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This paper studies the existence and uniqueness of a mild solution for a neutral stochastic partial
functional differential equation using a local Lipschitz condition. When the neutral term is zero
and even in the deterministic special case, the result obtained here appears to be new. An example
is included to illustrate the theory.

1. Introduction

In this paper, a neutral stochastic partial functional differential equation is considered in a
real separable Hilbert space of the form

d
[
x(t) + f(t, xt)

]
= [Ax(t) + a(t, xt)]dt + b(t, xt)dw(t), t > 0, (1.1)

x(t) = ϕ(t), t ∈ [−r, 0] (0 ≤ r < ∞), (1.2)

where xt(s) = x(t + s), −r ≤ s ≤ 0.
A study of such class of (1.1) was initiated recently in Govindan [1]. Equation (1.1)

when f ≡ 0 has been well-studied; see Taniguchi et al. [2], Govindan [3], and the references
cited therein. Using a global Lipschitz condition on the nonlinear terms f(t, u), a(t, u) and
b(t, u), existence and stability problems were addressed in [1] and also in [4] but with a
different iteration procedure. For a motivation and details, we refer to [1].

In this note, our goal is to study the existence and uniqueness of the mild solution
of (1.1) using a local Lipschitz condition. Even in the special case (when f = 0), the re-
sult obtained here appears to be new. Taniguchi et al. [2] discussed this special case in
C([−r, T], Lp(Ω, X))when p > 2.
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Adimy and Ezzinbi [5] studied the following neutral partial functional differential
equation:

dD(xt)
dt

= AD(xt) + F(xt), t > 0, (1.3)

x(t) = φ(t), t ∈ [−r, 0], (1.4)

whereD is a bounded linear operator from C := C([−r, 0], X) intoX (a Hilbert space) defined
by D(φ) = φ(0) −D0(φ), for φ ∈ C, where the operator D0 is given by

D0
(
φ
)
=
∫0

−r
dκ(θ)φ(θ), φ ∈ C, (1.5)

and κ : [−r, 0] → L(X) is of bounded variation and nonatomic at zero. Equation (1.3)
has been well-studied, see Wu [6]. The authors from [5] developed a basic theory on such
equations and studied an existence result, among others, using a global Lipschitz condition
on F(u). For details, we refer to [5].

Clearly, (1.1) (when b = 0) is more general than (1.3). Our main result (when b = 0)
proved using a local Lipschitz condition, therefore, is new in this case as well. We also refer
to Ezzinbi et al. [7] for yet another class of deterministic neutral equations which is again a
particular case of (1.1) wherein the authors study existence and regularity problems using
global Lipschitz conditions.

The paper is organized as follows. In Section 2, we consider the formulation of the pro-
blem under study from [1] and the references therein. Section 3 is devoted to the main result
on the existence and uniqueness of a mild solution of (1.1). An example is given in Section 4.

2. Mathematical Formulation

LetX,Y be real separable Hilbert spaces and L(Y,X) be the space of bounded linear operators
mapping Y into X. For convenience, we will use the same notation | · | to denote the norms in
X,Y , and L(Y,X) and use (·, ·) to denote innerproduct of X and Y without any confusion. Let
(Ω, B, P, {Bt}t≥0) be a complete probability space with an increasing right continuous family
{Bt}t≥0 of complete sub-σ-algebras of B. Let βn(t)(n = 1, 2, 3, . . .) be a sequence of real-valued
standard Brownian motions mutually independent defined on this probability space. Set

w(t) =
∞∑

n=1

√
λnβn(t)en, t ≥ 0, (2.1)

where λn ≥ 0 (n = 1, 2, 3, . . .) are nonnegative real numbers and {en}(n = 1, 2, 3, . . .) is a com-
plete orthonormal basis in Y . Let Q ∈ L(Y, Y ) be an operator defined by Qen = λnen. The
above Y -valued stochastic processw(t) is called aQ-Wiener process. Now, we define the sto-
chastic integral of a Y -valued Bt-adapted process h(t) with respect to the Q-Wiener process
w(t).
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Definition 2.1. Let h(t) be a Y -valued Bt-adapted process such that E
∫ t
0 |h(t)|2dt < ∞ for any

t ∈ [0,∞). Then, we define the real-valued stochastic integral
∫ t
0〈h(s), dw(s)〉 by

∫ t

0
〈h(s), dw(s)〉 =

∞∑

n=1

∫ t

0
(h(s), en)dw(s)en, (2.2)

where w(s)en = (w(s), en) =
√
λnβn(s).

Definition 2.2. Let h(t) be an L(Y,X)-valued function and let λ be a sequence {
√
λ1,

√
λ2, . . .}.

Then we define

|h(t)|λ =

{ ∞∑

n=1

∣∣∣
√
λnh(t)en

∣∣∣
2
}1/2

. (2.3)

If |h(t)|2λ < ∞, then h(t) is called λ-Hilbert-Schmidt operator and let σ(λ)(Y,X) denote the
space of all λ-Hilbert-Schmidt operators from Y to X.

Next, we define the X-valued stochastic integral with respect to the Y -valued Q-
Wiener process w(t). See [1] and the references therein.

Definition 2.3. Let Φ : [0,∞) → σ(λ)(Y,X) be a Bt-adapted process satisfying
∫ t
0 E|Φ(s)|2λds <

∞. Then we define the X-valued stochastic integral
∫ t
0 Φ(s)dw(s) ∈ X with respect tow(t) by

(∫ t

0
Φ(s)dw(s), h

)

=
∫ t

0
〈Φ∗(s)h, dw(s)〉, h ∈ X, (2.4)

where Φ∗ is the adjoint operator of Φ.

A semigroup {S(t), t ≥ 0} is said to be exponentially stable if there exist positive con-
stantsM and a such that ‖S(t)‖ ≤ M exp(−at), t ≥ 0, where ‖ · ‖ denotes the operator norm in
L(X,X). IfM = 1, the semigroup is said to be a contraction. If {S(t), t ≥ 0} is an analytic semi-
group, see Pazy [8, page 60] with infinitesimal generator A such that 0 ∈ ρ(A) (the resolvent
set of A) then it is possible to define the fractional power (−A)α, for 0 < α ≤ 1 as a closed
linear operator on its domain D((−A)α). Furthermore, the subspace D((−A)α)) is dense in X
and the expression

‖x‖
α
=
∣∣(−A)αx

∣∣, x ∈ D
(
(−A)α

)
(2.5)

defines a norm onXα = D((−A)α). Let C be the space of continuous functions x : [−r, 0] → X
with the norm ‖x‖C = sup−r≤s≤0|x(s)|.

For convenience of the reader, we will state the following lemmas that will be used in
the sequel.



4 International Journal of Stochastic Analysis

Lemma 2.4 (see [8]). Let −A be the infinitesimal generator of an analytic semigroup {S(t), t ≥ 0}.
If 0 ∈ ρ(A) then,

(a) S(t) : X → Xα for every t > 0 and α ≥ 0.

(b) For every x ∈ Xα one has

S(t)(−A)αx = (−A)αS(t)x. (2.6)

(c) For every t > 0 the operator (−A)αS(t) is bounded and

∥∥(−A)αS(t)
∥∥ ≤ μαt

−αe−at, a > 0. (2.7)

(d) Let 0 < α ≤ 1 and x ∈ Xα then

|S(t)x − x| ≤ γαt
α
∣∣(−A)αx

∣∣. (2.8)

Lemma 2.5 (see [4]). Let −A be the infinitesimal generator of an analytic semigroup of bounded
linear operators {S(t), t ≥ 0} in X. Then, for any stochastic process F : [0,∞) → X which is
strongly measurable with

∫T
0 E|(−A)αF(t)|pdt < ∞, p ≥ 2 and 0 < T ≤ ∞, the following inequality

holds for 0 < t ≤ T :

E

∣∣∣∣∣

∫ t

0
(−A)S(t − s)F(s)ds

∣∣∣∣∣

p

≤ k
(
p, a, α

)
∫ t

0
E
∣∣(−A)αF(s)

∣∣pds, (2.9)

provided 1/p < α < 1, where

k
(
p, a, α

)
= M

p

1−α

(
p − 1

)pα−1[Γ
((
pα − 1

)
/
(
p − 1

))]p−1

(
pa
)pα−1 , (2.10)

and Γ(·) is the Gamma function.

3. Existence and Uniqueness of a Solution

In this section, we establish the existence and uniqueness of a mild solution of (1.1) using
local Lipschitz conditions.

We now make (1.1) precise: let −A : D(−A) ⊆ X → X be the infinitesimal generator
of an analytic semigroup of bounded linear operators {S(t), t ≥ 0} defined on X. Let the fun-
ctions a(t, u), f(t, u), and b(t, u) be defined as follows: a : R+ × C → X, where R+ = [0,∞),
f : R+ × C → Xα and b : R+ × C → L(Y,X) are Borel measurable; and for each (t, u) are
measurable with respect to the σ-algebra Bt.

Let the following assumptions hold a.s.:

(H1) −A is the infinitesimal generator of an analytic semigroup of bounded linear
operators {S(t), t ≥ 0} in X and that the semigroup is a contraction,



International Journal of Stochastic Analysis 5

(H2) The functions a(t, u) and b(t, u) are continuous and that there exist positive con-
stants Ci = Ci(T), i = 1, 2 such that

|a(t, u) − a(t, v)| ≤ C1‖u − v‖C,
|b(t, u) − b(t, v)|λ ≤ C2‖u − v‖C,

(3.1)

for all t ∈ [0, T] and u, v ∈ C.
Under this assumption, we may suppose that there exists a positive constant C3 =
C3(T) such that

|a(t, u)|2 + |b(t, u)|2λ ≤ C2
3

(
1 + ‖u‖2C

)
. (3.2)

(H3) The function f(t, u) is continuous and that there exists a positive constant C4 =
C4(T) such that

∥∥f(t, u) − f(t, v)
∥∥
α ≤ C4‖u − v‖C, (3.3)

for all t ∈ [0, T] and u, v ∈ C.
Under this assumption, we may suppose that there exists a positive constant C5 =
C5(T) such that

∥∥f(t, u)
∥∥
α ≤ C5(1 + ‖u‖C). (3.4)

(H4) f(t, u) is continuous in the quadratic mean sense:

lim
(t,u)→ (s,v)

E
∥∥f(t, u) − f(s, v)

∥∥2
α −→ 0. (3.5)

We now introduce the concept of a mild solution of the problem (1.1)-(1.2).

Definition 3.1. An X-valued stochastic process {x(t), t ∈ [−r, T]}(0 < T < ∞) is called a mild
solution of the problem (1.1)-(1.2) if

(i) x(t) is Bt-adapted with
∫T
0 |x(t)|2dt < ∞, a.s.,

(ii) x(t) = ϕ(t), t ∈ [−r, 0] a.s.,
(iii) x(t) satisfies the integral equation

x(t) = S(t)
[
ϕ(0) + f

(
0, ϕ

)] − f(t, xt) −
∫ t

0
AS(t − s)f(s, xs)ds

+
∫ t

0
S(t − s)a(s, xs)ds +

∫ t

0
S(t − s)b(s, xs)dw(s), a.s., t ∈ [0, T].

(3.6)

Next, assume that T > 0 is a fixed time. Let ΓT be the subspace of all continuous
processes x which belong to the space C([−r, T], L2(Ω, X)) with the norm ‖x‖ΓT <

∞, where ‖x‖ΓT := sup0≤t≤T (E‖xt‖2C)1/2. See [2].
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Let the past process ϕ ∈ C([−r,T], L2(Ω, X)), such that E‖ϕ‖2C < ∞.
In the rest of the paper, we will restrict α to the interval 1/2 < α < 1.

Theorem 3.2. Suppose that the assumptions (H1)–(H4) are satisfied. Then, there exists a time 0 <
tm = tmax ≤ ∞ such that (1.1) has a unique mild solution. Further, if tm < ∞, then limt↑tmE|x(t)|2 =
∞.

Define a map G on ΓT :

(Gx)(t) = S(t)
[
ϕ(0) + f

(
0, ϕ

)] − f(t, xt) −
∫ t

0
AS(t − s)f(s, xs)ds

+
∫ t

0
S(t − s)a(s, xs)ds +

∫ t

0
S(t − s)b(s, xs)dw(s), t > 0,

(Gx)(t) = ϕ(t), t ∈ [−r, 0].

(3.7)

To prove this theorem, we need some lemmas. The first one establishes the continuity
of the map G defined on [0, T] and taking values in L2(Ω, X) thereby showing that it is a
well-defined map in the space C([−r, T], L2(Ω, X)). The second one then shows that G maps
ΓT into itself. See [2, 9, 10].

Lemma 3.3. For arbitrary x ∈ ΓT , (Gx)(t) is continuous on [0, T] in the L2(Ω, X) sense.

Proof. Let 0 ≤ t ≤ T , h > 0 and t + h ∈ [0, T]. Consider

(Gx)(t) = S(t)ϕ(0) + S(t)f
(
0, ϕ

) − f(t, xt) +
∫ t

0
(−A)S(t − s)f(s, xs)ds

+
∫ t

0
S(t − s)a(s, xs)ds +

∫ t

0
S(t − s)b(s, xs)dw(s)

=:
6∑

j=1

Ij(t).

(3.8)

Hence,

E|(Gx)(t + h) − (Gx)(t)|2 ≤ 6
6∑

j=1

E
∣∣Ij(t + h) − Ij(t)

∣∣2. (3.9)

By virtue of closedness of (−A)α and the fact that S(t) commutes with (−A)α on Xα, we have
by Lemma 2.4 and the assumption (H3) that

E|I1(t + h) − I1(t)|2 = E
∣∣(S(t + h) − S(t))ϕ(0)

∣∣2

= E
∣∣(S(h) − I)S(t)ϕ(0)

∣∣2

≤ γ2αμ
2
αt

−2αh2αe−2atE
∥∥ϕ

∥∥2
C,



International Journal of Stochastic Analysis 7

E|I2(t + h) − I2(t)|2 = E
∣∣(S(h) − I)S(t)(−A)−α(−A)αf

(
0, ϕ

)∣∣2

≤ 2γ2αh
2αμ2

αt
−2αe−2atC2

5

∥∥(−A)−α
∥∥2
(
1 + E

∥∥ϕ
∥∥2
C

)
,

E|I3(t + h) − I3(t)|2 ≤
∥∥(−A)−α

∥∥2
E
∣∣(−A)αf(t + h, xt+h) − (−A)αf(t, xt)

∣∣2.

(3.10)

Next, using Lemmas 2.4 and 2.5 and assumption (H3), we obtain

E|I4(t + h) − I4(t)|2 = E

∣∣∣∣∣

∫ t

0
(−A)S(t − s)(S(h) − I)f(s, xs)ds

+
∫ t+h

t

(−A)S(t + h − s)f(s, xs)ds

∣∣∣∣∣

2

≤ 2
M2

1−αΓ(2α − 1)

(2a)2α−1

{∫ t

0
E
∣∣(−A)α(S(h) − I)f(s, xs)

∣∣2ds

+
∫ t+h

t

E
∣∣(−A)αS(h)f(s, xs)

∣∣2ds

}

≤ 2
M2

1−αΓ(2α − 1)

(2a)2α−1

{

γ2βh
2β
∫ t

0
E
∣∣∣(−A)β+αf(s, xs)

∣∣∣
2
ds

+e−2ah
∫ t+h

t

E
∣∣(−A)αf(s, xs)

∣∣2ds

}

≤ 4C2
5

M2
1−αΓ(2α − 1)

(2a)2α−1
[
γ2βh

2βt + he−2ah
](

1 + sup
0≤t≤T

E‖xt‖2C
)

,

(3.11)

where we chose β > 0, such that 1/2 < α + β < 1. Next, by assumption (H2):

E|I5(t + h) − I5(t)|2 = E

∣∣∣∣∣

∫ t

0
(S(h) − I)S(t − s)a(s, xs)ds +

∫ t+h

t

S(t + h − s)a(s, xs)ds

∣∣∣∣∣

2

≤ 2γ2αh
2αμ2

α

∫ t

0
(t − s)−2αe−2a(t−s)E|a(s, xs)|2ds

+ 2
∫ t+h

t

e−2a(t+h−s)E|a(s, xs)|2ds.

(3.12)

Hence, using similar arguments as in Ahmed [9, Theorem 6.3.2, pages 206–209], one can find
constants K1 and K2 > 0 depending on the parameters α, β, γα, μα, C3, T such that

E|I5(t + h) − I5(t)|2 ≤ 2γ2αμ
2
α

[
K1h

2α +K2h
](

1 + sup
0≤t≤T

E‖xt‖2C
)

, (3.13)

for t ∈ [0, T].
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Lastly, for the stochastic integral term I6(t), again exploiting Lemma 2.4 and assump-
tion (H2), we obtain

E|I6(t + h) − I6(t)|2 = E

∣∣∣∣∣

∫ t

0
(S(h) − I)S(t − s)b(s, xs)dw(s)

+
∫ t+h

t

S(t + h − s)b(s, xs)dw(s)

∣∣∣∣∣

2

≤ 2κ

⎧
⎨

⎩
E

∣∣∣∣∣

∫ t

0
(S(h) − I)S(t − s)b(s, xs)ds

∣∣∣∣∣

2

+E

∣∣∣∣∣

∫ t+h

t

S(t + h − s)b(s, xs)ds

∣∣∣∣∣

2
⎫
⎬

⎭
, κ > 0,

(3.14)

wherein we used Da Prato and Zabczyk [11, Theorem 6.10, page 160] or Lemma 2.4 [1].
Arguing as before, we find constants K3 and K4 > 0 such that

E|I6(t + h) − I6(t)|2 ≤ 2κγ2αμ
2
α

[
K3h

2α +K4h
](

1 + E sup
0≤t≤T

‖xt‖2C
)

. (3.15)

Similar estimates hold for

E|(Gx)(t − h) − (Gx)(t)|2 for t ≥ h > 0. (3.16)

Thus letting h → 0, thanks to (H4) the desired continuity follows from all the foregoing
estimates.

Lemma 3.4. G maps ΓT into itself, that is, G(ΓT ) ⊂ ΓT .

Proof. Let x ∈ ΓT and assume that t ≥ r. Then

E‖(Gx)t‖2C ≤ 6

⎧
⎨

⎩
E sup
−r≤θ≤0

∣∣S(t + θ)ϕ(0)
∣∣2 + E sup

−r≤θ≤0

∣∣S(t + θ)f
(
0, ϕ

)∣∣2 + E sup
−r≤θ≤0

∣∣f(t + θ, xt+θ)
∣∣2

+ E sup
−r≤θ≤0

∣∣∣∣∣

∫ t+θ

0
(−A)S(t + θ − s)f(s, xs)ds

∣∣∣∣∣

2

+ E sup
−r≤θ≤0

∣∣∣∣∣

∫ t+θ

0
S(t + θ − s)a(s, xs)ds

∣∣∣∣∣

2

+E sup
−r≤θ≤0

∣∣∣∣∣

∫ t+θ

0
S(t + θ − s)b(s, xs)dw(s)

∣∣∣∣∣

2
⎫
⎬

⎭

=:
6∑

i=1

Ji. (3.17)
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We now estimate each term on the R.H.S. of (3.17):

J1 ≤ 6e2are−2atE
∥∥ϕ

∥∥2
C. (3.18)

By Lemma 2.4 and assumption (H3), we have

J2 ≤ 6
∥∥(−A)−α

∥∥2
e−2atC2

5

(
1 + E

∥∥ϕ
∥∥2
C

)
,

J3 ≤ 6
∥∥(−A)−α

∥∥2
C2

5

(

1 + sup
0≤t≤T

E‖xt‖2C
)

.

(3.19)

Next, using assumption (H3) and Lemma 2.5, we have

J4 ≤ 6
M2

1−αΓ(2α − 1)

(2a)2α−1

∫ t

0
E
∣∣(−A)αf(s, xs)

∣∣2ds

≤ 12TC2
5

M2
1−αΓ(2α − 1)

(2a)2α−1

(

1 + sup
0≤t≤T

E‖xt‖2C
)

,

(3.20)

and by assumption (H2) and Lemma 2.4, we get

J5 ≤ 6E sup
−r≤θ≤0

∫ t+θ

0
e−2a(t+θ−s)|a(s, xs)|2ds

≤ 6TC2
3

(

1 + sup
0≤t≤T

E‖xt‖2C
)

.

(3.21)

Lastly, by [11, Theorem 6.10] and assumption (H2), we have

J6 ≤ 6κE
∫ t

0
|b(s, xs)|2ds

≤ 6κTC2
3

(

1 + sup
0≤t≤T

E‖xt‖2C
)

.

(3.22)

Consequently, E‖(Gx)t‖2C < ∞, implying that Gmaps ΓT into itself.
Next, assume that t+ θ ≤ 0, that is, t+ θ ∈ [t− r, 0]. Then (Gx)t(θ) = ϕ(θ) and therefore

E sup
−r≤θ≤−t

|(Gx)t(θ)|2 = E sup
t−r≤s≤0

∣∣ϕ(s)
∣∣2 = E

∥∥ϕ
∥∥2
C < ∞. (3.23)
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Proof of Theorem 3.2. Let x, y ∈ ΓT and assume that t ≥ r. Then for any fixed t ∈ [0, T], we have

E
∥∥(Gx)t −

(
Gy

)
t

∥∥2
C
= E sup

−r≤θ≤0

∣∣(Gx)(t + θ) − (Gy
)
(t + θ)

∣∣2

≤ 4

⎧
⎨

⎩
E sup
−r≤θ≤0

∣∣f(t + θ, xt+θ) − f
(
t + θ, yt+θ

)∣∣2

+ E sup
−r≤θ≤0

∣∣∣∣∣

∫ t+θ

0
(−A)S(t + θ − s)

[
f(s, xs) − f

(
s, ys

)]
ds

∣∣∣∣∣

2

+ E sup
−r≤θ≤0

∣∣∣∣∣

∫ t+θ

0
S(t + θ − s)

[
a(s, xs) − a

(
s, ys

)]
ds

∣∣∣∣∣

2

+E sup
−r≤θ≤0

∣∣∣∣∣

∫ t+θ

0
S(t + θ − s)

[
b(s, xs) − b

(
s, ys

)]
dw(s)

∣∣∣∣∣

2
⎫
⎬

⎭

≤ 4C2
4

∥∥(−A)−α
∥∥2 sup

0≤t≤T
E
∥∥xt − yt

∥∥2
C

+ 4
M2

1−αΓ(2α − 1)

(2a)2α−1
TC2

4 sup
0≤t≤T

E
∥∥xt − yt

∥∥2
C

+ 4TC2
1 sup
0≤t≤T

E
∥∥xt − yt

∥∥2
C

+ 4κTC2
2 sup
0≤t≤T

E
∥∥xt − yt

∥∥2
C.

(3.24)

Now choosing T > 0 sufficiently small, we can find a positive numberK(T) ∈ [0, 1) such that

∥∥Gx −Gy
∥∥
ΓT

≤ K(T)
∥∥x − y

∥∥
ΓT
, (3.25)

for any x, y ∈ ΓT . Hence, by the Banach fixed point theorem,G has a unique fixed point x ∈ ΓT
and this fixed point is the unique mild solution of (1.1) on [0, T]. Next, we continue the solu-
tion for t ≥ T , see Ahmed [9] and Govindan [10]. For notational convenience, set T = t1. For
t ∈ [t1, t2], where t1 < t2, we say that a function x̂(t) is a continuation of x(t) to the interval
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[t1, t2] if

(a) x̂ ∈ C([−r, t2], L2(Ω, X)), and

(b) x̂(t) = S(t−t1)[ϕ(t1)+f(t1, ϕ)]−f(t, x̂t)−
∫ t
t1
AS(t−s)f(s, x̂s)ds+

∫ t
t1
S(t−s)a(s, x̂s)ds+

∫ t
t1
S(t − s)b(s, x̂s)dw(s), a.s.

The terminology mild continuation applied to x̂(t) is justified by the observation that if we
define a new function v(t) on [0, t2] by setting

v(t) =

⎧
⎨

⎩

x(t) if 0 ≤ t ≤ t1,

x̂(t) if t1 ≤ t ≤ t2,
(3.26)

and v(t) = ϕ(t), t ∈ [−r, 0], then v(t) is a mild solution of (1.1) on [0, t2]. The existence and
uniqueness of the mild continuation x̂(t) is demonstrated exactly as above with only some
minor changes. The details are therefore omitted. Repeating this procedure, one continues
the solution till the time tm = tmax where [0, tm] is the maximum interval of the existence and
uniqueness of a solution. For tm finite, limE|x(t)|2 = ∞ as t ↑ tm. If not, then there exists a
sequence {τn} converging to tm and a finite positive number δ such that E|x(τn)|2 ≤ δ for all
n. Taking n sufficiently large so that τn is infinitesimally close to tm, one can use the previous
arguments to extend the solution beyond tm, which is a contradiction.

Next, assume that t + θ ≤ 0. In that case,

E
∥∥(Gx)t −

(
Gy

)
t

∥∥2
C
= 0. (3.27)

This completes the proof.

4. An Example

Consider the neutral stochastic partial functional differential equation with finite delays r1, r2,
and r3 (r > ri ≥ 0, i = 1, 2, 3):

d

⎡

⎣z(t, x) +
�3(t)∥∥∥(−A)3/4

∥∥∥

∫0

−r3
z(t + u, x)du

⎤

⎦ =

[
∂2

∂x2
z(t, x) + �1(t)

∫0

−r1
z(t + u, x)du

]

dt

+ �2(t)z(t − r2, x)dβ(t), t > 0,

(4.1)

�i : R+ −→ R+, i = 1, 2, 3; z(t, 0) = z(t, π) = 0, t > 0,

z(s, x) = ϕ(s, x), ϕ(·, x) ∈ C a.s.,

ϕ(s, ·) ∈ L2[0, π], − r ≤ s ≤ 0, 0 ≤ x ≤ π,

(4.2)

where β(t) is a standard one-dimensional Wiener process, �i(t), i = 1, 2, 3 are continuous
functions and E‖ϕ‖2C < ∞.
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Take X = L2[0, π], Y = R1. Define −A : X → X by −A = ∂2/∂x2 with domain
D(−A) = {w ∈ X : w, ∂w/∂x are absolutely continuous, ∂2w/∂x2 ∈ X, w(0) = w(π) = 0}.
Then

−Aw =
∞∑

n=1

n2(w,wn)wn, w ∈ D(−A), (4.3)

where wn(x) =
√
2/π sinnx, n = 1, 2, 3, . . ., is the orthonormal set of eigenvectors of −A.

It is well known that −A is the infinitesimal generator of an analytic semigroup
{S(t), t ≥ 0} in X and is given by

S(t)w =
∞∑

n=1

e−n
2t(w,wn)wn, w ∈ X, (4.4)

that satisfies ‖S(t)‖ ≤ exp(−π2t), t ≥ 0, and hence is a contraction semigroup.
Define now

f(t, zt) =
�3(t)∥∥∥(−A)3/4

∥∥∥

∫0

−r3
z(t + u, x)du,

a(t, zt) = �1(t)
∫0

−r1
z(t + u, x)du,

b(t, zt) = �2(t)z(t − r2, x).

(4.5)

Next,

∥∥f(t, zt)
∥∥
3/4 =

�3(t)∥∥∥(−A)3/4
∥∥∥

∣∣∣∣∣
(−A)3/4

∫0

−r3
z(t + u, x)du

∣∣∣∣∣

≤ �3(T)r3‖z‖C, a.s.

(4.6)

This shows that f : R+ × C → D((−A)3/4) with C4(T) = �3(T)r3. Similarly, a : R+ × C → X
and b : R+ ×C → L(R,X). Thus, (4.1) can be expressed as (1.1)with −A, f, a and b as defined
above. Hence, there exists a unique mild solution by Theorem 3.1.

The existence results from [1, 4] are not applicable to (4.1); and the one from [5] is also
not applicable to the deterministic case of (4.1) as they all employ global Lipschitz conditions.
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