,±1, . . . ,±K, k = 2, . . . , d}
∪ {

(0, i2, . . . , id) : j2 = 1, . . . , K, ik = 0,±1, . . . ,±K, k = 3, . . . , d
}

∪ · · · ∪ {(0, 0, . . . , id) : id = 1, . . . , K}
(A.9)

is defined. According to the infinite moving-average representation of X(v), for fixed K the
new process {X(K)(v)}may be defined from

X(K)(v) ≡ ε(v) +
∑

i∈BK

Θi,0ε(v + i). (A.10)
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Similarly, U(K)(v)τ ≡ (X(K)(v + i1), . . . , X(K)(v + iq))Y (v), v ∈ Z
d, and

X(K)(v) ≡
(
X(K)(v + i1), . . . , X(K)(v + iq

))τ
, C(K)

j,0 ≡ E
(
X(K)(v)X(K)(v + j)τ

)

σ2
(A.11)

are defined here. For the same reasons as before, it holds that E(U(K)(v)) = 0 and that

Cov
(
U(K)(v),U(K)(v + j)

)
≡ E

(
U(K)(v)U(K)(v + j)τ

)
= σ4γj,0C

(K)
j,0 , j ≥ 0. (A.12)

For any vector λ ∈ R
q, it holds that {λτU(K)(v)} is a strictly stationary and K∗-dependent

process, for a positive and finite integer K∗. The definition of K-dependent processes as well
as a theorem for the asymptotic normality for strictly stationary and K-dependent processes
on Z

d might be given similarly to the one-dimensional case by Brockwell and Davis [9]. Then

N−1/2 ∑

v∈S∗
λτU(K)(v) D−→ N

(
0, σ4λτMKλ

)
, (A.13)

as N → ∞ and under Condition C2, where MK ≡ γ0,0C
(K)
0,0 +

∑
j∈F−{0} γj,0(C

(K)
j,0 + C(K)τ

j,0 ).
Similarly, for

M ≡ γ0,0C0,0 +
∑

j∈F−{0}
γj,0

(
Cj,0 + Cτ

j,0

)
, (A.14)

it holds as K → ∞ that λτMKλ → λτMλ. Using Chebychev’s inequality, it may be verified
that

P

(∣∣∣∣∣N
−1/2 ∑

v∈S∗
λτU(v) −N−1/2 ∑

v∈S∗
λτU(K)(v)

∣∣∣∣∣ > ε

)

≤
(

1
ε2

)(
N∗

N

)
λτ Var

(
U(v) −U(K)(v)

)
λ −→ 0,

(A.15)

as K → ∞ and, thus, it holds that

N−1/2 ∑

v∈S∗
λτU(v) D−→ N

(
0, σ4λτMλ

)
or N−1/2 ∑

v∈S∗
U(v) D−→ N

(
0, σ4M

)
, (A.16)
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asN → ∞ and under Condition C2. According to (A.14), the (n,m)th element ofM is equal
to

γ0,0c0+im−in,0 +
∑

j∈F,j>0

(
γj,0cj+im−in,0 + γj,0cj+in−im,0

)

= γ0,0c0+im−in,0 +
∑

j∈F,j>0
γj,0cj+im−in,0 +

∑

j∈F,j<0
γj,0c−j+in−im,0

= γ0,0c0+im−in,0 +
∑

j∈F,j>0
γj,0cj+im−in,0 +

∑

j∈F,j<0
γj,0cj+im−in,0

=
∑

j∈F
γj,0cj+im−in,0

(A.17)

and back to the general Yule-Walker equations with M ≡ Iq, that is, the identity matrix of
order q. Equation (A.16)may be rewritten

N−1/2 ∑

v∈S∗
U(v) D−→ N

(
0, σ4Iq

)
, (A.18)

asN → ∞ and under Condition C2. Combining (A.6) and (A.18)with Proposition 4.2, it can
be written that

N1/2
(
θ̂ − θ0

)
D−→ N

(
0,
(
Θτ

0Θ0
)−1)

, (A.19)

as N → ∞ and under Condition C2. The proof will be completed when it is shown that
Θτ

0Θ0 = W∗
q. Indeed, for the vector W = (W(−i1), . . . ,W(−iq))τ and for ξ = Θτ

0W + R with
R being a (q × 1) random vector that is independent of W, since it is a linear function of
W(−i1 − i), i > 0, i/= i2 − i1, . . . , iq − i1, the required result might be obtained then, as

Var(W | R) ≡ Var
(
W | W(−i1 − i), i > 0, i/= i2 − i1, . . . , iq − i1

)
= Var(W) = Iq. (A.20)

Note that the decomposition W∗
q = Θτ

0Θ0, as it is justified in the end of proof of Theorem 4.3,
guarantees thatW∗

q has a nonzero determinant.
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