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We have studied dynamics of both internal and external noises-driven dynamical system
in terms of information entropy at both nonstationary and stationary states. Here a unified
description of entropy flux and entropy production is considered. Based on the Fokker-Planck
description of stochastic processes and the entropy balance equation we have calculated time
dependence of the information entropy production and entropy flux in presence and absence of
nonequilibrium constraint (NEC). In the presence of NEC we have observed extremum behavior
in the variation of entropy production as function of damping strength, noise correlation, and non-
Gaussian parameter (which determine the deviation of external noise behavior from Gaussian
characteristic), respectively. Thus the properties of noise process are important for entropy
production.

1. Introduction

In recent years the stochastic dynamics [1–5] community is becoming increasingly interested
to study the role of noise in dissipative dynamical systems, because of its potential
applications on various noise-induced phenomena, such as noise-induced phase transition
[6], noise-sustained structures in convective instability [7], stochastic spatiotemporal
intermittency [8], noise-modified bifurcation [9], noise-induced traveling waves [10], noise-
induced ordering transition [11], noise-induced front propagation [12], stochastic resonance
[13–15], coherence resonance [16–19], synchronization [20, 21], clustering [22], noise-induced
pattern formation [23, 24]. In the traditional classical thermodynamics, the specific nature
of the stochastic process is irrelevant but it may play an important role on the way
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to equilibration of a given nonequilibrium state of the noise-driven dynamical system.
The relaxation behavior of the stochastic processes can be understood using information
entropy (S). Now the information entropy becomes a focal theme in the field of stochastic
processes [25–28]. In [27] the authors have been studied the transition from the slow-wave
sleep to the rapid-eye-movement sleep in terms of the information entropy. Crochik and
Tomé [28] calculated the entropy production in the majority-vote model and showed that
the entropy production exhibits a singularity at the critical point. The time evolution of S
mainly considers the signature of the rate of phase space expansion and contraction in the
random force-driven Brownian motion. This implies that the specific nature of the random
process has a strong role to play with S. In view of the importance of the characteristics of the
frictional and the random forces, the specific nature of the random process has a strong role
to play with information entropy flux and entropy production in presence and absence of
nonequilibrium constraint. The random force may be of both internal and external origins.
We assume that the internal thermal noise is Gaussian in characteristic. But the external
noise may be of non-Gaussian properties. Again we will discuss this aspect in the later part.
However, the frictional force of thermal environment may be proportional to momentum
of triggered particle, or it may associated with finite memory kernel. Stochastic processes
with frictional memory kernel (i.e., non-Markovian stochastic processes) are important in
many situations such as chemical reactions, isomerization [5, 29–31], and Josephson junction
[32]. Extension of Kramers’ rate theory to non-Markovian stochastic processes has been
the subject of the recent past [5]. We now want to discuss the efficacy of choosing non-
Gaussian noise instead of Gaussian one for external environmental random perturbations.
Experimental data indicates that the noise in biological processes may have a non-Gaussian
character. Examples include, among others, flow of current through voltage-sensitive ion
channels in a cell membrane or experiments on the sensory systems of rat skin [33, 34].
Recent detailed studies on the source of fluctuations in different biology systems [35, 36]
have clearly established that, in such a context, noise sources are, in general, non-Gaussian.
Recently, Fuentes et al. [37] have shown that the stochastic resonance can be enhanced when
the subsystem departs from Gaussian behavior and the system shows marked “robustness”
against noise tuning, that is, the signal-to-noise ratio curve can flatten when departing
from Gaussian behavior, implying that the system does not require fine tuning of the
noise intensity in order to maximize its response to a weak external signal. This theoretical
finding was verified experimentally by Castro et al. [38]. Very recently the role of colored
non-Gaussian noise having continuous distribution has been investigated in the context of
synchronization of coupled phase oscillators [20, 21], kinetics of self-induced aggregation
of Brownian particles [22], escape through an unstable limit cycle [39, 40], escape from a
metastable state [41–47], coherent resonance in the noise-driven neurons [48], and ratchet
problem [49]. Furthermore, non-Gaussian noise of third order has been shown to be useful in
some of the autocatalytic reactions [50]. The objective of the present paper is the study of time
dependence of information entropy production and entropy flux in a unified description for
internal and external noises-driven system in the presence and the absence of nonequilibrium
constraint.

The outline of the paper is as follows. In Section 2 we calculate entropy flux and
entropy production in the nonequilibrium and stationary states. The paper is concluded in
Section 3.
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2. Calculation of the Information Entropy Flux and Production

2.1. Relaxation of the Noise-Driven Dynamical System to a Stationery State

We consider a stochastic process in the presence of both internal thermal noise and external
noise. The Langevin equation of motion for this process can be written as

ẋ = p, (2.1)

ṗ = −ω2x −
∫ t

0
γ
(
t − t′

)
p
(
t′
)
dt′ + f(t) + η(t), (2.2)

where x and p correspond to the position and momentum of a harmonic oscillator with
frequency ω. Here γ(t − t′) is the dissipative memory kernel and f(t) represents internal
thermal noise that satisfies the fluctuation-dissipation relation

〈
f(t)
〉
= 0;

〈
f(t)f

(
t′
)〉

= εkBTγ
(
t − t′

)
. (2.3)

kB is the Boltzmann constant and T is the temperature of the thermal bath. The parameter ε is
used to identify the noise strength. However, the frictional kernel plays a decisive role in the
study of behavior of non-Markovian dynamics [51]. The variance of stochastic observable
may not always provide long time limits. Therefore, in general, one has to work out non
Markovian system for analytically tractable models [51]. To capture essential features of the
non Markovian dynamics, we consider an exponentially decaying frictional memory kernel
[52–54]. Therefore, γ(t − t′) in the present model can be represented as

γ
(
t − t′

)
=

γ0
τi
e−|t−t

′ |/τi , (2.4)

where τi is the memory time of the internal colored noise and γ0 is the frictional coefficient
in the Markovian limit τi → 0. For the frictional memory kernel (2.4) the integrodifferential
(2.2) can read as

ṗ = −ω2x + f(t) + η(t), (2.5)

with

ḟ = − f

τi
− γ0

τi
p +

√
εγ0kBT

τi
ζ(t). (2.6)

Here ζ(t) is a white Gaussian noise of zero mean and 〈ξ(t)ξ(t′)〉 = 2δ(t − t′). However, by
the remaining noise term η(t) in (2.1) we have considered the collective effect of nonthermal
environment (NTE). We assume that its two-time correlation is independent of damping of
the thermal bath. However, by the NTE we mean the degrees of freedom in the complex
system which are strongly interacting with the tagged particle. To be noted here that the
nonthermal environment is also embedded in the same thermal environment. The NTE is
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very much relevant in the context of the biological system. Due to nonlinear dynamics, the
nonthermal noise may be non-Gaussian and colored in characteristics. The reason is the
following. In the system reservoir model [55, 56] we consider that modes of thermal bath
are harmonic oscillators. The equilibrium distribution function in terms of the dynamical
variables (coordinate and momentum) of a bath mode is of Gaussian type. Therefore, the
noise in the Langevin equation of motion for the triggered particle is Gaussian in nature.
However, there is a number of situations where noise source is not thermal bath. For
example, the time evolution equation of the voltage in the dynamics of up-down sates of
neurons is coupled to a very large number of dynamical equations related to ion flow.
Their collective effect is the noise of biological origin in the time evolution equation for
the voltage [57, 58]. These dynamical equations are in general nonlinear since they exhibit
a self-sustained oscillation in the presence of dissipation. Therefore it is obvious that the
distribution function of the dynamical variable should be of non-Gaussian type. In the
introduction we have already mentioned the experimental evidence for the non-Gaussian
behavior of the noise of biological origin [33–36]. However, we start the present problem
considering that the nonthermal noise η(t) is the Ornstein-Uhlenbeck noise process [5]. The
time evolution equation of the noise is

η̇ = − η

τe
+

√
εDe

τe
ξ(t). (2.7)

The two time correlation function 〈η(t)η(0)〉 decays exponentially:

〈
η(t)η(0)

〉
=

εDe

τe
exp
(
− t

τe

)
. (2.8)

Thus τe is the correlation time of the Ornstein-Uhlenbeck noise and De is the strength of the
external noise process.

Now treating f and η as phase space variables on the same footing as x and p
and using (2.1), (2.5), (2.6), and (2.7), it is simple to write the Fokker-Planck equation
with arbitrary values of dissipation parameter, noise correlation time, and noise strength as
follows:

∂ρ
(
x, p, f, ηt

)
∂t

=
[
−∂p
∂x

+ω2 ∂x

∂p
− ∂f

∂p
− ∂η

∂p
+

1
τi

∂f

∂f
+
γ0
τi

∂p

∂f

+
εγ0kBT

τ2i

∂2

∂f2
+

1
τe

∂η

∂η
+
εDe

τ2e

∂2

∂η2

]
ρ
(
x, p, f, η, t

)
,

(2.9)

where ρ(x, p, f, η, t) is the extended phase space probability distribution function.
It is now important to note that one can use the following linear transformation:

U = ax + bp + cf + η, (2.10)
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in the Fokker-Planck (2.9) since all the above differential equations ((2.1), (2.5), (2.6), and
(2.7)) are linear in terms of the phase space variables (x, p, f , and η). Parameters a, b, and
c in (2.10) are to be determined. U, being a linear combination of the extended phase
space variables, takes care of their stochastic behavior entirely. The transformation (2.10) is
generally used [5, 59–61] with the purpose of reducing the dimension of the Fokker-Planck
equation for a linear stochastic process. Equation (2.10) has been used in general for the study
of Kramers’ problem but there one does not replace the full non-Markovian dynamics with
this transformed process, but only for stationary nonequilibrium dynamics [5]. It reduces an
infinite-dimensional Markovian process (a general non-Markovian Gaussian process) into
a one-dimensional description for the flux solution. But in the present problem we use
the transformation (2.10) for the full non-Markovian dynamics. We will discuss more this
transformation in the appendix.

By virtue of the above transformation the Fokker-Planck equation (2.9) becomes

∂ρ(U, t)
∂t

= −∂Fρ
∂U

+ εDeff
∂2ρ

∂U2
, (2.11)

where

F = −λU, (2.12)

Deff = c2
γ0kBT

τ2i
+
De

τ2e
, (2.13)

λU = −ap +ω2xb − bf − bη +
c

τi
f − γ0cp

τi
+

η

τe
. (2.14)

λ is an another constant to be determined. We must stress that the reduction of the
four-dimensional description (2.9) to the one-dimensional (2.11) is not adhoc and the
probability density corresponding to the variables x, p, f , and η and the probability density
corresponding to the transformed variable U are the same. Essentially (2.9) is due to special
projection of U. Through the terms λU and Deff the one-dimensional description considers
effective contributions of the drift and the diffusion of the original dynamics. Now we come
back into the issue how one can determine the constants a, b, c, and λ. Using (2.10) in (2.14)
and comparing the coefficients of x, p, f , and η, we have

λa = ω2b,

λb = −a − γ0c

τi
,

λc = −b + c

τi
,

λ = −b + 1
τe
.

(2.15)
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From the above algebraic equations we obtain a cubic equation for λ as

λ3 − λ2

τi
+
(
γ0
τi

+ω2
)
λ − ω2

τi
= 0. (2.16)

Nowwe put transformation z = λ − 1/(3τi) in the above equation to have a cubic equation of
the standard form

z3 +mz + nq = 0, (2.17)

where

m = ω2 +
γ0
τi

− 1
3τ2i

,

n = −2ω
2

3τi
+

γ0

3τ2i
− 2
27τ3i

.

(2.18)

For the present problem, we consider the real positive root of the above algebraic equation
which is as follows:

λ =

⎛
⎝−n

2
+

√
n2

4
+
m3

27

⎞
⎠

1/3

+

⎛
⎝−n

2
−
√

n2

4
+
n3

27

⎞
⎠

1/3

+
1
3τi

(2.19)

since the distribution function must vanish at the boundary. In order to have real and positive
λ we choose n < 0 and (n2/4 + m3/27) > 0. Using the value of λ in (2.15), and (2.16), one
can have a, b, and c. Particularly the dependence of c on the oscillator frequency (ω), noise
correlation time, and γ is useful in (2.13) for further calculation. It is given by

c =
τi(λτe − 1)
τe(λτi − 1)

. (2.20)

Now we would like to mention that (2.1), (2.5), (2.6), and (2.7) indeed can become again a
truly (real-valued) Markovian process for the special projection of U with the condition that
λ > 0. Thus U describes original non-Markovian dynamics in terms of a truly (real-valued)
Markovian process with the restriction that λ > 0. Now we like to mention another point that
the natural demand of positiveness of λ and its finite value governed by the system frequency
and other parameters put restriction through (2.15), and (2.16) on values of coefficients a, b,
and c in the linear transformation (2.10). Thus the linear transformation (2.10) does not work
for arbitrary values of the coefficients. However, the above Fokker-Planck equation (2.11) can
be generalized for colored non Gaussian noise-driven systems at a specific limit. The colored
non-Gaussian noise can be generated from the solution of the following stochastic differential
equation [62]:

η̇ = − η

τe
(
1 + β(r − 1)η2/2

) +
√
εDe

τe
ξ(t). (2.21)
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ξ(t) is a standard Gaussian noise of zero mean and 〈ξ(t)ξ(t′)〉 = 2δ(t − t′). The form of noise η
as employed in (2.21) allows us to control the departure from the Gaussian behavior easily by
changing a single parameter r. De and τe are noise parameters related to the noise intensity
and the correlation time of η. The parameter α in (2.21) is defined as

β =
τe
De

. (2.22)

Now we consider two different situations. For r = 1 (2.21) reduces to (2.7). For r > 1
the stationary properties of the noise η, including the two-time correlation function, have
been studied in [63], and here we summarize the main results. The stationary probability
distribution is given by

P
(
η
)
=

1
Zr

[
1 + β(r − 1)

η2

2

]−1/(r−1)
, (2.23)

where Zr is the normalization factor given by

Zr =
∫∞

−∞
dη

[
1 + β(r − 1)

η2

2

]−1/(r−1)

=

√
π

α(r − 1)
Γ(1/(r − 1) − 1/2)

Γ(1/(r − 1))
.

(2.24)

Γ indicates the Gamma function. This distribution can be normalized only for r < 3. Since the
above distribution function is an even function of η, the first moment, 〈η〉, is always equal to
zero and the second moment is given by

〈
η2
r

〉
=

2εD1

τ(5 − 3r)
, (2.25)

which is finite only for r < 5/3. It is apparent from the above facts that the distribution
function has a long tail which leads to diverge the second moment for r � 5/3 although it
can be normalized up to r < 3. Furthermore, for r < 1, the distribution has a cut-off and it is
only defined for

∣∣η∣∣ < ηc ≡
√

2εDe

τe(1 − r)
. (2.26)

Finally, the correlation time of non-Gaussian noise τe of the stationary regime of the process
η(t) diverges near r = 5/3, and it can be approximated over the whole range of values of r as

τer � 2τe
(5 − 3r)

. (2.27)
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Clearly, when r → 1, we recover the limit of η being a Gaussian colored noise, that is, the
Ornstein-Uhlenbeck process. In this limit, in fact, the term in the square bracket of (2.23) can
be written as

1 + β(r − 1)
η2

2
= exp

(
β(r − 1)

η2

2

)
, (2.28)

and therefore (2.23) becomes

P
(
η
)
=

1
Z1

exp

(
−βη

2

2

)
, (2.29)

with

Z1 =

√
π

β
. (2.30)

Here we would like to note that (2.25) shows that, for a given external noise strength De and
noise correlation time τe, the variance of the non-Gaussian noise is higher than that of the
Gaussian one for r > 1, that is,

〈
η2
r

〉
>
〈
η2
〉
. (2.31)

Similarly (2.27) implies that τer > τe for r > 1. Before leaving this part we would like
to mention that in the present study we have considered continuous distribution of non-
Gaussian noise which is more relevant in the natural systems rather than two state or
discrete distributions [64] asmostly used in the literature to study the noise-driven dynamical
systems.

Now it is important to note that because of nonlinearity in terms of η in (2.21)
calculation of information entropy and flux analytically is very difficult. However, to get the
flavor of effect of non-Gaussian noise on these we consider small deviation from Gaussian
character of the noise η(t). To do so, first, we replace η2 in (2.21) by its average value at
stationary state. This should be a good approximation in the limit r → 1. Thus in the limit
r → 1 (2.21) can be written as

η̇ = − η

τng
+

√
εDng

τng
ξ(t), (2.32)

where

τng =
2τe(2r − 1)
(5 − 3r)

,

Dng =
4De(2r − 1)2

(5 − 3r)2
.

(2.33)
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τng and Dng are effective noise correlation time and noise strength of the non-Gaussian noise
when the Gaussian noise process has correlation time τe and noise strength De. Equation
(2.33) show that τng > τe and Dng > De for r > 1. Now the two-time correlation function of η
according to (2.32) is given by

〈
η(t)η

(
t′
)〉

=
εDng

τng
e−|t−t

′ |/τng . (2.34)

In the limit τ → 0 the above equation becomes

〈
η(t)η

(
t′
)〉

= 2εDngδ
(
t − t′

)
. (2.35)

It describes the variance of the white non-Gaussian noise in the limit r → 1. However,
to check the validity of the above approximation, we have plotted numerically calculated
autocorrelation function (〈η(t)η(0)〉)(ACF) versus t in Figure 1. It shows that at small r
(r = 1.25), the ACF is fitted well with first-order exponentially decaying curve (solid curve
corresponds to the numerical result and the dotted curve one is due to the fitted function;
The same convention is followed for the curves for r = 1). The approximate auto-correlation
function (2.34) for r = 1.25 is presented in the same figure by dashed curve, and it is close
to the numerical one. Figure 1 also shows that the preexponential factor for non-Gaussian
noise (r = 1.25) is much greater compared to Gaussian noise even at very small τ (τ = 0.01).
It implies that the noise strength of white non Gaussian noise is larger than that of Gaussian
white noise. However, (2.1), (2.5), (2.6), and (2.32) lead to generalize the Fokker-Planck (2.11)
for colored non Gaussian noise if the noise behavior is not deviated largely from the Gaussian
characteristics. The generalize Fokker-Planck can be read as

∂ρ(U, t)
∂t

= −∂Fρ
∂U

+ εDeff
∂2ρ

∂U2
, (2.36)

where

Deff = c2
γ0kBT

τ2i
+
Dng

τ2ng
,

λU = −ap +ω2xb − bf − bη +
c

τi
f − γ0cp

τi
+

η

τng
.

λ = −b + 1
τng

,

c =
τi
(
λτng − 1

)
τng(λτi − 1)

.

(2.37)

Thus our present study with the above Fokker-Planck equation will lead to have
an exact result when both the internal and the external noises are the Ornstein-Uhlenbeck
noise. But the result will be approximate if the external colored noise is non-Gaussian one.
It would be close to the exact one as the non-Gaussian noise parameter approaches to



10 International Journal of Stochastic Analysis

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

r = 1

r = 1.25

t

〈η
(t
)η
(0
)〉

Figure 1: Plot of autocorrelation function (〈η(t)η(0)〉) versus t for the parameter setDe = 0.5 and τe = 0.01.

unity. Before leaving this part we would like to mention that the random force of internal
origin and damping are related through fluctuation-dissipation relation but the external
noise is independent of damping. Therefore the stationary state in the present problem is
a steady state one. In the next section we will discuss relaxation behavior in terms of entropy
production and entropy flux of an external force-driven steady state.

Keeping in mind all the above facts now we introduce the Shanon information
measure [65, 66]

S = −
∫
ρ(U, t) ln ρ(U, t)dU, (2.38)

which typically is not a conserved quantity. S in the above equation is called information
entropy. If one considers the Boltzmann constant as the information unit and identifies the
Shannon measure with the thermodynamic entropy, then the whole of statistical mechanics
can be elegantly reformulated by extremization of S, subject to the constraints imposed by
the a priori information one may possess concerning the system of interest.

In the next step we define the information entropy flux and entropy production using
(2.36) and (2.36). The time evolution of S with (2.36) can be written as

dS

dt
= −
∫
dU

[
−∂Fρ
∂U

+ εDeff
∂2ρ

∂U2

]
ln ρ. (2.39)

Performing partial integration of the right-hand side of the above (2.39) and then putting
usual boundary conditions (we consider the system with a finite phase space volume as
usually happens in reality. Hence there should be a well-defined boundary on which and
beyond the distribution function must be zero. We assume the derivatives of the distribution
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function at the boundary to vanish), one obtains the following form of entropy balance
equation:

dS

dt
=
∫
ρ
∂F

∂U
dU +Deff

∫
1
ρ

(
∂ρ

∂U

)2

dU. (2.40)

The first term in (2.40) has no definite sign while the second term is positive definitely,
because of positive definiteness of Deff. Then one can identify the first and the second terms
as entropy flux (SF) and entropy production (SP ), respectively:

SF =
∫
ρ
∂F

∂U
dU, (2.41)

SP = εDeff

∫
1
ρ

(
∂ρ

∂U

)2

dU. (2.42)

Thus the entropy flux defined here calculates the average of divergence of deterministic force
involved in the system, that is, it considers time evolution of the average of phase space
expansion or contraction rate by virtue of the deterministic force. But the entropy production
measures the rate of phase space expansion due to the random force. It is important to
note that (2.42) shows that the information entropy production is proportional to the Fisher
information with the proportionality constant,Deff. We then examine the connection between
the information entropy production and the phase space collapse of system at steady state.
In this state we have (for details we refer to [67])

SP = −SF = −
∫
ρ
∂F

∂U
dU = −divF∞ = −σ ′ +©(ε) > 0, (2.43)

in the limit ε 
 1.
Here σ ′

i is the Lyapunov exponent of the ith component of the phase space. Thus
information entropy production as defined by (2.42) is equal to the negativeness of the
Lyapunov exponent or equivalently to the rate of phase space volume contraction plus a
correction term vanishing as the noise strength goes to zero [67] at stationary state. It is
a link between thermodynamically inspired quantities and the quantities involved in the
underlying dynamics in phase space. At the same time this explains how finite phase space
volume is possible at long time in the presence of dissipative force. Furthermore, following
[67], the connection between the entropy production of irreversible thermodynamics and the
underlying dynamics in phase space for the Langevin description may be established.

Using the identity

∂2ρ

∂U2
=

∂

∂U

[
ρ
∂ ln ρst
∂U

]
+

∂

∂U

[
ρst

∂

∂U

ρ

ρst

]
, (2.44)
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in (2.36)we have

dS

dt
= −
∫
dU ln ρ

[
−∂Fρ
∂U

+ εDeff
∂

∂U

(
ρ
∂ ln ρst
∂U

)]

− εDeff

∫
dU ln ρst

∂

∂U

(
ρst

∂

∂U

ρ

ρst

)
+ εDeff

∫
dU

(
∂

∂U
ln

ρ

ρst

)2

,

(2.45)

where ρst is the stationary solution of the Fokker-Planck (2.36). Here it is to be noted
that the first, second, and third integrals in (2.45) are of zeroth, first, and second order,
respectively, with respect to the deviation from equilibrium. Doing partial integration of the
above equation, one obtains

dS

dt
= ∇ · Ft + εDeff

∫
dUρ

[
−∂ ln ρst

∂U

∂ ln ρst
∂U

+ 2
∂ ln ρ
∂U

∂ ln ρst
∂U

]

+ εDeff

∫
dU

(
∂

∂U
ln

ρ

ρst

)2

.

(2.46)

In the above new decomposition of the time evolution of information entropy the first
term has no definite sign and contains, in principle, contributions of all orders in the
deviation from equilibrium. But the third term is both positive and of second order in the
deviation from equilibrium, thereby fulfilling the principal condition required for entropy of
irreversible process. Thus it is analogous to the entropy production production of irreversible
thermodynamics and we represent it as

SP ′ = εDeff

∫
dU

(
∂

∂U
ln

ρ

ρe

)2

. (2.47)

We call it information entropy production which is due to irreversibility in the relaxation
process. In the stationary state these two terms are related as follows:

SP ′ = −∇ · F∞ − (terms of 0th and 1st order in deviation from equilibrium
)
. (2.48)

Using (2.43) in the above equation we have

SP ′ = −σ ′ − (terms of 0th and 1st order in deviation from equilibrium
)
. (2.49)

This is the required connection between entropy production of irreversible process and phase
space dynamics.

To find the explicit time dependence of the above quantities we then search for Green’s
function or conditional probability solution [4, 68–70] for the system atU at time t given that
it had the value at U′ at t = 0. This initial condition may be represented by the δ-function

δ
(
U −U′) = lim

ε1 →∞

√
ε1
π

exp
[
−ε1
(
U −U′)2]. (2.50)
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√
ε1/π is the normalization constant. We now look for a solution of (2.36) of the form

ρ
(
U, t | U′, 0

)
= exp[G(t)], (2.51)

where G(t) = (−1/(σ(t)))(U − α(t))2 + ln ν(t).
We will see that by suitable choice of α(t), σ(t), and ν(t) one can solve (2.36) subject to

the initial condition

δ
(
U −U′) = ρ

(
U, 0 | U′, 0

)
= lim

ε1 →∞

√
ε1
π

exp
[
−ε1
(
U −U′)2]. (2.52)

Comparing (2.51) with (2.52) and G(0) we have σ(0) = limε1 →∞1/ε1, α(0) = U′, ν(0) =
limε1 → 0

√
ε1/π .

If we put (2.51) in (2.36) and equate the coefficients of equal powers of U, we obtain
after some algebra

σ̇(t) = −2λσ(t) + 4εDeff,

α̇(t) = −λα(t),
1

ν(t)
ν̇(t) = − 1

2σ(t)
σ̇(t).

(2.53)

The relevant solutions of σ(t) and α(t) for the present problem which satisfy the initial
conditions above are given by

σ(t) =
2De

λ

(
1 − exp(−2λt)) + σ(0) exp(−2λt), (2.54)

α(t) = α(0) exp(−λt). (2.55)

Now making use of (2.51) in (2.41), (2.42), and (2.47) we finally obtain explicit time
dependence of the entropy flux (SF) and the entropy production (SP ) having all order
contribution with respect to deviation from equilibrium and the entropy production (S′

P )
due to irreversibility in the process as

SF = −λ, (2.56)

SP =
2εDeff

σ(t)
=

2εDeff

2εDeff/λ + (σ(0) − 2εDeff/λ) exp(−2λt)
] , (2.57)

S′
P =

1
2εDeffσ

[
2λ2σα2 + λ2σ2 − 4λσεDeff + 4D2

eff

]
. (2.58)
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Equation (2.56) describes how phase space contraction rate is affected by ω, τi, and damping
strength γ0. Now we consider (2.57). Since the width of the distribution function σ increases
with time, the information entropy production and the Fisher information decrease towards
a stationery value (λ). At small width of the distribution function, the random force has
a strong role to expand the phase space against the deterministic force and therefore the
entropy production (the phase space expansion rate) is the highest during the start of
motion of Brownian particle. We have demonstrated it in Figure 2. At short time the entropy
production is comparatively higher for external Gaussian noise than non-Gaussian one. This
is because of greater effective diffusion coefficient of the former than the latter as c in (2.20)
is smaller for non Gaussian noise due to larger effective noise correlation time (τng). To
be mentioned here is the entropy production due to irreversibility (S′

P also monotonically
decreases to the limiting value). However, the relaxation time solely depends on structure of
the effective damping constant λ which depends on characteristics of dynamical system as
well as internal thermal noise and is independent of the properties of external noise. We now
note that (2.56), and (2.57) satisfies the stationary condition as follows:

dS

dt
= SF + SP = 0, (2.59)

since at long time

SP = λ. (2.60)

2.2. Relaxation of Small External Force-Driven Equilibrium State to
a Steady State

It is now interesting to examine the time dependence of entropy flux and production during
the relaxation of small external force-driven steady state. To this end we consider the constant
drift fe in (2.5) due to external force so that the total drift in (2.12) now becomes

F = F0(U) + hF1, (2.61)

where F0 = −λU, F1 = bfe, and h is the smallness parameter. When h = 0, ρ = ρst, ρst is
the stationery solution in absence of F1. The deviation of ρ from ρst in presence of nonzero
small h can be explicitly taken into account once we make use of the identity for the diffusion
term (2.44). Then for the above definition of the deterministic force the Fokker-Planck (2.36)
becomes

∂ρ

∂t
= − ∂

∂U

[(
F0 − ε2Deff

∂ ln ρst
∂U

)
ρ

]
− h

∂

∂U

(
F1ρ
)
+ εDeff

∂

∂U

(
ρst

∂

∂U

ρ

ρst

)
. (2.62)

Using the above equation one can write the rate of change of information entropy for the
thermosttaed system [67] as

dS

dt
= h2

∫
dUδρdivF1 + h2

∫
dU

(
F1

∂ ln ρst
∂U

)
+ εDeff

∫
dU

(
∂

∂U
ln

ρ

ρst

)2

, (2.63)
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Figure 2: Plot of (SP ) versus time using (2.57) for the parameter set γ0 = 1.0, σ(0) = 0.25, α(0) = 1.0, ω = 0.5,
kBT = 0.25, De = 0.5, and τi = τe = 1.0.

where hδρ = ρ − ρst. Comparing (2.63) with (2.47) one can easily identify that the third term
as the entropy production SP ′ of irreversible process and the remaining terms correspond to
the entropy flux like quantity

SF ′ = h2
∫
dUδρdivF1 − h2

∫
dU
(
F1

∂ ln ρst
∂U

)
. (2.64)

Here the first term presents the rate of phase space volume contraction to the second order,
whereas the second one can be read as the average of the work per unit time of the external
forcing acting (tangentially) along the motion. In the steady state, we have from (2.63)

SP ′ = −SF ′ . (2.65)

Thus the above equation establishes a connection between thermodynamically inspired
quantities of an irreversible process and phase space dynamics.

In the next step we use the following time-dependent solution of (2.62) as before to
find the explicit time dependence of S′

P and S′
F :

ρ = N1 exp

[
− (U − αh(t))2

σ(t)

]
, (2.66)

where N1 is the normalization constant and σ(t) is obtained from (2.54). The expression for
αh(t) is given by

αh(t) =
F1

λ
+
(
αh(0) − F1

λ

)
exp[−λt]. (2.67)
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Now for the distribution function (2.66) we have

S′
P =

1
2εDeffσ

[
2λ2σα2

h + λ2σ2 − 4λσεDeff + 4εD2
eff

]
, (2.68)

S′
F = −λαhF1

εDeff
. (2.69)

Thus the above equations describe the time dependence of information entropy production
and flux due to irreversibility in the process in the presence of nonequilibrium constraint in a
unified scheme for both internal and external noises-driven systems. We now explore explicit
dependence of the above thermodynamically inspired quantities on time and properties of
the noise. First, in Figure 3 the variation of S′

P with time is plotted. It shows that the entropy
production first decreases with time and then passes through the minimum and finally
reaches the following steady state value:

S′
P =

b2f2
e

εDeff
= −S′

F (2.70)

for external Gaussian noise (solid curve). But dashed and dotted curves in this figure imply
that the minimum is going to disappear and the new steady state is becoming very close to
the original one which is driven by the non equilibrium constraints as the noise behavior
deviates more from the Gaussian characteristics.

These observations can be explained by simplifying (2.68) in the limit σ(0) → 0 and
αh(0) → 0 as

S′
P =

[
F2
1

(
1 − 2e−2λt + 2e−3λt − e−4λt

)
+ λDeffe

−4λt]
εDeff

(
1 − e−2λt

) . (2.71)

First term in the numerator in (2.71), which vanishes as t → 0, implies that the external
force increases entropy production while the second term corresponds to the decrease of
entropy production with time due to dissipative action. Because of these two opposite effects
a system thrown away from a steady state by a small external force relaxes to a new steady
state passing through a minimum in entropy production with time.

We now consider long time behavior of (2.68), and (2.69). At t → ∞ (2.68), and (2.69)
reduce to the following equations:

S′
P =

b2f2
e

εDeff
, (2.72)

S′
F = −SP ′ . (2.73)

Equation (2.72) describes why S′
P is vanishingly small for external non-Gaussian noise

(NGN) at long time for the given parameter set in Figure 3. In the effective non equilibrium
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Figure 3: Plot of (S′
P ) versus time using (2.68) for the parameter set γ0 = 1.0, σ(0) = 0.25, α(0) = 1.0, ω = 0.5,

kBT = 0.25, De = 0.5, τi = τe = 1.0 and, fe = 0.5.

constraint term (F1 = b2f2
e ) b is smaller for NGN compared to Gaussian noise because τng

is greater for the former than the latter. However, the above (2.72) implies that the system
with higher effective diffusion constant is more robust against the given non equilibrium
constraint and the entropy production decreases monotonically with increase of temperature
of the thermal bath. It is demonstrated in Figure 4. It shows that the rate of decrease is higher
for external Gaussian noise compared to non-Gaussian. The change of temperature is less
effective in the case of the latter since the effective noise strength for NGN is higher than GN.
Now we check whether the above results reduce to the standard result or not. In the absence
of external noise (c = 1, Deff = γ0kBT/τ

2
i , and b = (1 − λτi)/τi) (2.72) becomes

S′
P =

(1 − λτi)f2
e

εγ0kBT
. (2.74)

It implies that the external force is not effective to drive the equilibrium state to a new steady
state if λτi = 1. However, in the Markovian limit (τi → 0) (2.74) reduces to

S′
P =

f2
e

εγ0kBT
, (2.75)

which is the standard result for entropy production of irreversible processes for a Brownian
particle in thermodynamically closed system.
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Figure 4: Plot of (S′
P ) versus kBT using (2.68) for the parameter set γ0 = 0.5, σ(0) = 0.25, α(0) = 1.0, ω = 0.5,

t = 10, De = 0.5, τi = τe = 1.0, and fe = 1.0.

Using (2.72) and (2.73) one can have another important check also on the above results
through

dS

dt
= S′

P + S′
F = 0. (2.76)

We now demonstrate the variation of S′
P as a function of damping strength γ0 in Figure 5

in the presence of internal non Markovian thermal bath and external noise. Solid and dotted
curves are corresponding to external colored Gaussian and non Gaussian noises, respectively.
This convention has been followed for the rest of the figures. Both the curves in Figure 5 show
extremum behavior as a result of interplay of effective damping (λ), diffusion constant (Deff),
and noise correlation time. The entropy production becomes close to zero at the minimum
since b as well as effective non equilibrium constraint is vanishingly small. Thus for external
colored nonGaussian b becomes very small at larger damping strength compared to Gaussian
noise.

In Figure 6 we have presented how the entropy production depends on noise
correlation time of internal colored noise in the presence of external colored noise. There is
both maximum and minimum for external Gaussian noise. But the minimum disappears for
non Gaussian noise. At certain critical value of τi, the product λτng may be equal to unity, and
then the effective non equilibrium constraint (F1 = bfe) becomes very small and the external
force is not able to drive the stationary state to a new steady state and the minimum appears.
The maximum appears when λτng 
 1.

In the next step, we have demonstrated the variation of the entropy production as a
function of τi (which is related to correlation time of external noise) in Figure 7. It shows
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Figure 5: Plot of (S′
P ) versus damping strength γ0 using (2.68) for the parameter set t = 10.0, σ(0) = 0.25,

α(0) = 1.0, ω = 0.5, kBT = 0.5, De = 0.5, τi = τe = 0.5, and fe = 1.0.
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Figure 6: Plot of (S′
P ) versus internal noise correlation time τi using (2.68) for the parameter set γ = 0.5,

σ(0) = 0.25, α(0) = 1.0, ω = 0.5, kBT = 0.5, De = 0.5, t = 10.0, τe = 0.5, and fe = 1.0.

that S′
P first decreases with τi and then passes through the minimum and finally reaches the

following limiting value for external Gaussian noise:

S′
P =

λ2f2
e

λ2εγ0kBT/(λτi − 1)2
, (2.77)
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Figure 7: Plot of (S′
P ) versus τe using (2.68) for the parameter set γ = 0.25, σ(0) = 0.25, α(0) = 1.0, ω = 0.5,

kBT = 0.5, De = 0.5, τi = 0.5, t = 10.0, and fe = 1.0.
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Figure 8: Plot of (S′
P ) versus r using (2.68) for the parameter set γ = 0.25, σ(0) = 0.25, α(0) = 1.0, ω = 0.5,

kBT = 0.5, De = 0.5, τi = 0.5, t = 10.0, and fe = 1.0.

since at large τe, b and Deff can be approximated as b = −λ and Deff = λ2γ0kBT/(λτi − 1)2.
However, the minimum appears as a result of similar kind of interplay as mentioned for
Figure 6. But the minimum disappears for external non Gaussian noise and S′

P monotonically
increases to the above limiting value.

Finally, in Figure 8 we have plotted the entropy production versus r (which accounts
the deviation of noise behavior from Gaussian characteristic). It shows that at some critical
value of r S′

P passes through a minimum as result of interplay of the effective damping and
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τng since τng depends on r. Thus the effectiveness of the nonequilibrium constraint depends
on the deviation of noise properties from Gaussian characteristics.

3. Conclusion

In conclusion, we have considered the relaxation behavior of a given nonequilibrium state
of the thermal broad band noise-driven harmonic oscillator in presence and absence of
nonequilibrium constraint. Here we have studied the time dependence of information
entropy production and entropy flux based on the Fokker-Planck description of noise process
and the entropy balance equation. It includes the following points.

(1) Entropy production monotonically decreases with time to a stationary value in the
absence of the non equilibrium constraint (NEC). But in the presence of NEC it first
decreases with time and then increases passing through a minimum and finally
reaches a limiting value for external Gaussian noise for a given parameter set. But
the minimum is going to disappear as the noise behavior deviates more from the
Gaussian characteristics.

(2) It is difficult for the non equilibrium constraint to drive the equilibrium state to
a steady state as the temperature of the thermal bath increases and the rate of
decreases of the entropy production with temperature is fast for external colored
Gaussian noise compared to non Gaussian one.

(3) In the presence of NEC we have observed extremum behavior in the variation
of entropy production as function of damping strength, noise correlation, non
Gaussian parameter (which determine the deviation of external noise behavior
from Gaussian characteristic), respectively. Thus the properties of noise process are
important for entropy production.

To be mentioned here is that our present calculations are, of course, restricted to
the harmonic oscillator (HO). However, insights of this important system usually have a
wide impact, as the HO constitutes much more than a mere example. In general Kramers’
problem on barrier crossing dynamics is studied analytically by linearization of the nonlinear
potential energy function around the fixed points [5]. Qualitatively one can say that greater
entropy production of a system implies that the barrier crossing rate is larger since the
former increases with increase of phase space expansion rate. Thus we hope that our present
study will be useful for the understanding of the various phenomena in colored noise-driven
thermodynamically closed systems. Another point to be mentioned is that one can generalize
the present study considering more complex cases, such as a thermal environment having
non exponential decaying memory kernel. Also one can generalize it to have an exact study
for external colored nonGaussian noise.

Appendix

More about the Linear Transformation

Here we have shown that the linear transformation (2.10) used in Section 2 can also be
applied directly to the Langevin dynamics described by (2.1), (2.5), (2.6), and (2.7) to derive



22 International Journal of Stochastic Analysis

the Fokker-Planck equation (2.11). Multiplying a, b, c in both sides of (2.1), (2.5), and (2.6),
respectively, and then adding all the equations (2.1), (2.5), (2.6), and (2.7) we have

dU

dt
= −λU + cζ(t) + ξ(t). (A.1)

This is the Langevin equation of motion corresponding to the Fokker-Planck equation (2.11).
The above equation implies that (2.1), (2.5), (2.6), and (2.7) are the projection of U. In the
weak noise limit it becomes

dU

dt
= −λU. (A.2)

The solution of this equation is

U(t) = U(0) exp(−λt). (A.3)

The effective damping constant λ in the above equation is finite for the finite value of ω, τi,
and γ0, and it does not correspond to a particular eigenvalue of the matrix formed by the
deterministic parts in the right-hand side of (2.1), (2.5), (2.6), and (2.7). Equations (2.1), (2.5),
(2.6), and (2.7) can be written in matrix notation as follows:

dA

dt
= HA(t) + R(t), (A.4)

where

A =

⎛
⎜⎜⎜⎜⎜⎝

x

p

f

η

⎞
⎟⎟⎟⎟⎟⎠

, H =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0

−ω2 0 1 1

0 γ0/τi −1/τi 0

0 0 0 −1/τe

⎞
⎟⎟⎟⎟⎟⎠

,

R(t) =

⎛
⎜⎜⎜⎜⎜⎝

0

0

cζ(t)

ξ(t)

⎞
⎟⎟⎟⎟⎟⎠

.

(A.5)

The above discussion implies that λ does not correspond to a particular eigenvalue of the
matrix H. However, we now come back to (A.3). It implies that U(t) is finite at a finite time
t, and it is not the slow variable of the original dynamics since it satisfies the initial condition
taking contribution of all the variables of the phase space and λ is not the smallest eigenvalue
of the matrix H. Thus U in (A.3) considers contribution from all the variables at arbitrary
time. Hence the linear transformation (2.10) being used to reduce the Fokker-Planck equation
(2.9) into (2.11) works at any time.
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