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We consider nonconservative diffusion processes xt on the unit interval, so with absorbing
barriers. Using Doob-transformation techniques involving superharmonic functions, we modify
the original process to form a new diffusion process x̃t presenting an additional killing rate part
d > 0. We limit ourselves to situations for which x̃t is itself nonconservative with upper bounded
killing rate. For this transformed process, we study various conditionings on events pertaining to
both the killing and the absorption times. We introduce the idea of a reciprocal Doob transform:
we start from the process x̃t, apply the reciprocal Doob transform ending up in a new process
which is xt but nowwith an additional branching rate b > 0, which is also upper bounded. For this
supercritical binary branching diffusion, there is a tradeoff between branching events giving birth
to new particles and absorption at the boundaries, killing the particles. Under our assumptions,
the branching diffusion process gets eventually globally extinct in finite time. We apply these ideas
to diffusion processes arising in population genetics. In this setup, the process xt is a Wright-Fisher
diffusion with selection. Using an exponential Doob transform, we end up with a killed neutral
Wright-Fisher diffusion x̃t. We give a detailed study of the binary branching diffusion process
obtained by using the corresponding reciprocal Doob transform.

1. Introduction

We consider diffusion processes on the unit interval with a series of elementary stochastic
models arising chiefly in population dynamics in mind. These connections found their way
over the last sixty years, chiefly in mathematical population genetics. In this context, we
refer to [1] and to its extensive and nonexhaustive list of references for historical issues in
the development of modern mathematical population genetics (after Wright, Fisher, Crow,
Kimura, Nagylaki, Maruyama, Ohta, Watterson, Ewens, Kingman, Griffiths, and Tavaré, to
cite only a few). See also the general monographs [2–6].
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Special emphasis is put on Doob-transformation techniques of the diffusion processes
under concern. Most of the paper’s content focuses on the specific Wright-Fisher (WF)
diffusion model and some of its variations, describing the evolution of one two-locus colony
undergoing randommating, possibly under the additional actions of mutation, selection, and
so on. We now describe the content of this work in more detail.

Section 2 is devoted to generalities on one-dimensional diffusions on the unit interval
[0, 1]. It is designed to fix the background and notations. Special emphasis is put on the
Kolmogorov backward and forward equations, while stressing the crucial role played by
the boundaries in such one-dimensional diffusion problems. Some questions such as the
meaning of speed and scale functions, existence of an invariant measure, and validity of
detailed balance are addressed in the light of the Feller classification of boundaries. When
the boundaries are absorbing, the important problem of evaluating additive functionals
along sample paths is then briefly discussed, emphasizing the prominent role played by the
Green function of the model; several simple illustrative examples are supplied. So far, we
have dealt with a given process, say xt, and recalled the various ingredients for computing
the expectations of various quantities of interest, summing up over the history of paths.
In this setup, there is no distinction among paths with different destinations, nor did we
allow for annihilation or creation of paths inside the domain before the process reached one
of the boundaries. The Doob transform of paths allows to do so. We, therefore, describe
the transformation of sample paths techniques deriving from superharmonic additive
functionals. Some Doob transformations of interest are then investigated, together with
the problem of evaluating additive functionals of the transformed diffusion process itself.
Roughly speaking, the transformation of paths procedure allows to select sample paths of the
original process with, say, a fixed destination and/or, more generally, to kill certain sample
paths that do not fit the integral criterion encoded by the additive functional. As a result, this
selection of paths procedure leads to a new process described by an appropriate modification
of the infinitesimal generator of the original process including a multiplicative killing part
rate of the sample paths inside the interval. It turns out, therefore, that the same diffusion
methods used in the previous discussions apply to the transformed processes, obtained after
a change of measure.

Let us be more specific. In this work, we limit ourselves to nonconservative diffusion
processes xt on the unit interval and so with absorbing barriers. Using Doob-transformation
techniques involving superharmonic functions α, we modify the original process to form a
new diffusion process x̃t presenting an additional killing rate part d > 0. We further limit
ourselves to situations for which x̃t is itself nonconservative with bounded above killing rate.
For a large class of diffusion processes, the exponential function or some linear combinations
of exponential functions are admissible superharmonic functions α, leading to the required
property on d. The full transformed process has two stopping times: the time to absorption to
the boundaries and the killing time inside the domain. We study various conditionings of the
transformed process: conditioning on events leading to both random stopping times occur-
ring after the current time or only in the remote future and conditioning on events leading
to either killing or absorption time occurring first. We give the relevant quasistationary limit
laws, in the spirit of Yaglom [7]. This is made possible thanks to the existence of an harmonic
function for the full infinitesimal generator of the transformed process.

We next introduce the idea of a reciprocal Doob transform: we start now from the
process x̃t, apply the reciprocal Doob transform ending up in a new process which is xt
but now with an additional branching rate b > 0, which is bounded. Under this reciprocal
technique, the particles are not killed, rather they are allowed either to survive or split. The
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transformed process is a binary branching diffusion. For this supercritical binary branching
diffusion process, there is a tradeoff between branching events giving birth to new particles
and absorption at the boundaries, killing the particles. Under our assumptions, the branching
diffusion process gets eventually globally extinct in finite time.

We next apply these general ideas to diffusion processes arising in population genetics.
In Section 3 we start recalling that Wright-Fisher diffusion models with various drifts

are continuous space-time models which can be obtained as scaling limits of a biased discrete
Galton-Watson model with a conservative number of offspring over the generations. Sections
4 and 5 are devoted to a detailed study of both the neutral WF diffusion process and the WF
diffusion with selection, respectively.

In Section 6, we apply the Doob-transformation techniques to these processes: The
starting point process xt is a Wright-Fisher diffusion with selection differential σ > 0. We
use the exponential Doob kernel α = e−σx. The transformed process accounts for a neutral
Wright-Fisher evolution x̃t for the allele 1 frequency, subject to the additional possibility of the
extinction of the population itself due to killing at rate d proportional to its heterozygosity.
This model is of importance in population genetics as it first appeared in [8, Page 272] as
a scaling limit of a discrete population genetics model of recombination. We particularize
the relevant Yaglom limit laws obtained after conditionings on events pertaining to both
the killing or the absorption times occurring first. The computations of the quasistationary
distributions are explicit here. Our approach relies on the spectral expansion of the transition
probability kernels of both xt and x̃t which are known (from the works of Kimura) to involve
oblate spheroidal wave functions and Gegenbauer polynomials, respectively.

In Section 7, we follow the general reciprocal path indicated in Section 2 and apply
it to the particular models under concern, thereby illustrating and developing the idea of a
reciprocal Doob transform.We give a detailed study of the binary branching diffusion process
obtained by using the corresponding reciprocal Doob transform eσx when the starting point
process is now a neutral Wright-Fisher diffusion process. We end up in a globally subcritical
branching particle system, each diffusing according to the WF model with selection. This
problem is amenable to the results obtained in [9, 10].

2. Diffusion Processes on The Unit Interval: A Reminder

We start with generalities on one-dimensional diffusions exemplifying our study to the
Wright-Fisher model and its relatives. For more technical details, we refer to [8, 11–13].

2.1. Generalities on One-Dimensional Diffusions on the Interval [0, 1]

Let (wt; t ≥ 0) be a standard one-dimensional Brownian (Wiener) motion. Consider a one-
dimensional Itô diffusion driven by (wt; t ≥ 0) on the interval say [0, 1]; see [14]. We
will let I = (0, 1). Assume that it has locally Lipschitz continuous drift (x) and local
standard deviation (volatility) g(x), namely, consider the stochastic differential equation
(SDE)

dxt = f(xt)dt + g(xt)dwt, x0 = x ∈ (0, 1). (2.1)

The condition on f(x) and g(x) guarantees in particular that there is no point x∗ in I for
which |f(x)| or |g(x)|would blow up and diverge as |x − x∗| → 0.
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The Kolmogorov backward infinitesimal generator of (2.1) is G = f(x)∂x + (1/2)
g2(x)∂2x. As a result, for all suitable ψ in the domain of the operator St := etG, u := u(x, t) =
Eψ(xt∧τx) satisfies the Kolmogorov backward equation (KBE)

∂tu = G(u); u(x, 0) = ψ(x). (2.2)

In the definition of the mathematical expectation u, we have t ∧ τx := inf(t, τx), where τx
indicates a random time at which the process should possibly be stopped (absorbed), given
the process was started in x. The description of this (adapted) absorption time is governed
by the type of boundaries which {0, 1} are to (xt; t ≥ 0).

2.2. Natural Coordinate, Scale, and Speed Measure

For such Markovian diffusions, it is interesting to consider theG-harmonic coordinate ϕ ∈ C2

belonging to the kernel of G that is, satisfying G(ϕ) = 0. For ϕ and its derivative ϕ′ := dϕ/dy,
with (x0, y0) ∈ (0, 1), one finds

ϕ′(y
)

= ϕ′(y0
)

e
−2 ∫yy0 (f(z)/(g

2(z)))dz
,

ϕ(x) = ϕ(x0) + ϕ′(y0
)

∫x

x0

e
−2 ∫yy0 (f(z)/(g

2(z)))dz
dy.

(2.3)

One should choose a version of ϕ satisfying ϕ′(y) > 0, y ∈ I. The function ϕ kills the drift f
of (xt; t ≥ 0) in the sense that considering the change of variable yt = ϕ(xt),

dyt =
(

ϕ′g
)

(

ϕ−1(yt
)

)

dwt, y0 = ϕ(x). (2.4)

The driftless diffusion (yt; t ≥ 0) is often termed the diffusion in natural coordinates with
state-space [ϕ(0), ϕ(1)]. Its volatility is g̃(y) := (ϕ′g)(ϕ−1(y)). The function ϕ is often called
the scale function.

Whenever ϕ(0) > −∞ and ϕ(1) < +∞, one can choose the integration constants
defining ϕ(x) so that

ϕ(x) =

∫x

0 e
−2 ∫y0 (f(z)/(g2(z)))dzdy

∫1
0 e

−2 ∫y0 (f(z)/(g2(z)))dzdy
, (2.5)

with ϕ(0) = 0 and ϕ(1) = 1. In this case, the state-space of (yt; t ≥ 0) is again [0, 1], the same
as for (xt; t ≥ 0).

Finally, considering the random time change t → θt with inverse: θ → tθ defined by
θtθ = θ and

θ =
∫ tθ

0
g̃2(ys

)

ds, (2.6)
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the novel diffusion (wθ := ytθ ; θ ≥ 0) is easily checked to be identical in law to a standard
Brownian motion. Let now δy(·) =weak-limε↓0(1/2ε) 1(· ∈ (y − ε, y + ε)) stand for the Dirac
delta mass at y. The random time θt can be expressed as

θt =
∫1

0
dx ·m(x)

∫ t

0
δϕ(x)(ws)ds =

∫ t

0
m
(

ϕ−1(ws)
)

ds, (2.7)

where m(x) := 1/(g2ϕ′)(x) is the (positive) speed density at x = ϕ−1(y) and Lt(y) :=
limε↓0(1/2ε)

∫ t

0 1(ws ∈ (y − ε, y + ε))ds the local time at y of the Brownian motion before time
t. Both the scale function ϕ and the speed measure dμ = m(x) · dx are, therefore, essential
ingredients to reduce the original stochastic process (xt; t ≥ 0) to the standard Brownian
motion (wt; t ≥ 0). Indeed, it follows from the above arguments that if θt =

∫ t

0m(xs)ds, then
(ϕ(xθt); t ≥ 0) is a Brownian motion. The Kolmogorov backward infinitesimal generator G
may be written in Feller form

G(·) = 1
2
d

dμ

(

d

dϕ
·
)

. (2.8)

Examples (from population genetics). (i) Assume that f(x) = 0 and g2(x) = x(1 − x). This is
the neutral Wright-Fisher (WF) model discussed at length later. This diffusion is already in
natural scale and ϕ(x) = x,m(x) = [x(1 − x)]−1. The speed measure is not integrable.

(ii) With u1, u2 > 0, assume f(x) = u1 − (u1 + u2)x and g2(x) = x(1 − x). This is the
Wright-Fisher model with mutation. The parameters u1, u2 can be interpreted as mutation
rates. The drift vanishes when x = u1/(u1 +u2)which is an attracting point for the dynamics.
Here, ϕ′(y) = ϕ′(y0)y−2u1(1 − y)−2u2 ,ϕ(x) = ϕ(x0) + ϕ′(y0)

∫x

x0
y−2u1(1 − y)−2u2dy, with ϕ(0) =

−∞ and ϕ(1) = +∞ if u1, u2 > 1/2. The speed measure density ism(x) ∝ x2u1−1(1 − x)2u2−1 and
so is always integrable.

(iii)With σ ∈ R, assume amodel with quadratic logistic drift f(x) = σx(1−x) and local
variance g2(x) = x(1 − x). This is the WF model with selection. For this diffusion (see [15]),
ϕ(x) = ((1−e−2σx)/(1−e−2σ)) andm(x) ∝ [x(1 − x)]−1e2σx are not integrable. Here, σ is a selec-
tion or fitness parameter. We shall return at length to this model and its neutral version later.

2.3. The Transition Probability Density

Assume that f(x) and g(x) are now differentiable in I. Let then p(x; t, y) stand for the
transition probability density function of xt at y given x0 = x. Then, p := p(x; t, y) is the
smallest solution to the Kolmogorov forward (Fokker-Planck) equation (KFE)

∂tp = G∗(p
)

, p
(

x; 0, y
)

= δy(x), (2.9)

where G∗(·) = −∂y(f(y)·) + (1/2)∂2y(g
2(y)·) is the adjoint of G (G∗ acts on the terminal value

y, whereasG acts on the initial value x). The way one can view this PDE depends on the type
of boundaries that {0, 1} are.

We will next suppose that the boundaries ◦ := 0 or 1 are both exit (or absorbing)
boundaries. From the Feller classification of boundaries, this will be the case if for all y0 ∈
(0, 1)

(i) m
(

y
)

/∈ L1
(

y0, ◦
)

, (ii) ϕ′(y
)

∫y

y0

m(z)dz ∈ L1
(

y0, ◦
)

, (2.10)

where a function f(y) ∈ L1(y0, ◦) if
∫◦
y0
|f(y)|dy < +∞.
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In this case, a sample path of (xt; t ≥ 0) can reach ◦ from the inside of I in finite time
but cannot reenter. The sample paths are absorbed at ◦. There is an absorption at ◦ at time
τx,◦ = inf(t > 0 : xt = ◦|x0 = x) and P(τx,◦ < ∞) = 1. Whenever both boundaries {0, 1} are
absorbing, the diffusion xt should be stopped at τx := τx,0∧τx,1. Would none of the boundaries
{0, 1} be absorbing, then τx = +∞, which we rule out.

Examples of diffusion with exit boundaries are WF model and WF model with
selection. In the WF model including mutations, the boundaries are entrance boundaries and
so are not absorbing.

When the boundaries are absorbing, p(x; t, y) is a subprobability. Letting ρt(x) :=
∫1
0 p(x; t, y)dy, we clearly have ρt(x) = P(τx > t). Such models are nonconservative.

For one-dimensional diffusions, the transition density p(x; t, y) is reversible with
respect to the speed density ([8, Chapter 15, Section 13]) and so detailed balance holds

m(x)p
(

x; t, y
)

= m
(

y
)

p
(

y; t, x
)

, 0 < x, y < 1. (2.11)

The speed density m(y) satisfies G∗(m) = 0. It may be written as a Gibbs measure with
density:m(y) ∝ (1/g2(y))e−U(y), where the potential functionU(y) reads

U
(

y
)

:= −2
∫y

0

f(z)
g2(z)

dz, 0 < y < 1, (2.12)

and with the measure dy/g2(y) standing for the reference measure.
Further, if p(s, x; t, y) is the transition probability density from (s, x) to (t, y), s < t,

then −∂sp = G(p), with terminal condition p(t, x; t, y) = δy(x) and so p(s, x; t, y) also
satisfies the KBE when looking at it backward in time. The Feller evolution semigroup being
time homogeneous, one may as well observe that with p := p(x; t, y), operating the time
substitution t − s → t, p itself solves the KBE

∂tp = G
(

p
)

, p
(

x; 0, y
)

= δy(x). (2.13)

In particular, integrating over y, ∂tρt(x) = G(ρt(x)), with ρ0(x) = 1(x ∈ (0, 1)).
p(x; t, y) being a sub-probability, we may define the normalized conditional probabil-

ity density q(x; t, y) := p(x; t, y)/ρt(x), now with total mass 1. We get

∂tq = −∂tρt(x)
ρt(x)

· q +G∗(q
)

, q
(

x; 0, y
)

= δy(x). (2.14)

The term bt(x) := −∂tρt(x)/ρt(x) > 0 is the time-dependent birth rate at whichmass should be
created to compensate the loss of mass of the original process due to absorption of (xt; t ≥ 0)
at the boundaries. In this creation of mass process, a diffusing particle started in x dies at rate
bt(x) at point (t, y), where it is duplicated in two new independent particles both started at y
(resulting in a global birth) evolving in the same diffusive way (consider a diffusion process
with forward infinitesimal generator G∗ governing the evolution of p(x; t, y). Suppose that a
sample path of this process has some probability that it will be killed or create a new copy
of itself and that the killing and birth rates d and b depend on the current location y of the
path. Then, the process with the birth and death opportunities of a path has the infinitesimal
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generator λ(y) · +G∗(·), where λ(y) = b(y) − d(y). The rate can also depend on t and x). The
birth rate function bt(x) depends here on x and t, not on y.

When the boundaries of xt are absorbing, the spectra of both −G and −G∗ are discrete
(see [8, Page 330]): There exist positive eigenvalues (λk)k≥1 ordered in ascending sizes and
eigenvectors (vk, uk)k≥1 of both −G∗ and −G satisfying −G∗(vk) = λkvk and −G(yk) = λkuk

such that with 〈uk, vk〉 :=
∫1
0 uk(x)vk(x)dx and bk := 〈uk, vk〉−1, the spectral representation

p
(

x; t, y
)

=
∑

k≥1
bke

−λktuk(x)vk
(

y
)

(2.15)

holds.
Let λ1 > λ0 = 0 be the smallest nonnull eigenvalue of the infinitesimal generator −G∗

(and of −G). Clearly, −(1/t) log ρt(x) →
t→∞

λ1 and by L’ Hospital rule, therefore, bt(x) →
t→∞

λ1.

Putting ∂tq = 0 in the latter evolution equation, independently of the initial condition x

q
(

x; t, y
) −→
t→∞

q∞
(

y
)

= v1
(

y
)

, (2.16)

where v1 is the eigenvector of −G∗ associated to λ1, satisfying −G∗v1 = λ1v1. The limiting
probability v1/norm (after a proper normalization) is called the Yaglom limit law of (xt; t ≥ 0)
conditioned on being currently alive at all time t (see [7]).

2.4. Additive Functionals Along Sample Paths

Let (xt; t ≥ 0) be the diffusion model defined by (2.1) on the interval I, where both endpoints
are assumed absorbing (exit). This process is, thus, transient and nonconservative. We wish
to evaluate the nonnegative additive quantities

α(x) = E
(∫ τx

0
c(xs)ds + d(xτx)

)

, (2.17)

where the functions c and d are both assumed nonnegative on I and ∂I = {0, 1}. The
functional α(x) ≥ 0 solves the Dirichlet problem

−G(α) = c if x ∈ I,
α = d if x ∈ ∂I,

(2.18)

and α is a superharmonic function for G, satisfying −G(α) ≥ 0.

Some Examples.

(1) Assume that c = 1 and d = 0 : here, α = E(τx) is the mean time of absorption (average
time spent in (0, 1) before absorption), solution to

−G(α) = 1 if x ∈ I,
α = 0 if x ∈ ∂I.

(2.19)
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(2)Whenever both {0, 1} are exit boundaries, it is of interest to evaluate the probability
that xt first hits [0, 1] (say) at 1, given x0 = x. This can be obtained by choosing c = 0 and
d(◦) = 1(◦ = 1).

Let then α =: α1(x) = P(xt first hits [0, 1] at 1 | x0 = x). α1(x) is a G-harmonic
function solution to G(α1) = 0, with boundary conditions α1(0) = 0 and α1(1) = 1. Solving
this problem, we get

α1(x) =
ϕ(x) − ϕ(0)
ϕ(1) − ϕ(0) =

∫x

0 dye
−2 ∫y0 (f(z)/(g2(z)))dz

∫1
0 dye

−2 ∫y0 (f(z)/(g2(z)))dz
. (2.20)

On the contrary, choosing α0(x) to be a G-harmonic function with boundary conditions
α0(0) = 1 and α0(1) = 0, α0(x) = P(xt first hits [0, 1] at 0 | x0 = x) = 1 − α1(x).

(3) Let y ∈ I and put c = (1/2ε) 1 (x ∈ (y − ε, y + ε)) and d = 0. As ε → 0, c converges
weakly to δy(x) and, α =: g(x, y) = E(lim(1/2ε)

∫τx
0 1(xs ∈ (y − ε, y + ε))ds) =

∫∞
0 p(x; s, y)ds

is the Green function, solution to

−G(g) = δy(x) if x ∈ I,

g = 0 if x ∈ ∂I.
(2.21)

g is, therefore, the mathematical expectation of the local time at y, starting from x (the sojourn
time density at y). The solution is known to be (see [8, page 198] or [5, page 280])

g
(

x, y
)

= 2

(

ϕ(x) − ϕ(0))(ϕ(1) − ϕ(y))
(

g2ϕ′)(y
)(

ϕ(1) − ϕ(0)) if x ≤ y,

g
(

x, y
)

= 2

(

ϕ(1) − ϕ(x))(ϕ(y) − ϕ(0))
(

g2ϕ′)(y
)(

ϕ(1) − ϕ(0)) if x ≥ y.

(2.22)

TheGreen function is of particular interest to solve the general problem of evaluating additive
functionals α(x). Indeed, as is well known, see [8], for example, the integral operator with
respect to the Green kernel inverts the second-order operator −G leading to

α(x) =
∫

I

g
(

x, y
)

c
(

y
)

dy if x ∈ I,

α = d if x ∈ ∂I.
(2.23)

Under this form, α(x) appears as a potential function and all potential function is super-
harmonic. Note that for all harmonic function h ≥ 0 satisfying −G(h) = 0,

αh(x) :=
∫

I

g
(

x, y
)

c
(

y
)

dy + h(x) (2.24)

is again superharmonic because −G(αh) = c ≥ 0.
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(4) Also of interest are the additive functionals of the type

αλ(x) = E
(∫ τx

0
e−λsc(xs)ds + d(xτx)

)

, (2.25)

where the functions c and d are again both assumed to be nonnegative. The functional αλ(x) ≥
0 solves the Dynkin problem, [8]

(λI −G)(αλ) = c if x ∈ I,

αλ = d if x ∈ ∂I
(2.26)

involving the action of the resolvent operator (λI −G)−1 on c.
Whenever c(x) = δy(x), d = 0, then

αλ =: gλ
(

x, y
)

= E
(∫ τx

0
e−λsδy(xs)ds

)

=
∫∞

0
e−λsp

(

x; s, y
)

ds (2.27)

is the λ-potential function, solution to

(λI −G)(gλ) = δy(x) if x ∈ I,

gλ = 0 if x ∈ ∂I.
(2.28)

gλ is, therefore, the mathematical expectation of the exponentially damped local time at y,
starting from x (the temporal Laplace transform of the transition probability density from x
to y at t), with g0 = g. Then, it holds that

αλ(x) =
∫

I

gλ
(

x, y
)

c
(

y
)

dy if x ∈ I,

αλ = d if x ∈ ∂I.
(2.29)

The λ-potential function is also useful in the computation of the distribution of the first-
passage time τx,y to y starting from x. From the convolution formula,

p
(

x; t, y
)

=
∫ t

0
P
(

τx,y ∈ ds)p(y; t − s, y), (2.30)

and taking the Laplace transform of both sides with respect to time, we obtain the Laplace-
Stieltjes transform (LST) of the law of τx,y as

E
(

e−λτx,y
)

=
gλ
(

x, y
)

gλ
(

y, y
) . (2.31)
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We have P(τx,y < ∞) = g(x, y)/(g(y, y)) ∈ (0, 1) as a result of both terms in the ratio being
finite and x, y belonging to the same transience class of the process (under our assumptions
that the boundaries are absorbing). Note that from the reversibility property

m(x)g
(

x, y
)

= m
(

y
)

g
(

y, x
)

. (2.32)

2.5. Transformation of Sample Paths (Doob-Transform) and Killing

In the preceding subsections, we have dealt with a given process and recalled the various
ingredients for the expectations of various quantities of interest, summing over the history of
paths. In this setup, there is no distinction among paths with different destinations nor did
we allow for annihilation or creation of paths inside the domain before the process reached
one of the boundaries. The Doob transform of paths allows to do so.

Consider a one-dimensional diffusion (xt; t ≥ 0) as in (2.1)with absorbing barriers. Let
p(x; t, y) be its transition probability, and let τx be its absorption time at the boundaries.

Let α(x) := E(
∫τx
0 c(xs)ds + d(xτx)) be a nonnegative additive functional solving

−G(α) = c if x ∈ I,

α = d if x ∈ ∂I.
(2.33)

Recall the functions c and d are both chosen nonnegative so that so is α.
Define a new transformed stochastic process (xt; t ≥ 0) by its transition probability

p
(

x; t, y
)

=
α
(

y
)

α(x)
p
(

x; t, y
)

. (2.34)

In this construction of (xt; t ≥ 0) through a change of measure, sample paths of (xt; t ≥ 0) for
which α(y) is large are favored. This is a selection of paths procedure due to Doob (see [11]).

Now, the KFE for p clearly is ∂tp = G
∗
(p), with p(x; 0, y) = δy(x) and G

∗
(p) =

α(y)G∗(p/α(y)). The Kolmogorov backward operator of the transformed process is,
therefore, by duality

G(·) = 1
α(x)

G(α(x)·). (2.35)

Developing, with α′(x) := dα(x)/dx and ˜G(·) := (α′/α)g2∂x(·) +G(·), we get

G(·) = 1
α
G(α) · + ˜G(·) = − c

α
· + ˜G(·), (2.36)

and the new KB operator can be obtained from the latter by adding a drift term (α′/α)g2∂x to
the one in G of the original process to form a new process (x̃t; t ≥ 0) with the KB operator ˜G
and by killing its sample paths at death rate d(x) := (c/α)(x) (provided c /= 0). Note that

d(x) =
1

(1/(c(x)))
∫1
0 g

(

x, y
)

c
(

y
)

dy
. (2.37)
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In others words, with ˜f(x) := f(x) + (α′/α)g2(x), the novel time-homogeneous SDE to
consider is

dx̃t = ˜f(x̃t)dt + g(x̃t)dwt, x̃0 = x ∈ (0, 1), (2.38)

possibly killed at rate d = c/α as soon as c /= 0. Whenever (x̃t; t ≥ 0) is killed, it enters
conventionally into some coffin state {∂} added to the state-space. Let τ̃x be the new
absorption time at the boundaries of (x̃t; t ≥ 0) started at x (with τ̃x = ∞would the boundaries
be inaccessible to the new process x̃t which we ruled out). Let τ̃x,∂ be the killing time of
(x̃t; t ≥ 0) started at x (the hitting time of ∂), with τ̃x,∂ = ∞ if c = 0. Then, τx := τ̃x ∧ τ̃x,∂ is the
novel stopping time of (x̃t; t ≥ 0). The SDE for (x̃t; t ≥ 0), together with its global stopping
time τx characterize the new process (xt; t ≥ 0) with generator G to consider.

In the sequel, we shall limit ourselves to the cases for which the following additional
conditions hold on the transformed process.

(i) Nonconservativeness of x̃t.

We will next suppose that the boundaries ◦ := 0 or 1 are both exit (or absorbing) boundaries
for the new process x̃t in (2.38). From the Feller criterion for exit boundaries, this will be the
case if for all y0 ∈ (0, 1)

m̃
(

y
)

/∈ L1
(

y0, ◦
)

, ϕ̃′(y
)

∫y

y0

m̃(z)dz ∈ L1
(

y0, ◦
)

, (2.39)

where m̃(y) = 1/((g2ϕ̃′)(y)) is the new speed measure density for x̃t and ϕ̃ its scale function.
Recalling ˜f = f + (α′/α)g2 and g̃2 = g2, we have

ϕ̃′(y
)

= ϕ̃′(y0
)

e
−2 ∫yy0 ( ˜f(z)/(g

2(z)))dz =
ϕ̃′(y0

)

α2
(

y
) ϕ′(y

)

,

ϕ̃(x) = ϕ̃(x0) + ϕ̃′(y0
)

∫x

x0

α−2
(

y
)

e
−2 ∫yy0 (f(z)/(g

2(z)))dz
dy.

(2.40)

So, we assume here that x̃t obeys itself a nonconservative diffusion.

(ii) Boundedness of the Killing Rate d.

In some examples, the killing rate d = −G(α)/α is bounded above. For example, suppose that
the drift of the diffusion process (xt; t ≥ 0) is bounded above by f∗ = maxx(f(x)) > 0. (If
the drift of (xt; t ≥ 0) is bounded below by f∗ < 0, we are led to the same conclusions while
considering the process 1 − xt instead of xt.) Then, choosing α(x) = e−ax, a > 0, −G(α) =
(af −(a2/2)g2)α < af∗α. Thus, d = −G(α)/α is bounded above by af∗. Because −G(α) = c ≥ 0,
all this makes sense if, for all x, af(x) − (a2/2)g2(x) ≥ 0 or −∂U := 2f/g2 ≥ a (the opposite
of the gradient of the potential functionU in (2.12) is bounded below).
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Let (ak; k ≥ 1) be a nonincreasing sequence of [0, 1]-valued real numbers. Let (αk; k ≥ 1) be a
sequence of nonnegative real numbers such that for all x ∈ (0, 1)

α(x) =
∑

k≥1
αke

−akx <∞. (2.41)

Whenever f is bounded above and, for all x, 2f/g2 ≥ a1, we have

−G(α) =
∑

k≥1
αk

(

akf − a2
k

2
g2

)

e−akx

≤ f∗
∑

k≥1
αkake

−akx < a1f∗
∑

k≥1
αke

−akx = a1f∗α.

(2.42)

Thus, d = −G(α)/α is bounded above by a1f∗.
Therefore, for a large class of diffusion processes, the exponential function or some linear
combinations of exponential functions are superharmonic functions α, leading to a bounded
above killing rate d = −G(α)/α.

2.6. Normalizing and Conditioning

Because the transformed process xt is nonconservative, it is of interest to inspect various
conditionings in the sense of Yaglom, [7].

(i)Consider again the process with infinitesimal generatorG losingmass due to killing
and/or absorption at the boundaries. Integrating over y, with ρt(x) :=

∫

I p(x; t, y)dy = P(τx >
t), we have

∂tρt(x) = G
(

ρt(x)
)

= −d(x)ρt(x) + ˜G
(

ρt(x)
)

, (2.43)

with ρ0(x) = 1(x ∈ (0, 1)). This gives the tail distribution of the full stopping time τx.
Defining the conditional probability density q(x; t, y) := p(x; t, y)/ρt(x), now with

total mass 1, with q(x; 0, y) = δy(x), we get

∂tq = −∂tρt(x)
ρt(x)

· q +G∗(
q
)

=
(

bt(x) − d
(

y
)

)

· q + ˜G∗(q
)

.

(2.44)

The term bt(x) = −∂tρt(x)/ρt(x) > 0 is the rate at which mass should be created to
compensate the loss of mass of the process (x̃t; t ≥ 0) due to its possible absorption at the
boundaries and/or killing. Again, we have bt(x) → λ1, where λ1 is the smallest positive
eigenvalue of −G, and therefore, putting ∂tq = 0 in the latter evolution equation, we get that
independently of the initial condition x

q
(

x; t, y
) −→
t→∞

q∞
(

y
)

, (2.45)
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where q∞(y) is the solution to

− ˜G∗(q∞
)

=
(

λ1 − d
(

y
)) · q∞, or

−G∗(
q∞

)

= λ1 · q∞.
(2.46)

With v1 the eigenvector of −G∗ associated to λ1, q∞(y) is of the product form

q∞
(

y
)

=
α
(

y
)

v1
(

y
)

〈α, v1〉 , (2.47)

where 〈α, v1〉 =
∫1
0 α(y)v1(y)dy. This results directly from the fact thatG

∗
(·) = α(y)G∗(·/α(y))

and that v1 is the stated eigenvector of −G∗. A different way to see this is as follows. We have

ρt(x) =
1

α(x)

∫1

0
α
(

y
)

p
(

x; t, y
)

dy, (2.48)

and the conditional density of xt given τx > t is, therefore,

q
(

x; t, y
)

=
α
(

y
)

p
(

x; t, y
)

∫1
0 α

(

y
)

p
(

x; t, y
)

dy
. (2.49)

The rest follows from observing that, to the leading order in t in (2.15), for large time

p
(

x; t, y
) ∼ b1e−λ1t · u1(x)v1

(

y
)

, (2.50)

where u1 (v1, resp.) is the eigenvector of −G (−G∗, resp.) associated to λ1 and b1 = 〈u1, v1〉−1.
From this, it is clear that −(1/t) log ρt(x) →

t→∞
λ1 and

q
(

x; t, y
) ∼ e−λ1t · α(y)v1

(

y
)

e−λ1t · 〈α, v1〉
= q∞

(

y
)

. (2.51)

The limiting probability q∞ = αv1/norm can, therefore, be interpreted as the Yaglom limit
law of (xt; t ≥ 0) conditioned on the event τx > t.

(ii) Under our assumptions, in the transformation of paths process, the transformed
process (xt; t ≥ 0) can both be absorbed at the boundaries and be killed. So, both τ̃x and τ̃x,∂ are
finite with positive probability. We wish to understand the processes (xt; t ≥ 0) conditioned
on the events {τ̃x < τ̃x,∂} or {τ̃x,∂ < τ̃x}, (see [16]).

The probability mass cumulated at the boundaries {0, 1} by time t clearly is [17]

P(τ̃x ≤ t) = P(τ̃x,∂ > t) =
1
2

(

∫ t

0

[

p(x; s, 0) + p(x; s, 1)
]

ds

)

. (2.52)
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As t → ∞, this probability tends to P(τ̃x,∂ = ∞) = P(τ̃x < τ̃x,∂) =: β(x). Note that

β(x) = P(x̃τx ∈ {0, 1}) = E(1(x̃τx ∈ {0, 1})). (2.53)

Now (assuming x /= {0, 1}),

G(P(τ̃x,∂ > t)) =
1
2

(

∫ t

0

[

G
(

p(x; s, 0)
)

+G
(

p(x; s, 1)
)

]

ds

)

=
1
2

(

∫ t

0

[

∂s
(

p(x; s, 0)
)

+ ∂s
(

p(x; s, 1)
)]

ds

)

=
1
2
(

p(x; t, 0) + p(x; t, 1)
) −→
t→∞

0.

(2.54)

Thus, β is defined by

G
(

β(x)
)

= 0, (2.55)

[or ˜G(β(x)) = d(x)β(x)], with boundary conditions β(0) = β(1) = 1. It serves as a positive
harmonic function for G. This is a Sturm-Liouville problem to be solved for each case study.

The density of the process (xt; t ≥ 0) conditioned on the event {τ̃x < τ̃x,∂} is

pa
(

x; t, y
)

=
β
(

y
)

β(x)
p
(

x; t, y
)

=
β
(

y
)

β(x)
α
(

y
)

α(x)
p
(

x; t, y
)

. (2.56)

The density of the process (xt; t ≥ 0) conditioned on the event {τ̃x,∂ < τ̃x} is

p∂
(

x; t, y
)

=
1 − β(y)

1 − β(x) p
(

x; t, y
)

=
1 − β(y)

1 − β(x)
α
(

y
)

α(x)
p
(

x; t, y
)

. (2.57)

Note that

∫1

0
pa

(

x; t, y
)

dy = P
(

˜tx > t | τ̃x < τ̃x,∂
)

,

∫1

0
p∂
(

x; t, y
)

dy = P(τ̃x,∂ > t | τ̃x,∂ < τ̃x),

(2.58)
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and, with τx = τ̃x ∧ τ̃x,∂,

P(τx > t) = β(x)P(τ̃x > t | τ̃x < τ̃x,∂) +
(

1 − β(x))P(τ̃x,∂ > t | τ̃x,∂ < τ̃x)

= β(x)
∫1

0

β
(

y
)

β(x)
p
(

x; t, y
)

dy +
(

1 − β(x))
∫1

0

1 − β(y)

1 − β(x) p
(

x; t, y
)

dy

=
∫1

0
p
(

x; t, y
)

dy,

(2.59)

as required, because this is the probability that x· is neither in {0, 1} nor in state ∂ at time t.
Note also that qa(x; t, y) = pa(x; t, y)/

∫1
0 pa(x; t, y)dy [resp., q∂(x; t, y) = p∂(x; t, y)/

∫1
0 p∂(x; t, y)dy] are the transition probability densities of (xt; t ≥ 0) conditioned on the event
{τ̃x < τ̃x,∂ and τ̃x > t} [of (xt; t ≥ 0) conditioned on the event {τ̃x,∂ < τ̃x and τ̃x,∂ > t, resp.}].
They are the Yaglom limits of both conditioned processes.

The backward infinitesimal generators of both processes with transition probability
densities pa and p∂ are, respectively, given by

Ga(·) = 1
β(x)

G
(

β(x)·),

G∂(·) = 1
1 − β(x)G

((

1 − β(x))·).
(2.60)

We get, respectively,

Ga(·) = ˜G(·) + β′g2

β
(x)∂x(·),

G∂(·) = − d

1 − β · + ˜G(·) − β′g2

1 − β (x)∂x(·).
(2.61)

Thus, in Ga(·), there is no multiplicative part (no killing) and a shift in the drift, showing that
the associated conditioned process (x̃a,t; t ≥ 0) obeys the SDE

dx̃a = ˜fa(x̃a)dt + g(x̃a)dwt, (2.62)

with drift

˜fa(x) = ˜f(x) +
β′g2

β
(x) = f(x) +

α′g2

α
(x) +

β′g2

β
(x)

= f(x) + g2(x)
[

α′

α
(x) +

β′

β
(x)

]

.

(2.63)

This process is ultimately absorbed at {0, 1}.
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In G∂(·), there is a killing multiplicative part which is enhanced d/(1 − β) > d and a
shift in the drift, showing that the associated conditioned process (x̃∂,t; t ≥ 0) exhibits a faster
killing rate, but the drift shift guarantees that (x̃∂,t; t ≥ 0) is not absorbed at the boundaries.
We have

˜f∂(x) = f(x) + g2(x)
[

α′

α
(x) − β′

1 − β (x)
]

. (2.64)

Additive Functionals of the Transformed Process.

for the new process (x̃t; t ≥ 0), it is also of interest to evaluate additive functionals along their
own sample paths. Let then α̃(x) := E(

∫τx
0 c̃(x̃s)ds + ˜d(x̃τx)) be such an additive functional

where the functions c̃ and ˜d are themselves both nonnegative. It solves

−G(α̃) = c̃ if x ∈ I,

α̃ = ˜d if x ∈ ∂I.
(2.65)

Then, recalling the expression of the Green function g(x, y) of (xt; t ≥ 0) in (2.22), we find
explicitly

α̃(x) =
1

α(x)

∫

I

g
(

x, y
)

α
(

y
)

c̃
(

y
)

dy. (2.66)

Specific transformations of interest.

(i) The case c = 0 deserves a special treatment. Indeed, in this case, τ̃x,∂ = ∞ and so τx := τ̃x,
the absorption time for the process (x̃t; t ≥ 0) governed by the new SDE (2.38). Here, G = ˜G.
Assuming α solves −G(α) = 0 if x ∈ I with boundary conditions α(0) = 0 and α(1) = 1
(α(0) = 1 and α(1) = 0, resp.), the new process (x̃t; t ≥ 0) is just (xt; t ≥ 0) conditioned on
exiting at x = 1 (at x = 0, resp.). In the first case, the boundary 1 is exit, whereas 0 is entrance;
α reads

α(x) =

∫x

0 e
−2 ∫y0 (f(z)/(g2(z)))dzdy

∫1
0 e

−2 ∫y0 (f(z)/(g2(z)))dzdy
, (2.67)

with

˜f(x) = f(x) +
g2(x)e−2

∫x
0 (f(z)/(g

2(z)))dz

∫x

0 e
−2 ∫y0 (f(z)/(g2(z)))dzdy

, (2.68)

giving the newdrift. In the second case, α(x)=(
∫1
x e

−2 ∫y0 (f(z)/g2(z))dzdy/(
∫1
0 e

−2 ∫y0 (f(z)/g2(z))dzdy)),
and the boundary 0 is exit, whereas 1 is entrance. Thus, τ̃x is just the exit time at x = 1 (at
x = 0, resp.). Let α̃(x) := E(τ̃x). Then, α̃(x) solves − ˜G(α̃) = 1, whose explicit solution is

α̃(x) =
1

α(x)

∫

I

g
(

x, y
)

α
(

y
)

dy, (2.69)

in terms of g(x, y), the Green function of (xt; t ≥ 0).
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Example 2.1. Consider the WF model on [0, 1] with selection for which, with σ ∈ R, f(x) =
σx(1 − x) and g2(x) = x(1 − x). Assume that α solves −G(α) = 0 if x ∈ (0, 1) with α(0) = 0
and α(1) = 1; one gets, α(x) = (1−e−2σx)/(1−e−2σ). The diffusion corresponding to (2.38) has
the new drift: ˜f(x) = σx(1 − x) coth(σx), independently of the sign of σ. It models the WF
diffusion with selection conditioned on exit at ◦ = 1.

(ii) Assume that α now solves −G(α) = 1 if x ∈ I with boundary conditions α(0) =
α(1) = 0. In this case study, one selects sample paths of (xt; t ≥ 0)with a largemean absorption
time α(x) = E(τx). Sample paths with large sojourn time in I are favored. We have

α(x) =
∫

I

g
(

x, y
)

dy, (2.70)

where g(x, y) is the Green function (2.22). The boundaries of (x̃t; t ≥ 0) are now both entrance
boundaries and so τ̃x = ∞. (x̃t; t ≥ 0) is not absorbed at the boundaries. The stopping time
τx of (x̃t; t ≥ 0) is just its killing time τ̃x,∂. Let α̃(x) := E(τ̃x,∂). Then, α̃(x) solves −G(α̃) = 1,
α̃(0) = α̃(1) = 0, with explicit solution

α̃(x) =
1

α(x)

∫

I

g
(

x, y
)

α
(

y
)

dy. (2.71)

(iii) Assume that α now solves −G(α) = δy(x) if x ∈ I with boundary conditions
α(0) = α(1) = 0. In this case study, one selects sample paths of (xt; t ≥ 0) with a large sojourn
time density at y recalling α(x) =: g(x, y) = E(

∫τx
0 δy(xs)ds). The stopping time τ̃y(x) of

(x̃t; t ≥ 0) occurs at rate δy(x)/g(x, y). It is a killing time when the process is at y for the last
time after a geometrically distributed number of passages there with rate 1/g(x, y) (or with
success probability 1/(1+g(x, y))). Let α̃y(x) := E(τ̃y(x)). Then, α̃y(x) solves −G(α̃) = 1, with
explicit solution

α̃y(x) =
1

g
(

x, y
)

∫

I

g(x, z)g
(

z, y
)

dz. (2.72)

when x = 1/N, α̃y(1/N)may be viewed as the age of a mutant currently observed to present
frequency y, see [18].
The Green function at y0 ∈ (0, 1) of the transformed process (x̃t; t ≥ 0) is g̃y(x, y0) solution to
−G(g̃y) = δy0(x). It takes the simple form

g̃y
(

x, y0
)

=
1

g
(

x, y
)

∫

I

g(x, z)g
(

z, y
)

δy0(z)dz =
g
(

y0, y
)

g
(

x, y
) g

(

x, y0
)

. (2.73)

(iv) Let λ1 be the smallest non-null eigenvalue of the infinitesimal generator G. Let
α = u1 be the corresponding eigenvector, that is, satisfying, −Gu1 = λ1u1 with boundary
conditions u1(0) = u1(1) = 0. Then, c = λu1. The new KB operator associated to the
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transformed process (xt; t ≥ 0) is

G(·) = 1
α
G(α) · + ˜G(·) = −λ1 · + ˜G(·), (2.74)

obtained while killing the sample paths of the process (x̃t; t ≥ 0) governed by ˜G at constant
death rate d = λ1. The transition probability of the transformed stochastic process (xt; t ≥ 0)
is

p
(

x; t, y
)

=
u1
(

y
)

u1(x)
p
(

x; t, y
)

. (2.75)

Define p̃(x; t, y) = eλ1tp(x; t, y). It is the transition probability of the process (x̃t; t ≥ 0)
governed by ˜G; it corresponds to the original process (xt; t ≥ 0) conditioned on never hitting
the boundaries {0, 1} (the so-called Q-process of (xt; t ≥ 0), see [19]). It is simply obtained
from (xt; t ≥ 0) by adding the additional drift term (u′1/u1)g

2 to f , where u1 is the eigenvector
of G associated to its smallest non-null eigenvalue. The determination of α = u1 is a Sturm-
Liouville problem. When t is large, to the dominant order

p
(

x; t, y
) ∼ e−λ1t u1(x)v1

(

y
)

〈u1, v1〉 , (2.76)

where v1 is the Yaglom limit law of (xt; t ≥ 0). Therefore

p̃
(

x; t, y
) ∼ eλ1t u1

(

y
)

u1(x)
e−λ1t

u1(x)v1
(

y
)

〈u1, v1〉 =
u1
(

y
)

v1
(

y
)

〈u1, v1〉 . (2.77)

Thus, the limit law of the Q-process (x̃t; t ≥ 0) is the normalized Hadamard product of the
eigenvectors u1 and v1 associated, respectively, to G and G∗. On the other hand, the limit law
of (x̃t; t ≥ 0) is directly given by

p̃
(

x; t, y
) −→
t→∞

p̃
(

y
)

=
1

Zg2
(

y
) e2

∫y

0 ((f(z)+((u
′
1/u1)g

2)(z))/(g2(z)))dz =
u21
(

y
)

Zg2
(

y
) e2

∫y

0 (f(z)/(g
2(z)))dz,,

(2.78)

where Z is the appropriate normalizing constant. Comparing (2.77) and (2.78)

v1
(

y
)

=
u1
(

y
)

g2
(

y
)e2

∫y
0 (f(z)/(g

2(z)))dz = u1
(

y
)

m
(

y
)

. (2.79)

The eigenvector v1 associated to G∗ is, therefore, equal to the eigenvector u1 associated to G
times the speed density of (xt; t ≥ 0).
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When dealing for example with the neutral Wright-Fisher diffusion, it is known that λ1 = 1
with u1 = x(1 − x) and v1 ≡ 1 (see Section 4.3, example (ii)). The Q-process (x̃t; t ≥ 0) in this
case obeys

dx̃t = (1 − 2x̃t)dt +
√

x̃t(1 − x̃t)dwt, (2.80)

with the stabilizing drift toward 1/2: ˜f(x) = (u′1/u1)g
2(x) = 1 − 2x.

The limit law of the Q-process (x̃t; t ≥ 0) in this case is 6y(1 − y). The latter conditioning
is more stringent than the Yaglom conditioning and so the limiting law has more mass
away from the boundaries (compare with the uniform Yaglom limit). For additional similar
examples in the context of WF diffusions and related ones, see [20].

2.7. Branching and the Reciprocal Doob Transform

Clearly, starting from the killed diffusion process with infinitesimal generator G(·) = −d(x) ·
+ ˜G(·) and applying the reciprocal Doob transform defined by

α̃(x) =
1

α(x)
(2.81)

leads to α̃(x)−1G(α̃(x)·) = G(·). Indeed,

α̃(x)−1G(α̃(x)·) = −d(x) · +α̃(x)−1 ˜G(α̃(x)·),

α̃(x)−1 ˜G(α̃(x)·) = α̃(x)−1 ˜G(α̃(x)) · + ˜G(·) + 1
α̃
g2α̃′∂x

= d(x) · +G(·),

(2.82)

because

α̃(x)−1 ˜G(α̃(x)) = +d(x),

1
α̃
g2α̃′∂x = αg2

(

1
α

)′
∂x = −α

′

α
g2∂x.

(2.83)

Note that G(α̃(x)) = ˜G(α̃(x)) − d(x)α̃(x) = 0.
This suggests that starting from a diffusion process with infinitesimal generator ˜G

(without its killing part) and applying the reciprocal Doob transform α̃(x) = 1/(α(x)), one
ends up with a modified process whose infinitesimal generator is

˜G(·) = G(·) + b(x), (2.84)

where G(·) = ˜G(·) − (α′/α)g2(x)∂x and

b(x) = α̃(x)−1 ˜G(α̃(x)) = d(x) > 0 (2.85)
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is now a pure birth rate. Note that α̃ is now a subharmonic function for ˜G because − ˜G(α̃) =
−bα̃ ≤ 0.

Let ˜β(x) := α̃(x)−1 = α(x). Because G(α(x)) = −α(x)b(x), we have

˜G
(

˜β(x)
)

= G
(

˜β(x)
)

+ b(x)˜β(x) = 0, (2.86)

and so ˜β(x) > 0 is harmonic for ˜G : Doob-transforming ˜G using ˜β, we get

˜β−1 ˜G
(

˜β·
)

= b(x) · +˜β−1G
(

˜β·
)

= ˜G(·), (2.87)

which is the infinitesimal generator of the original diffusion process.
Under our assumptions, both process xt and x̃t with infinitesimal generators G and ˜G

are nonconservative diffusion processes with absorbing barriers. Further, b(x) > 0 is bounded
above. Therefore, b(x)may be written as

b(x) = b∗
(

μ(x) − 1
)

, (2.88)

where b∗ = maxxb(x) > 0 and μ(x) ∈ [1, 2].

The process with infinitesimal generator ˜G is now a pure binary branching diffusion
process. For this class of models, an initial particle started at x obeys a diffusion process with
infinitesimal generator G, absorbed when it hits the boundaries. At some random (mean b∗)
exponential time, this particle dies, giving birth in the process to a random number M(x)
(either 1 or 2) of daughter particles started where the mother particle died and diffusing
independently as their mother did and so forth for the subsequent generation particles. We
have EM(x) = μ(x).

The process with infinitesimal generator ˜G is, thus, a branching diffusion with
supercritical binary splitting mechanism (μ(x) > 1). There is, therefore, a competition
between the branching phenomenon that leads to an exponential increase of the number of
particles in the system and the absorption at the boundaries of the living particles.

LetNt(x) be the global number of particles which are alive in the system at each time
t, descending from an Eve particle started at x, and let

T(x) = inf(t > 0 :Nt(x) = 0) (2.89)

be the global extinction time of the population. Under our assumptions, this branchingmodel
fits to the general formalism for branching diffusion developed in ([9, 10]) from which we
conclude

P(T(x) <∞, Nt(x) = 0 ∀ t ≥ T(x)) = 1, (2.90)

uniformly in x. This means the global extinction of the particle system under concern: In the
tradeoff between branching and absorption at the boundaries, the system gets eventually
extinct with probability 1 in finite time. We shall develop a typical example arising in
population genetics in the subsequent sections.
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3. The Wright-Fisher Example

In this section, we briefly and informally recall that the celebrated WF diffusion process with
or without a drift may be viewed as a scaling limit of a simple two alleles discrete space-
time branching process preserving the total number N of individuals in the subsequent
generations (see [8, 12, 21] for example).

3.1. The Neutral Wright-Fisher Model

Consider a discrete-time Galton Watson branching process preserving the total number of
individuals in each generation. We start with N individuals. The initial reproduction law is
defined as follows: let |kN | := ∑N

m=1 km = N and kN := (k1, . . . , kN) be integers. Assume that
the first-generation random offspring numbers νN := (νN(1), . . . , νN(N)) admit the following
joint exchangeable polynomial distribution on the discrete simplex |kN | =N:

P(νN = kN) =
N! ·N−N
∏N

n=1kn!
. (3.1)

This distribution can be obtained by conditioning N independent Poisson distributed
random variables on summing toN. Assume subsequent iterations of this reproduction law
are independent so that the population is with constant size for all generations.

LetNr(n) be the offspring number of the n first individuals at the discrete generation
r ∈ N0 corresponding to (say) alleleA1 (the remaining numberN−Nr(n) counts the number
of alleles A2 at generation r). This sibship process is a discrete-time Markov chain with
binomial transition probability given by

P
(

Nr+1(n) = k′ |Nr(n) = k
)

=

(

N

k′

)

(

k

N

)k′(

1 − k

N

)N−k′
. (3.2)

Assume next that n = [Nx], where x ∈ (0, 1). Then, as well known, the dynamics of the
continuous space-time rescaled process xt := N[Nt](n)/N, t ∈ R+ can be approximated for
large N, to the leading term in N−1, by a Wright-Fisher-Itô diffusion on [0, 1] (the purely
random genetic drift case)

dxt =
√

xt(1 − xt)dwt, x0 = x. (3.3)

Here, (wt; t ≥ 0) is a standard Wiener process. For this scaling limit process, a unit laps of
time t = 1 corresponds to a laps of timeN for the original discrete-time process, thus time is
measured in units ofN. If the initial condition is x = N−1, xt is the diffusion approximation
of the offspring frequency of a singleton at generation [Nt].

Equation (3.3) is a one-dimensional diffusion as in (2.1) on [0, 1], with zero drift
f(x) = 0 and volatility g(x) =

√

x(1 − x). This diffusion is already in natural coordinate,
and so ϕ(x) = x. The scale function is x and the speed measure [x(1 − x)]−1dx. One can check
that both boundaries are exit in this case: the stopping time is τx = τx,0 ∧ τx,1 where τx,0 is
the extinction time and τx,1 the fixation time. The corresponding infinitesimal generators are
G(·) = (1/2)x(1 − x)∂2x(·) and G∗(·) = (1/2)∂2y(y(1 − y)·).
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3.2. Nonneutral Cases

Two alleles Wright-Fisher models (with non-null drifts) can be obtained by considering the
binomial transition probabilities bin(N,pN)

P
(

Nr+1(n) = k′ |Nr(n) = k
)

=

(

N

k′

)

(

pN

(

k

N

))k′(

1 − pN
(

k

N

))N−k′
, (3.4)

where

pN(x) : x ∈ (0, 1) −→ (0, 1) (3.5)

is now some state-dependent probability (which is different from the identity x) reflecting
some deterministic evolutionary drift from the allele A1 to the allele A2. For each r, we have

E(Nr+1(n) |Nr(n) = k) =NpN

(

k

N

)

,

σ2(Nr+1(n) |Nr(n) = k) =NpN

(

k

N

)(

1 − pN
(

k

N

))

,

(3.6)

which is amenable to a diffusion approximation in terms of xt := N[Nt](n)/N, t ∈ R+ under
suitable conditions.

For instance, taking pN(x) = (1 − π2,N)x + π1,N(1 − x), where (π1,N, π2,N) are small
(N-dependent) mutation probabilities from A1 to A2 (A2 to A1, resp.). Assuming that
(N · π1,N,N · π2,N) →

N→∞
(u1, u2), leads after scaling to the drift of WF model with positive

mutations rates (u1, u2).
Taking

pN(x) =
(1 + s1,N)x

(1 + s1,Nx + (1 − x)(1 + s2,N))
, (3.7)

where si,N > 0 are smallN-dependent selection parameter satisfyingN · si,N →
N→∞

σi > 0, i =

1, 2, leads, after scaling, to the WF model with selective drift σx(1 − x), where σ := σ1 − σ2.
Essentially, the drift f(x) is a large N approximation of the bias: N(pN(x) − x). The WF
diffusion with selection is thus

dxt = σxt(1 − xt)dt +
√

xt(1 − xt)dwt, (3.8)

where time is measured in units of N. Letting θt = Nt define a new time scale with inverse
tθ = θ/N, the time-changed process yθ = xθ/N now obeys the SDE

dyθ = syθ
(

1 − yθ
)

dθ +

√

1
N
yθ

(

1 − yθ
)

dwθ, (3.9)

with a small diffusion term. Here, s = s1 − s2 and time θ is the usual time clock.
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The WF diffusion with selection (3.8) tends to drift to ◦ = 1 (◦ = 0, resp.) if allele A1

is selectively advantageous over A2 : σ1 > σ2 (σ1 < σ2, resp.) in the following sense: if σ > 0
(< 0, resp.), the fixation probability at ◦ = 1, which is [15]

P(τx,1 < τx,0) =
1 − e−2σx
1 − e−2σ (3.10)

increases (decreases) with σ taking larger (smaller) values. Putting x = 1/N, the fixation
probability at 1 of an allele A1 mutant is of order: 2σ/N; see [15].

4. The Neutral WF Model

In this section, we particularize the general ideas developed in the introductory Section 2 to
the neutral WF diffusion (3.3) and draw some straightforward conclusions most of which are
known which illustrate the use of Doob transforms.

4.1. Explicit Solutions of the Neutral KBE and KFE

As shown by Kimura in [22], it turns out that both Kolmogorov equations are exactly
solvable, in this case, using spectral theory. Indeed, the solutions involve a series expansion in
terms of eigenfunctions of the KB and KF infinitesimal generators with discrete eigenvalues
spectrum. We now consider the specific neutral WF model.

With z ∈ (−1, 1), let (Pk(z); k ≥ 0) be the degree-(k + 1) Gegenbauer polynomials
solving (1 − z2)P ′′

k (z) + k(k + 1)Pk(z) = 0 with P
′
k(±1) = ∓(1/2), k ≥ 1; we let P0(z) :=

(1 − z)/2. When k ≥ 1, we have Pk(±1) = 0 and so Pk(z) = (1 − z2)Qk(z), where Qk(z) is
a polynomial with degree k − 1 satisfying Qk(−1) = (−1)k−1 and Qk(1) = 1. With x ∈ (0, 1),
let (uk(x); k ≥ 0) be defined by: uk(x) = Pk(1 − 2x). These polynomials clearly constitute a
system of eigenfunctions for the KB operator −G = −(1/2)x(1 − x)∂2x with eigenvalues λk =
(k(k + 1))/2, k ≥ 0, thus with −G(uk(x)) = λkuk(x). In particular, u0(x) = x, u1(x) = x − x2,
u2(x) = x − 3x2 + 2x3, u3(x) = x − 6x2 + 10x3 − 5x4, u4(x) = x − 10x2 + 30x3 − 35x4 + 14x5, . . ..
With k ≥ 1, we have uk(0) = uk(1) = 0 and u′k(0) = 1 and u′k(1) = −1.

The eigenfunctions of the KF operator G∗(·) = (1/2)∂2x[y(1 − y)·] are given by vk(y) =
m(y) · uk(y), k ≥ 0, where the Radon measure of weights m(y)dy is the speed measure:
m(y)dy = dy/(y(1−y)), for the same eigenvalues. For instance, v0(y) = 1/(1−y), v1(y) = 1,
v2(y) = 1 − 2y, v3(y) = 1 − 5y + 5y2, v4(y) = 1 − 9y + 21y2 − 14y3, . . ..

Although λ0 = 0 really constitutes an eigenvalue, only v0(y) is not a polynomial. When
k ≥ 1, from their definition, the uk(x) polynomials satisfy uk(0) = uk(1) = 0 in such a way
that vk(y) = m(y) · uk(y), k ≥ 1 is a polynomial with degree k − 1.

Let 〈f, g〉m =
∫1
0 f(x)g(x)m(x)dx. We note that 〈vj , uk〉 = 〈uj, uk〉m = 0 if j /= k and

the system uk(x); k ≥ 1 is a complete orthogonal set of eigenvectors. Therefore, for any
square-integrable function ψ(x) ∈ L2([0, 1], m(y)dy) admitting a decomposition in the basis
uk(x), k ≥ 1.

Eψ(xt) =
∑

k≥1
cke

−λktuk(x), where ck =

〈

ψ, uk
〉

m

〈vk, uk〉 , (4.1)

where ψ(x) =
∑

k≥1 ckuk(x). This series expansion solves the KBE: ∂tu = G(u); u(x, 0) = ψ(x)
where u = u(x, t) := Eψ(xt).
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Moreover, the transition probability density p(x; t, y) of the neutral WFmodels admits
the spectral expansion

p
(

x; t, y
)

=
∑

k≥1
bke

−λktuk(x)vk
(

y
)

, where bk =
1

〈vk, uk〉 . (4.2)

Starting from x, the cumulated probability masses by time t at the exit boundaries {0, 1} are,
respectively, (see [17])

1
2

∫ t

0
p(x; s, 0)ds =

∑

k≥1

bk
2λk

(

1 − e−λkt
)

uk(x)vk(0),

1
2

∫ t

0
p(x; s, 1)ds =

∑

k≥1

bk
2λk

(

1 − e−λkt
)

uk(x)vk(1),

(4.3)

which tend as t → ∞ toward the extinction and fixation probabilities, namely, here P(τx,0 <
∞) = P(τx,0 < τx,1) = 1 − x and P(τx,1 <∞) = x. Because vk(0) = 1 and vk(1) = (−1)k−1, we get
the identities

1 − x =
∑

k≥1

bk
2λk

uk(x) or
1
x
=
∑

k≥1

bk
2λk

vk(x),

x =
∑

k≥1

(−1)k−1bk
2λk

uk(x) or
1

1 − x =
∑

k≥1

(−1)k−1bk
2λk

vk(x),

(4.4)

leading to the relationship
∑

k≥1((−1)k−1bk/2λk) = 1.
The series expansion for p(x; t, y) solves the KFE of the WF model. The transition

density p(x; t, y) is reversible with respect to the speed density since for 0 < x, y < 1

m(x)p
(

x; t, y
)

= m
(

y
)

p
(

y; t, x
)

=
∑

k≥1
bke

−λktvk(x)vk
(

y
)

. (4.5)

The measures vk(y)dy, k ≥ 1 are not probability measures because the vk(y) are not
necessarily positive over [0, 1]. This decomposition is not a mixture. We have 〈vk, uk〉 =
‖uk‖22,m the 2-norm for the weight function m. We notice that 〈v0, u0〉 =

∫1
0 (y/(1 − y))dy = ∞

so that c0 = b0 = 0 although λ0 = 0 is indeed an eigenvalue, the above sums should be started
at k = 1 (expressing the lack of an invariant measure for the WF model as a result of its
absorption at the boundaries).

We have P(τx > t) =
∫1
0 P(xt ∈ dy) and so

ρt(x) := P(τx > t) =
∑

k≥1

∫1
0 vk

(

y
)

dy

〈vk, uk〉 e−λktuk(x) (4.6)

is the exact tail distribution of the absorption time.
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Since v1(y) = 1, to the leading order in t, for large time

P
(

xt ∈ dy
)

= 6e−t · x(1 − x)dy +O
(

e−3t
)

, (4.7)

which is independent of y. Integrating over y, ρt(x) := P(τx > t) ∼ 6e−t · x(1 − x) so that the
conditional probability

P
(

xt ∈ dy | τx > t
) ∼
t→∞

dy (4.8)

is asymptotically uniform in the Yaglom limit. As time passes by, given absorption did not

occur in the past, xt
d→ x∞ (as t → ∞) which is a uniformly distributed random variable on

[0, 1].

4.2. Additive Functionals for the Neutral WF

Let (xt; t ≥ 0) be the WF diffusion model defined by (3.3) on the interval I = [0, 1], where
both endpoints are absorbing (exit). We wish to evaluate the additive quantities

α(x) = E
(∫ τx

0
c(xs)ds + d(xτx)

)

, (4.9)

where functions c and d are both nonnegative. With G = (1/2)x(1 − x)∂2x, α(x) solves

−G(α) = c if x ∈ I,
α = d if x ∈ ∂I.

(4.10)

Take c = limε↓0(1/2ε)1(x ∈ (y − ε, y + ε)) =: δy(x) and d = 0, when y ∈ I : in this case,
α := g(x, y) is the Green function. The solution takes the simple form

g
(

x, y
)

= 2
x

y
if x < y,

g
(

x, y
)

= 2
1 − x
1 − y if x > y.

(4.11)

The Green function solves the above general problem of evaluating additive functionals α(x)

α(x) =
∫

I

g
(

x, y
)

c
(

y
)

dy if x ∈ I,

α = d if x ∈ ∂I.
(4.12)
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As a Few Examples

(1) Let c = 1 and d = 0 : here, α(x) = E(τx) is the mean time of absorption (average time spent
in I before absorption). The solution is (the Crow and Kimura formula, see [2])

α(x) = 2x
∫1

x

dy

y
+ 2(1 − x)

∫x

0

dy

1 − y = −2(x logx + (1 − x) log(1 − x)). (4.13)

(2) Let c = 0 and d(◦) = 1(◦ = 1). Let α(x) = P(xt first hits [0, 1] at 1 | x0 = x). Then,
α(x) is a G-harmonic function solution to G(α) = 0, with boundary conditions α(0) = 0 and
α(1) = 1. The solution for WF model is: α(x) = x. Stated differently, x = P(τx,1 < τx,0) is the
probability that the exit time at ◦ = 1 is less than the one at ◦ = 0, starting from x.
On the contrary, choosing α(x) to be a G-harmonic function with boundary conditions α(0) =
1 and α(1) = 0, α(x) = P(xt first hits [0, 1] at 0 | x0 = x) = 1 − x. Thus, 1 − x = P(τx,0 < τx,1).

(3) Let c(xs) = 2xs(1 − xs) measure the heterozygosity of the WF process at time s
and assume d(0) = d(1) = 1. A remarkable thing is that the average heterozygosity over the
sample paths is

α(x) = E
(∫ τx

0
c(xs)ds

)

= 4x
∫1

x

(

1 − y)dy + 4(1 − x)
∫x

0
ydy = 2x(1 − x), (4.14)

which is the initial heterozygosity of the population.

4.3. Transformation of WF Sample Paths, [3]

With p(x; t, y) the transition probability density of WF model, define a new α-transformed
stochastic process (xt; t ≥ 0) by its transition probability

p
(

x; t, y
)

=
α
(

y
)

α(x)
p
(

x; t, y
)

. (4.15)

(i) Conditioning WF on exit at some boundary. Assume first α solves −G(α) = 0 with
boundary conditions α(0) = 0 and α(1) = 1; hence, α reads α(x) = x. In this case, τ̃x,∂ = ∞
(no killing), and so τx := τ̃x is the absorption time for a process (x̃t; t ≥ 0) governed by a new
SDE with a drift term. The new process (x̃t; t ≥ 0) is just (xt; t ≥ 0) conditioned on exiting at
◦ = 1. The boundary 1 is exit whereas 0 is entrance. Thus, the model for (x̃t; t ≥ 0) becomes
dx̃t = (1 − x̃t)dt +

√

x̃t(1 − x̃t)dwt, x̃0 = x ∈ (0, 1) now with linear drift ˜f(x) = 1 − x and
g(x) =

√

x(1 − x). Its transition probability is

p1
(

x; t, y
)

=
y

x
p
(

x; t, y
)

, (4.16)

where the subscript 1 indicates that this is the conditional transition probability of sample
paths whose exit is necessarily at the boundary 1.

Assuming now α solves −G(α) = 0 if x ∈ I with boundary conditions α(0) = 1 and
α(1) = 0, the new process (x̃t; t ≥ 0) is just (xt; t ≥ 0) conditioned on exiting at x = 0. Boundary
0 is exit, whereas 1 is entrance; in this case, α is α(x) = 1 − x. Thus, the model for (x̃t; t ≥ 0)
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becomes dx̃t = −x̃tdt +
√

x̃t(1 − x̃t)dwt, x̃0 = x ∈ (0, 1) with ˜f(x) = −x and g(x) =
√

x(1 − x).
Its transition probability is

p0
(

x; t, y
)

=
1 − y
1 − xp

(

x; t, y
)

, (4.17)

where the subscript 0 indicates that this is the conditional transition probability ofWF sample
paths whose exit now is at ◦ = 0. Recalling that, starting from x, (xt; t ≥ 0) gets absorbed at
◦ = 1 (0, resp.)with probability x (1 − x, resp.), we recover that

p
(

x; t, y
)

= x · p1
(

x; t, y
)

+ (1 − x) · p0
(

x; t, y
)

. (4.18)

Using the solution to KFE for p, we obtain an expression for both p1(x; t, y) and p0(x; t, y),
simply by premultiplying it by the corresponding right factor. Integrating the results over y,
we get the conditional tail distributions of the exit times at ◦ = 1 or 0, given the exit is at ◦ = 1
or 0.

Exploiting the large time behavior of p(x; t, y), to the first order in t, we get

p1
(

x; t, y
) ∼ 6e−t · (1 − x)y,

p0
(

x; t, y
)

= 6e−t · x(1 − y).
(4.19)

Integrating over y, ρt,1(x) := P1(τ̃x > t) ∼ 3e−t · (1 − x) and ρt,0(x) := P0(τ̃x > t) ∼ 3e−t · x are
the large time behaviors of the absorption times at 1 and 0, respectively. Using this, we get
the large time behaviors of the conditional probabilities

P1
(

x̃t ∈ dy | τ̃x > t
) ∼ 2y dy,

P0
(

x̃t ∈ dy | τ̃x > t
) ∼ 2

(

1 − y)dy,
(4.20)

where we recognize the densities of specific beta-distributed random variables. Specifically,
we conclude that as time passes by, given absorption occurs at ◦ = 1 and given it has not

occurred in the past, x̃t
d→ beta(2, 1) distribution on [0, 1]. Similarly, given absorption occurs

at ◦ = 0 and given it has not occurred previously, x̃t
d→ beta(1, 2) distribution on [0, 1].

In the previously displayed formula, τ̃x is just the exit time at ◦ = 1 (at ◦ =
0, resp.) of the conditional transformed WF diffusions. Let α̃(x) := E(τ̃x). Then, with G(·) =
(1/α(x))G(α(x)·), α̃(x) solves −G(α̃) = 1, whose explicit solution is

α̃(x) =
1

α(x)

∫1

0
g
(

x, y
)

α
(

y
)

dy, (4.21)

in terms of g(x, y), the Green function of (xt; t ≥ 0). For the WF model conditioned on exit at
◦ = 1 (0, resp.), we find, respectively, the Kimura and Ohta’s formulae in [23]

α̃1(x) = − 2
x
(1 − x) log(1 − x),

α̃0(x) = − 2
1 − xx logx.

(4.22)
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This result could have been guessed by observing that xα̃1(x) + (1 − x)α̃0(x) is the expected
absorption time of the original WFmodel. When x → 0+, (resp., x → 1−), it takes an average
time 2 to reach 1 (0, resp.) for the WF model conditioned on exit at ◦ = 1 (0, resp.).

(ii) Selection of WF sample paths with large heterozygosity. Assume that α now solves
−G(α) = 2x(1 − x) if x ∈ I with boundary conditions α(0) = α(1) = 0. Then, α = 2x(1 − x)
and this α is the right eigenvector of −G associated to the smallest positive eigenvalue λ1 = 1
of the neutral WF model. In this case study, one selects sample paths of (xt; t ≥ 0) with large
heterozygosity. The dynamics of (x̃t; t ≥ 0) in (2.38) is

dx̃t = (1 − 2x̃t)dt +
√

x̃t(1 − x̃t)dwt, (4.23)

subject to a constant killing rate 1. The boundaries of (x̃t; t ≥ 0) are now both entrance
boundaries and so τ̃x = ∞. (x̃t; t ≥ 0) is not absorbed at the boundaries. The stopping
time τx of (x̃t; t ≥ 0) is just its killing time τ̃x,∂ which is mean 1 exponentially distributed,
independently of the starting point x. Indeed,

P(τ̃x,∂ > t) =
∫1

0
p
(

x; t, y
)

dy =
1

α(x)

∫1

0
α
(

y
)

p
(

x; t, y
)

dy

=
1

x(1 − x)
∑

k≥1
bke

−λktuk(x)
∫1

0
y
(

1 − y)vk
(

y
)

dy

=
∑

k≥1
bke

−λktvk(x)
∫1

0
uk

(

y
)

dy = 6e−t
1
6
= e−t,

(4.24)

recalling x(1 − x)vk(x) = uk(x) and observing
∫1
0 uk(y)dy = 0 if k ≥ 2.

As time passes, killing of x̃t occurs, and given killing will never occur in the future,

x̃t
d→ x̃∞ a random variable with density 6y(1 − y) on [0, 1] which is a beta(2, 2) density. In

this selection of paths procedure, the conditional density of (x̃t; t ≥ 0) given τ̃x,∂ = ∞ is indeed
p̃(x; t, y) = etp(x; t, y), where p(x; t, y) = (y(1 − y)/(x(1 − x)))p(x; t, y). Therefore,

p̃
(

x; t, y
)

=
∑

k≥1
bke

−(λk−1)t uk(x)
x(1 − x)y

(

1 − y)vk
(

y
)

. (4.25)

Recalling u1(x) = x(1 − x), v1(y) = 1 and b1 = 6, we get p̃(x; t, y) →
t→∞

6y(1 − y), regardless
of the initial condition x. This is the beta(2, 2) limit law of the Q-process of the neutral WF
diffusion.

(iii) Selection of WF sample paths with large sojourn time density at y. Assume now
that α solves −G(α) = δy(x) if x ∈ I and so α(x) =: g(x, y). Using the Green function of the
neutral WF model, the transition probability density of (xt; t ≥ 0) is

p
(

x; t, y
)

=
y

x
p
(

x; , y
)

if x < y,

p
(

x; t, y
)

=
1 − y
1 − xp

(

x; t, y
)

if x > y.
(4.26)
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Thus, given x < y (x > y), (xt; t ≥ 0) coincides with (xt; t ≥ 0) conditioned to exit in 1 (0, resp.)
killed at rate δy(x)when it passes through y, necessarily at some time.

The stopping time τ̃y(x) of (x̃t; t ≥ 0) is just its killing time when the process is at y for
the last time with a geometrically number of passages at y with rate 1 (or success probability
1/2).

5. The WF Model with Selection

Now, we focus on the diffusion process (3.8). Let (vk(y))k≥1 be the Gegenbauer eigen-
polynomials of the KF operator corresponding to the neutral WF diffusion (3.3) and so
with eigenvalues λk = k(k + 1)/2, k ≥ 1. Define the oblate spheroidal wave functions on
[0, 1] as

wσ
k

(

y
)

=
′

∑

l≥1
flkvl

(

y
)

, (5.1)

where flk obey the three-term recurrence defined in [24]. In the latter equality, the l summation
is over odd (even) values if k is even (odd).

Define vσ
k
(y) = eσywσ

k
(y) and uσ

k
(x) = (1/m(x))vσ

k
(x)wherem(x) = e2σx/(x(1 − x)) is

the speed measure density of the WF model with selection (3.8).
The system (uσ

k
(x), vσ

k
(x))

k≥1 constitute a system of eigenfunctions for the WF with
selection generators −G and −G∗ with eigenvalues λσk implicitly defined in [24], thus with
−G(uσk(x)) = λσku

σ
k(x) and −G∗(vσk (y)) = λσkv

σ
k (y). The eigenfunction expansion of the transi-

tion probability density of the WF model with selection is thus, [25],

p
(

x; t, y
)

=
∑

k≥1
bσke

−λσ
k
tuσk(x)v

σ
k

(

y
)

, (5.2)

where bσk = 〈vσk , uσk〉−1. TheWFmodel with selection can be viewed as a perturbation problem
of the neutral WF model (see [3]). There exist perturbation developments of λσk around λk
with respect to σ2, [25]. They are valid and useful for small σ.

The WF diffusion process xt with selection (3.8) is nonconservative, with finite hitting
time τx of one of the boundaries. Following the general arguments developed in Section 2,
the Yaglom limit of xt conditioned on τx > t is the normalized version of

vσ1
(

y
)

= eσywσ
1

(

y
)

. (5.3)

The limit law of xt conditioned on never hitting the boundaries in the remote future is the
normalized version of

uσ1
(

y
)

vσ1
(

y
)

=
1

m
(

y
)vσ1 (x)

2 = y
(

1 − y)wσ
1

(

y
)2
. (5.4)

Because the latter conditioning is more stringent than the former, the probability mass of (5.4)
is more concentrated inside the interval than (5.3).



30 International Journal of Stochastic Analysis

6. From the WF Model with Selection to the Neutral WF Model:
Doob Transform and Killing

We shall consider the following transformation of paths for the WF model with selection.
Consider theWright-Fisher diffusionwith selection (3.8): dxt = σxt(1−xt)dt+

√

xt(1 − xt)dwt,
x0 = x ∈ (0, 1). For this model,G = σx(1−x)∂x+(1/2)x(1−x)∂2x and both boundaries are exit.

Assume that σ > 0 so that the drift term is bounded above by f∗ = σ/4, together with
2f/g2 being bounded below (as a constant function here equal to 2σ). We are then in the
general framework of the problems under study in this paper. This suggests that for some
admissible choice of a superharmonic exponential function α = e−ax, the α-Doob transform
of xt could lead to a transformed process with bounded killing rate d = −G(α)/α. We shall
choose a = σ for its interesting features.

The transition density p(x; t, y) of xt admits the representation (5.2) in terms of their
oblate spheroidal wave eigenfunctions. Let

α(x) = E
(∫ τx

0
c(xs)ds

)

, (6.1)

where c(xs) = 2xs(1 − xs)e−σxs/4 is the skewed sample heterozygosity, damped by the factor
e−σxs/4. Then, α solves −G(α) = (1/2)σ2x(1 − x)e−σx, with solution α(x) = e−σx. In this case
study, one selects sample paths of (xt; t ≥ 0) with large α(y). The dynamics of (x̃t; t ≥ 0) is
the drift-less neutral WF dynamics dx̃t =

√

x̃t(1 − x̃t)dwt, subject to quadratic killing at rate
d(x) = (1/2)σ2x(1 − x) in I, which is bounded above there. The boundaries of (x̃t; t ≥ 0) are
still exit and the stopping time τx of (x̃t; t ≥ 0) is τx = τ̃x ∧ τ̃x,∂, where τ̃x is its absorption
time at the boundaries and τ̃x,∂ its killing time. The density of the transformed process is
p(x; t, y) = (α(y)/(α(x)))p(x; t, y). Its series expansion is exactly known using (5.2) for p.

The transformed process (xt; t ≥ 0) accounts for a neutral evolution of the allele
A1 frequency subject to the additional extinction opportunity of the population itself due
to killing at rate proportional to its heterozygosity. Leaving aside the fact that it can be
obtained after a suitable Doob transformation, this model is of importance in population
genetics: it first appeared in ([8, Page 272]) as a scaling limit of a population genetics model
of recombination.

From the general study of Section 2, we obtain the following.
(i) Conditioned on τx > t, the transformed process (xt; t ≥ 0) admits a Yaglom limit

q∞. With vσ1 the first oblate spheroidal eigenvector of −G∗ associated to the smallest positive
eigenvalue λσ1 , q∞ is of the product form

q∞
(

y
)

=
e−σyvσ1

(

y
)

∫1
0 e

−σyvσ1
(

y
)

dy
=

wσ
1

(

y
)

∫1
0 w

σ
1

(

y
)

dy
. (6.2)

This limiting probability q∞ is the Yaglom limit law of (xt; t ≥ 0) conditioned on the event
τx > t that both the absorption and killing times exceed t.

(ii) LetG(·) = eσxG(e−σx·) be the infinitesimal generator of (xt; t ≥ 0)with two stopping
times. Now, there is a tradeoff between which of τ̃x and τ̃x,∂ occurs first. To solve it, we need
to compute β defined in (2.55) by G(β(x)) = 0, with boundary conditions β(0) = β(1) = 1.
This is a Sturm-Liouville problem whose solution in our case is

β(x) =
e−σx + e−σ(1−x)

1 + e−σ
. (6.3)
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The function β(x) = P(τ̃x < τ̃x,∂) is minimal when x = 1/2, with value β(1/2) = 1/
(cosh(σ/2)). This looks natural because when x̃0 = x = 1/2, the chance to hit {0, 1} before
getting killed should be the lowest.

The density of the process (xt; t ≥ 0) conditioned on the event {τ̃x < τ̃x,∂} is

pa
(

x; t, y
)

=
β
(

y
)

β(x)
p
(

x; t, y
)

=
β
(

y
)

β(x)
α
(

y
)

α(x)
p
(

x; t, y
)

, (6.4)

and so is also explicitly known from the oblate spheroidal wave expansion (5.2) of p(x; t, y).
The tail distribution of τ̃x given {τ̃x < τ̃x,∂} is obtained by integrating pa over y.

Similarly, the density of the process (xt; t ≥ 0) conditioned on the event {τ̃x,∂ < τ̃x} is

p∂
(

x; t, y
)

=
1 − β(y)

1 − β(x) p
(

x; t, y
)

=
1 − β(y)

1 − β(x)
α
(

y
)

α(x)
p
(

x; t, y
)

. (6.5)

The tail distribution of τ̃x,∂ given {τ̃x,∂ < τ̃x} is obtained by integrating p∂ over y.
The associated conditioned on absorption first process (x̃a,t; t ≥ 0) obeys the SDE

dx̃a = ˜fa(x̃a)dt + g(x̃a)dwt, (6.6)

with drift

˜fa(x) = f(x) + g2(x)
[

α′

α
(x) +

β′

β
(x)

]

= σx(1 − x)1 − e
σ(1−2x)

1 + eσ(1−2x)
,

(6.7)

and local variance unchanged g2(x) = x(1 − x). This process has no killing part and it gets
eventually absorbed at {0, 1}.

In the generator G∂(·) of the conditioned on killing first process, there is a killing
multiplicative part which is enhanced d/(1 − β) > d and a shift in the drift, showing that
the associated conditioned process (x̃∂,t; t ≥ 0) exhibits a faster killing rate, but the drift shift
guarantees that (x̃∂,t; t ≥ 0) is not absorbed at the boundaries. With g2(x) = x(1 − x) and β as
in (6.3), the drift takes the peculiar explicit form

˜f∂(x) = − g
2β′

1 − β (x). (6.8)

7. From the Neutral WF Model to the WF Model with Selection:
Reciprocal Doob Transform and Branching

We now follow the general path indicated in Section 2.7 and apply it to the particular models
under concern. We, therefore, illustrate and develop the idea of a reciprocal Doob transform
on the specific example of interest.

The starting point is now the neutral Wright-Fisher diffusion: dxt =
√

xt(1 − xt)dwt,
x0 = x ∈ (0, 1). For this model,G = (1/2)x(1−x)∂2x and both boundaries are exit. Its transition
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density p(x; t, y) admits the representation

p
(

x; t, y
)

=
∑

k≥1
bke

−λktuk(x)vk
(

y
)

, (7.1)

in terms of the Gegenbauer eigenpolynomials (see Section 4.1). We shall consider the
following reciprocal transformation of paths for the neutral WF model: let α(x) = eσx and
consider G(·) = α−1G(α·). We now have G(α) = (1/2)σ2x(1 − x)eσx and b(x) = G(α)/α > 0.

In this case study, one selects sample paths of (xt; t ≥ 0)with large α(y). The dynamics
of (x̃t; t ≥ 0) is easily seen to be the WF with selection dynamics

dx̃t = σx̃t(1 − x̃)dt +
√

x̃t(1 − x̃t)dwt, (7.2)

subject to quadratic branching at rate b(x) = (1/2)σ2x(1 − x) inside I. We indeed have

G(·) = e−σxG(eσx·) = b(x) · + ˜G(·), (7.3)

where ˜G is the KBE operator of the dynamics (x̃t; t ≥ 0).
With β(x) = α(x)−1 = e−σx, we clearly have

G
(

β(x)
)

= 0, (7.4)

and β is an harmonic function for G and as a result, Doob-transforming G by β, we get

β−1G
(

β·) = G(·), (7.5)

which is the infinitesimal generator of the original neutral WF martingale.
The birth (creating) rate b in G is bounded from above on (0, 1). It may be put into the

canonical form b(x) = b∗(μ(x) − 1), where b∗ = maxx∈[0,1](b(x)) = σ2/8 > 0 and

μ(x) = 1 + 4x(1 − x), (7.6)

whose range is the interval [1, 2] as x ∈ [0, 1].
The density of the transformed process is p(x; t, y) = (α(y)/(α(x)))p(x; t, y). It is

exactly known because p is known from (7.1).
The transformed process (with infinitesimal backward generator G) accounts for a

branching diffusion (BD), where a diffusing mother particle (with generator ˜G and started at
x) lives a random exponential time with constant rate b∗. When the mother particle dies, it
gives birth to a spatially dependent random number M(x) of particles (with mean μ(x)). If
M(x)/= 0,M(x) independent daughter particles are started where their mother particle died;
they move along a WF diffusion with selection and reproduce, independently and so on.
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Because μ(x) is bounded above by 2 and larger than 1 (indicating a supercritical
branching process), we actually get a BD with binary scission whose random offspring
number satisfies

M(x) = 0 w.p. p0(x) = 0,

M(x) = 1 w.p. p1(x) = 2 − μ(x),
M(x) = 2 w.p. p2(x) = μ(x) − 1,

(7.7)

with p2(x) ≥ p1(x) (the event that 2 particles are generated in a splitting event is more
probable than a single one).

For such a transformed process, the tradeoff is of a different nature: there is a compe-
tition between the boundaries {0, 1} which are still absorbing for the system of particles and
the number of particlesNt(x) in the system at each time t, which may grow due to branching
events. The density p of the transformed process has now the following interpretation:

p
(

x; t, y
)

= E

[

Nt(x)
∑

n=1

p(n)
(

x; t, y
)

]

, (7.8)

where p(n)(x; t, y) is the density at (t, y) of the nth alive particle descending from the ancestral
one (Eve), started at x. In the latter formula, the sum vanishes ifNt(x) = 0. A particle is alive
at time t if it came to birth before t and has not been yet absorbed by the boundaries.

Let ρt(x) =
∫

(0,1) p(x; t, y)dy. Then, ρt(x) is the expected number of particle alive at
time t. We have

∂tρt(x) = G
(

ρt(x)
)

, ρ0(x) = 1(x ∈ (0, 1)). (7.9)

But then, q(x; t, y) := p(x; t, y)/ρt(x) obeys the forward PDE

∂tq
(

x; t, y
)

=

(

−∂tρt(x)
ρt(x)

+ b
(

y
)

)

q
(

x; t, y
)

+ ˜G∗(q
(

x; t, y
))

, (7.10)

as a result of ∂tp(x; t, y) = G
∗
(p(x; t, y)). We have

q
(

x; t, y
)

=
E
[

∑Nt(x)
n=1 p(n)

(

x; t, y
)

]

E[Nt(x)]
(7.11)

showing that q(x; t, y) is the average presence density at (t, y) of the system of particles all
descending from Eve started at x.

Clearly, −(log ρt(x)/t) →
t→∞

λ1 = 1 (and, therefore, also −(∂tρt(x)/(ρt(x))), because

ρt(x) =
1

α(x)

∑

k≥1
bke

−λktuk(x)
∫1

0
α
(

y
)

vk
(

y
)

dy. (7.12)

The expected number of particles in the system decays globally at rate λ1.
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The BD transformed process, therefore, admits an integrable Yaglom limit q∞, solution
to − ˜G∗(q∞) = (λ1 + b(y))q∞ or −G∗

(q∞) = λ1q∞. With v1(y) = 1, the first eigenvector of −G∗

associated to the smallest positive eigenvalue λ1 = 1, q∞ is of the product form

q∞
(

y
)

=
eσyv1

(

y
)

∫1
0 e

σyv1
(

y
)

dy
=

σeσy

eσ − 1
. (7.13)

This limiting probability q∞ is the Yaglom limiting average presence density at (t, y) for the
BD system of particles (it is also the ground state for G

∗
).

There is also a natural eigenvector φ∞ of the backward operator −G, satisfying
−G(φ∞) = λ1φ∞ (the ground state for G). It is explicitly here that

φ∞(x) =
1

α(x)
u1(x) = e−σxx(1 − x). (7.14)

In the terminology of [26], both operators G(·) + λ1· and its adjoint are critical (G(·) + λ1·
(G

∗
(·) + λ1·) is said to be critical if there exists some function φ∞ ∈ C2 (q∞ ∈ C2, resp.), strictly

positive in (0, 1), such that:G(φ∞)+λ1φ∞ = 0 (G
∗
(q∞)+λ1q∞ = 0, resp.) and the operators do

not possess a minimal positive Green function.). In this context, the constant λ1 is called the
generalized principal eigenvalue. The eigenfunctions (φ∞, q∞) are their associated ground
states.

We note that we have the L1-product property (see [26, Subsection 4.9]).

∫1

0
u1(x)v1(x)dx =

∫1

0
φ∞(x)q∞(x)dx <∞. (7.15)

With pn(x) = P(M(x) = n), let

l(x) =
∑

n≥1
pn(x)n logn = 2 log 2p2(x). (7.16)

We have the x logx condition

∫1

0
l(x)φ∞(x)q∞(x)dx = 8 log 2

∫1

0
x(1 − x)u1(x)v1(x)dx <∞. (7.17)

We conclude (following [9, 10]) that, as a result of the condition (7.17) being trivially satisfied,
global extinction holds in the following sense:

(i)P(Nt(x) = 0) →
t→∞

1, uniformly in x,

(ii) there exists a constant γ > 0 : eλ1t[1 − P(Nt(x) = 0)] →
t→∞

γφ∞(x), uniformly in x,

(iii) For all bounded measurable function ψ on I,

E

[

Nt(x)
∑

n=1

ψ
(

x̃
(n)
t

)

|Nt(x) > 0

]

−→
t→∞

γ−1
∫

(0,1)
ψ
(

y
)

q∞
(

y
)

dy. (7.18)
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From (i), it is clear that the process gets ultimately extinct with probability 1. In the tradeoff
between branching and absorption at the boundaries, all particles get eventually absorbed
and the global BD process turns out be subcritical (even though μ(x) = EM(x) > 1 for all x ∈
(0, 1)): probability mass escapes out of I although the BD survives with positive probability.

In the statement (ii), the quantity 1 − P(Nt(x) = 0) = P(Nt(x) > 0) is also P(T(x) > t)
where T(x) is the global extinction time of the particle system descending from an Eve particle
started at x. The number −λ1 is the usual Malthus decay rate parameter. From (ii), φ∞(x) has
a natural interpretation in terms of the propensity of the particle system to survive to its
extinction fate: the so-called reproductive value in demography.

(iii) with ψ = 1 reads E[Nt(x) | Nt(x) > 0] →
t→∞

γ−1 giving an interpretation of the

constant γ (which may be hard to evaluate in practise).
The ground states of G + λ1 and its adjoint are, thus, (φ∞, q∞) and explicit here. It is

useful to consider the process whose infinitesimal generator is given by the Doob transform

φ
−1
∞
(

G + λ1
)(

φ∞·
)

= φ
−1
∞
(

˜G + b + λ1
)(

φ∞·
)

, (7.19)

because product-criticality is preserved under this transformation. The ground states
associated to this new operator and its dual are (1, φ∞q∞). Developing, we obtain a process
whose infinitesimal generator is

˜G +
φ
′
∞

φ∞
g2∂x = G +

u′1
u1
g2∂x, (7.20)

with no multiplicative part. In our case study, we get (1/2)x(1 − x)∂2x + (1 − 2x)∂x adding
a stabilizing drift towards 1/2 to the original neutral WF model. The associated diffusion
process is positive recurrent and so its invariant measure φ∞q∞ = u1v1 ∝ y(1−y) is integrable.
It is the beta(2, 2) limit law of the Q-process (see (2.80) and (4.23)) for the neutral WF
diffusion.

Remark 7.1. At time t, let (x̃(n)
t )

Nt(x)

n=1 denote the positions of the BD particle system. Let

u(x, t; z) = E[
∏Nt(x)

n=1 zψ(x̃
(n)
t )] stand for the functional generating function (|z| ≤ 1) of

the measure-valued branching particle system. u(x, t; z) obeys the nonlinear (quadratic)
Kolmogorov-Petrovsky-Piscounoff PDE, [27]

∂tu(x, t; z) = b∗θ(x, u(x, t; z)) + ˜G(u(x, t; z)); u(x, 0; z) = zψ(x), (7.21)

where θ(x, z) = E[zM(x)] − z = (p2(x)z2 + p1(x)z) − z or

θ(x, z) = 4x(1 − x)z(z − 1) (7.22)

is the shifted probability generating function of the branching law of M(x). Thus, the
nonlinear part reads b∗θ(x, u(x, t; z)) = b(x)u(x, t; z)(u(x, t; z) − 1), which is quadratic in u.

In particular, if u(x, t) := ∂zu(x, t; z)z=1 = E[
∑Nt(x)

n=1 ψ(x̃(n)
t )], u(x, t) obeys the linear

backward PDE

∂tu(x, t) = b(x)u(x, t) + ˜G(u(x, t)); u(x, 0) = ψ(x), (7.23)
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involving G(·) = ˜G(·) + b(x). The latter evolution equation is the backward version of the
forward PDE giving the evolution of p(x; t, y) as ∂tp(x; t, y)=G

∗
(p(x; t, y)), p(x; 0, y) = δx(y).
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