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LetX(t) be a controlled one-dimensional standard Brownian motion starting from x ∈ (−d, d). The
problem of optimally controlling X(t) until |X(t)| = d for the first time is solved explicitly in a
particular case. The maximal value that the instantaneous reward given for survival in (−d, d) can
take is determined.

1. Introduction

Consider the one-dimensional controlled standard Brownian motion process {X(t), t ≥ 0}
defined by the stochastic differential equation

dX(t) = b0[X(t)]k u[X(t)]dt + dB(t), (1.1)

where u is the control variable, b0 > 0, k ∈ {0, 1, . . .} and {B(t), t ≥ 0} is a standard Brownian
motion. Assume that X(0) = x ∈ (−d, d) and define the first passage time

T(x) = inf{t > 0 : |X(t)| = d | X(0) = x}. (1.2)

Our aim is to find the control u∗ that minimizes the expected value of the cost function

J(x) =
∫T(x)

0

{
1
2
q0 u[X(t)]2 − λ

}
dt, (1.3)

where q0 and λ are positive constants.
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In the case when k = 0, Lefebvre and Whittle [1] were able to find the optimal control
u∗ by making use of a theorem in Whittle [2, page 289] that enables us to express the value
function

F(x) := inf
u[X(t)], 0≤t≤T(x)

E[J(x)] (1.4)

in terms of a mathematical expectation for the uncontrolled Brownian motion {B(t), t ≥ 0}
obtained by setting u ≡ 0 in (1.1). Moreover, Lefebvre [3] has also obtained the value of u∗

when k = 0 if the cost function J in (1.3) is replaced by

J1(x) =
∫T(x)

0

{
1
2
q0X

2(t)u2[X(t)] + λ

}
dt. (1.5)

Although we cannot appeal to the theorem in Whittle [2] in that case, the author was able
to express the function F(x) in terms of a mathematical expectation for an uncontrolled
geometric Brownian motion.

In Section 2, we will find u∗ when k = 1. The problem cannot then be reduced
to the computation of a mathematical expectation for an uncontrolled diffusion process.
Therefore, we will instead find the optimal control by considering the appropriate dynamic
programming equation. Moreover, if the instantaneous reward λ given for survival in the
interval (−d, d) is too large, then the value function F(x) becomes infinite. We will determine
the maximal value that λ can take in Section 3.

2. Optimal Control

The value function F(x) satisfies the following dynamic programming equation:

inf
u(x)

{
1
2
q0u

2(x) − λ + [b0 x u(x)] F ′(x) +
1
2
F ′′(x)

}
= 0. (2.1)

It follows that the optimal control is given by

u∗(x) = −b0
q0

x F ′(x). (2.2)

Substituting this value into (2.1), we find that we must solve the nonlinear ordinary
differential equation

−λ − b20
2q0

x2[F ′(x)
]2 + 1

2
F ′′(x) = 0. (2.3)

The boundary conditions are

F(d) = F(−d) = 0. (2.4)
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Next, let

δ =

√
2λ√
q0

b0. (2.5)

Making use of a mathematical software program, we find that the solution of (2.3) can be
expressed as

F(x) = −
√
2 λ q0

b0

∫x

−d

c1Y−1/4
(
δz2/2

)
+ J−1/4

(
δz2/2

)
z[c1Y3/4(δz2/2) + J3/4(δz2/2)]

dz, (2.6)

where Jν and Yν are Bessel functions and c1 is a constant that must be chosen so that F(d) = 0.
Unfortunately, it seems very difficult to evaluate the integral explicitly. Notice however that
actually we do not need to find F(x), but only F ′(x) to determine the optimal value of the
control variable u.

We will prove the following proposition.

Proposition 2.1. The control u∗(x) that minimizes the expected value of the cost function J(x)
defined in (1.3), when k = 1 in (1.1), is given by

u∗(x) = −
√
2 λ√
q0

J1/4
((√

λ/
√
2 q0

)
b0x2

)

J−3/4
((√

λ/
√
2 q0

)
b0x2

) for − d < x < d. (2.7)

Proof. We deduce from (2.6) that

F ′(x) = −
√
2 λ q0

b0

c1 Y−1/4
(
δx2/2

)
+ J−1/4

(
δx2/2

)
x[c1Y3/4(δx2/2) + J3/4(δx2/2)]

. (2.8)

Moreover, from the formula (see Abramowitz and Stegun [4, page 358])

Yν(z) =
Jν(z) cos(νπ) − J−ν(z)

sin(νπ)
, (2.9)

which is valid for ν /= − 1,−2, . . ., we find that the function F ′(x) may be rewritten as

F ′(x) = −
√
2λq0
b0x

(1 − c1) J−1/4
(
δ x2/2

)
+
√
2c1 J1/4

(
δ x2/2

)
(1 − c1) J3/4(δ x2/2) −

√
2c1 J−3/4(δx2/2)

. (2.10)

Now, because the optimizer is trying to maximize the time spent byX(t) in the interval
(−d, d), taking the quadratic control costs into account, we can assert, by symmetry, that u∗(x)
should be equal to zero when x = 0. One can check that it is indeed the case for any value of
the constant c1. Furthermore, the function F(x) must have a minimum (that is, a maximum
in absolute value) at x = 0, so that F ′(0) = 0 as well.
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With the help of the formula (see Abramowitz and Stegun [5, page 360])

Jν(z) ∼
(
1
2
z

)ν 1
Γ(ν + 1)

(2.11)

if z → 0 and ν /= − 1,−2, . . ., we find that

lim
x→ 0

F ′(x) =

√
2λq0
b0

(1 − c1)
c1

δ1/2

2
√
2

Γ(1/4)
Γ(3/4)

. (2.12)

Hence, we deduce that the constant c1 must be equal to 1, so that

F ′(x) =

√
2λq0
b0x

J1/4
(
δx2/2

)
J−3/4(δx2/2)

. (2.13)

Formula (2.7) for the optimal control then follows at once from (2.2).

3. Maximal Value of λ

Because the optimizer wants X(t) to remain in the interval (−d, d) as long as possible and
because u[X(t)] is multiplied by b0X(t) (with b0 > 0) in (1.1), we can state that the optimal
control u∗(x) should always be negative when x /= 0. However, if we plot u∗ against x for
particular values of the constants λ, b0, q0, and d, we find that it is sometimes positive. This
is due to the fact that the formula in Proposition 2.1 is actually only valid for λ less than a
critical value λcrit. This λcrit depends on the other parameters. Conversely, if we fix the value
of λ, then we can find the largest value that d can take.

One way to determine λcrit is to find out for what value of λ the value function becomes
infinite. However, becausewewere not able to obtain an explicit expression for F(x) (without
an integral sign), we must proceed differently.

Another way that can be used to obtain the value of λcrit is to determine the smallest
value of x (positive) for which the denominator in (2.13) vanishes.

Let

f(x) = x J−3/4
(
x2/2

)
. (3.1)

Using a mathematical software program, we find that f(x) = 0 at (approximately) x = 1.455.
Hence, we deduce that we must have

√
δd � 1.455. (3.2)

We can now state the following proposition.
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Proposition 3.1. For fixed values of b0, q0, and d, the value of λcrit is given by

λcrit �
(
1.455
d

)4 q0

2b20
. (3.3)

To conclude, one gives the value of dmax when λ is fixed.

Corollary 3.2. For fixed values of b0, q0, and λ, the maximal value that d can take is

dmax � 1.455√
δ

= 1.455

( √
q0√

2λb0

)1/2

. (3.4)

4. Conclusion

We have solved explicitly a problem of the type that Whittle [2] termed “LQG homing.”
Actually, the expression “LQG homing” corresponds to the case when the parameter λ in the
cost function J(x) is negative, so that the optimizer wants the controlled process to leave the
continuation region as soon as possible.

The author has studied LQG homing problems in a number of papers (see Lefebvre
[4], in particular). They were also considered recently by Makasu [6]. However, in the
present paper, we did not appeal to the theorem in Whittle [2] to obtain the optimal solution
by reducing the optimal control problem to a purely probabilistic problem. Although this
interpretation is very interesting, it only works when a certain relation holds between the
noise and control terms. In practice, the relation in question is seldom verified in more than
one dimension.

We could determine the optimal control when the parameter λ in (1.3) is negative, so
that the optimizer wants X(t) to leave the interval (−d, d) as soon as possible. This time, the
function F(x) would have a maximum at x = 0. We could also consider other values of the
constant k in (1.1). However, the value k = 1 is probably the most important one in practice,
apart from k = 0.
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