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On a weakly Blackwell space we show how to define a Markov chain approximating problem,
for the target problem. The approximating problem is proved to converge to the optimal reduced
problem under different pseudometrics.

1. Introduction

A target problem (TP) is defined as a homogeneous Markov chain stopped once it reaches
a given absorbing class, the target. Our purpose is to only use the necessary information
relevant with respect to the target and in consequence to reduce the available information. A
new Markov chain, associated with a new equivalent but reduced matrix is defined. In the
(large) finite case, the problem has been solved for TPs: in [1–3], it has been proved that any
TP on a finite set of states has its “best target” equivalent Markov chain. Moreover, this chain
is unique and there exists a polynomial time algorithm to reach this optimum.

The question is now to find, in generality, an ε-approximation of the Markov problem
when the state space is measurable. The idea is to merge into one group the points that
ε-behave the same with respect to the objective and, at the same time, to keep an almost
equivalent Markov chain, with respect to the other “groups”. The construction of these
groups is done through equivalence relations. Each group will correspond to a class of
equivalence. In fact, there aremany othermathematical fields where approximation problems
are faced by equivalences. For instance, in integration theory, we use simple functions, in
functional analysis, we use the density of countable generated subspaces, and, in numerical
analysis, we use the finite elements method.

In this paper, the approximation is made by means of discrete equivalences, which
will be defined in the following. We prove that the sequence of approximations tends to
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the optimal exact equivalence relation defined in [1–3], when we refine the groups. Finer
equivalence will imply better approximation, and accordingly the limit will be defined as a
countably generated equivalence.

Under a very general Blackwell-type hypothesis on the measurable space, we show
that it is equivalent to speak on countably generated equivalence relationships or on
measurable real functions on the measurable space of states. If we do not work under this
framework of Blackwell spaces, we can be faced to paradoxes, as it is explained by [4], of
enlarging σ-algebras, while decreasing the information available to a decision-maker. The ε-
approximation of theMarkov chain depends always upon the kind of objective. In [5], Jerrum
deals with ergodic Markov chains. His objective is to approximate the stationary distribution
by means of a discrete approximating Markov chain, whose limit distribution is close in a
certain sense to the original one. However, unlike our following work, his purpose is not the
explicit and unified construction of the approximating process. In this paper, we focus on
the target problem. We solve extensively the TP, where the objective is connected with the
conditional probability of reaching the target T , namely P(Xn ∈ T | X0 = x), for any n, x. This
part extends the work in [1–3].

2. Main Results

Let (X,X) be a measurable space, equipped with a assumption (A0) that will be explained
when necessary. Let P be any transition probability on (X,X). A homogeneous Markov
process (Xn)n≥0 is naturally associated to (X,X, P). In the target problem, we are interested
in the probabilities of reaching the target class T within n steps, namely in

P({Xn ∈ T} | X0 = x) for any n and x. (2.1)

The set T is a priori given, and does not change through the computations. T is supposed to
be an absorbing set lying inX.

Definition 2.1. Let (X,X) be a measurable space and let T ∈ X. Let F ⊆ X be a sub σ-algebra
ofX such that T ∈ F. A function P : X × F → [0, 1] is a transition probability on (X,F) if

(i) P(x, ·) is a probability measure on F, for any x ∈ X,

(ii) P(·, F) is F-measurable, for any F ∈ F.
Given a transition probability P on (X,F), we denote by Pn the transition probability on
(X,F) given inductively by

P 1 = P ; Pn+1(x, F) =
∫
X

P
(
x, dy

)
Pn
(
y, F
)
. (2.2)

We denote by TrP(X,F) the set of the transition probabilities on (X,F). We denote by
TPX = ∪F⊆XTrP(X,F) the set of all transition probabilities on X that we equip with a suitable
pseudometric d:

d(P1, P2) = sup
x

∑
n

βn
∣∣Pn1 (x, T) − Pn2 (x, T)∣∣, with β ∈ (0, 1). (2.3)
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It is such that

d(P1, P2) = 0 ⇐⇒ Pn1 (x, T) = P
n
2 (x, T), for any n and x. (2.4)

This pseudometric, which is compatible with T , allows to approximate P by simpler kernels.

A target problem is defined through a transition probability P ∈ (TPX, d). More
precisely, we have the following definition.

Definition 2.2. A target problem is a quadruple (X,F, T, P), where P ∈ TrP(X,F) and T ∈ F.
A simple target problem is a target problem where F is generated by an at most countable
partition of X.

The main purpose of this paper is to approximate any target problem by a sequence
of simple target problems in the spirit of the construction of the Lebesgue integral, where the
integral of a function f is approximated by the integral of simple functions fn =

∑
i∈I ciICi .

The strategies will play the role of the approximating subdivisions (Ci)i∈I .

Definition 2.3. We call strategy Str a sequence of maps (Strn)n≥0 from the set of the target
problems to the set of the simple target problems. A strategy is a target algorithm if it is built
as in Section 3.

In the “Lebesgue example” given above, the strategy is related to the “objective” of the
problem (the integral) and the pseudometric d(f, fn) =

∫ |f − fn|dx is required to go to 0 as
n goes to infinity. Here also, a strategy is meaningful if d(P, Strn(P)) tends to 0 as n goes to
infinity. Moreover, for what concerns applications, given a target problem (X,X, T, P) a good
strategy should not need the computation of Pn, n > 1. The first main result of this paper
states that the target algorithms are always good strategies.

Theorem 2.4. For any target problem (X,F, T, P) and any target algorithm Str,

lim
n→∞

d(P, Pn) = 0, (2.5)

where (X,Fn, T, Pn) = Strn(X,F, T, P).

Two questions immediately arise: does the sequence (Strn(P))n≥0 have a limit (and in
which sense)? Moreover, since d is defined as a pseudometric, does this limit depend on the
choice of Str?

The extension of the concept of compatible projection given in [1–3] to our framework
will enable us to understand better the answer to these questions. A measurable set A/= ∅ of
a measurable space (X,X) is anX-atom if it has no nonempty measurable proper subset. No
two distinct atoms intersect. If the σ-field is countably generated, say by the sequence {An}
then the atoms of X are of the form ∩nCn where each Cn is either An or X \An.

Definition 2.5. An equivalence relationship π on a measurable space (X,X) is measurable
(discrete) if there exists a (discrete) random variable f : (X,X) → (R,BR) (BR denotes the
Borel σ-algebra), such that

xπy ⇐⇒ f(x) = f
(
y
)
, (2.6)
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and we denote it by π = πf . Let (X,F, T, P) be a target problem. A compatible projection is a
measurable equivalency πf such that T ∈ σ(f) and

P(x, F) = P
(
y, F
)
, ∀xπfy, ∀F ∈ σ(f). (2.7)

We say that π ⊇ π ′ if π corresponds to partitions finer than π ′. Finally, a compatible projection
π is said to be optimal if π ⊇ π ′, for any other compatible projection π ′.

Remark 2.6. This definition is well posed if

πf = πg ⇐⇒ σ
(
f
)
= σ
(
g
)
. (2.8)

Assumption (A0) ensures that the definition of measurable equivalency is indeed well posed.
This assumption will be stated and discussed in Section 4.

Theorem 2.7. If π = πf is a compatible projection for the target problem (X,F, T, P), then there
exists a target problem (X, σ(f), T, Pπ). such that Pπ(x, F) = P(x, F) for any F ∈ σ(f).

It is not said “a priori” that an optimal compatible projection must exist. If it is the
case, then this equivalence is obviously unique.

Theorem 2.8. For any target problem (X,F, T, P), there exists a (unique) optimal compatible
projection π .

To conclude the main results, let us first go back to the Lebesgue example. The simple
functions fn =

∑
i∈I ciICi are chosen so that σ(Ci, i ∈ I) increases to σ(f) and fn(x) → f(x).

The following theorem guarantees these two similar facts by showing the “convergence” of
any strategy to the optimal problem.

Theorem 2.9. Let Strn(X,F, T, P) = (X,Fn, T, Pn), with Str target algorithm and let π be the
optimal compatible projection associated to the target problem (X,F, T, P). Then

(i) Fn ⊆ Fn+1 for any n, and ∨nFn≥0 = Fπ ;

(ii) limnPn(x, F) = Pπ(x, F), for any (x, F) ∈ (X × ∪mFm).

Remark 2.10 (The topology top). In Theorems 2.4–2.9, we have proved the convergence
of (Pn)n to Pπ with respect to the pseudometric d. The pseudometric topology top is the
topology induced by the open balls Br(P) = {Q ∈ TPX : d(P,Q) < r}, which form a basis for
the topology. Accordingly, the previous theorems may be reread in terms of convergence of
Pn to P on the topological space (TPX,Top).

2.1. Connection with Weak Convergence

Given a strategy (X,Fn, T, Pn)n≥0, if we want to show a sort of weak convergence of Pn(x, ·) to
P(x, ·), for any x, we face the two following problems:

(i) each Pn(x, ·) is defined on a different domain (namely, on Fn),

(ii) we did not have required a topology on X.

We overcome the first restriction by introducing a new definition of probability convergence.
The idea is given in the following example.
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Example 2.11. Let Fn = σ({(i2−n, (i + 1)2−n], i = 0, . . . , 2n − 1}) be the σ-algebra on (0, 1]
generated by the dyadic subdivision. Suppose we know that νn : Fn → [0, 1] is the unique
probability on Fn s.t. for any i, νn((i2−n, (i + 1)2−n]) = 2−n. Even if νn is not defined on the
Borel sets of (0, 1], it is clear that in “some” sense, it must happen that νn → ν∗, where ν∗ is
the Lebesgue measure on the Borel sets of (0, 1]. Note that the cumulative function of νn is
not defined, and therefore a standard weak convergence cannot be verified.

In fact, we know that

νn

((
−∞,

i

2n

])
= νn
((

0,
i

2n

])
=

i

2n
, (2.9)

that is, in this case, as n → ∞, we can determine the cumulative function on a dense subset.
This fact allows to hope that νn → ν∗ in a particular sense.

Definition 2.12. Let (X,X, (Xn)n≥0) be a filtered space, and set X∞ = ∨n≥0Xn. Let νn : Xn →
[0, 1], n ≥ 1 and ν∞ : X∞ → [0, 1] be probability measures. One says that νn converges totally
to ν∞ on the topological space (X, τ) as n tends to infinity if νn

w→
τ
ν∞ (converges in weak sense

on (X, τ)), for any νn : X∞ → [0, 1], such that νn|Xn = νn. One writes νn
tot→
τ
ν∞.

Going back to the example, it is simple to check that νn
tot→

τ(0,1]
ν∗, where νn, ν∗ are

given in Example 2.11 and τ(0, 1] is the standard topology on (0, 1]. In fact, let (νn)n≥1 be
any extension of (νn)n≥1 to the Borel sets of (0, 1]. For any t ∈ (0, 1), we have by (2.9) that

t − 1
2n

≤ Fνn(t) ≤ t +
1
2n
, (2.10)

where Fνn is the cumulative function of νn, which implies the weak convergence of νn to ν∗
and, therefore, νn

tot→
τ(0,1]

ν∗.

For what concerns the topology on X, we will define the topological space (X, �P )
induced by the pseudometric dP associated to the target problem (X,F, T, P), and the
pseudometric d. In this way �P is only defined with the data of the problem. One may ask:
is this topology too poor? The answer is no, since it is defined by the pseudometric dP . In
fact, dP (x, y) < ε means that x and y play “almost the same role” with respect to T . A direct
algorithm which takes dP into account needs the computation of Pn at each step. In any case,
even if dP may not be computable, it defines a nontrivial interesting topology �P on X. As
expected, we have the following theorem.

Theorem 2.13. Let Strn(X,F, T, P) = (X,Fn, T, Pn), with Str target algorithm. Then, for any given
x,

Pn(x, ·) tot−→
�P

P(x, ·). (2.11)

3. The Target Algorithm

In this section, we introduce the core of the approximating target problem, namely a set of
strategies Str which solves the target problem.
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Given ameasurable space (X,X) and a target problem (X,F, T, P), the target algorithm
is built in the spirit of the exact one given in [1, 2], which starts from the largest classes T and
X \ T and then reaches the optimal classes according to a backward construction.

The target algorithm defines a strategy Str = (Strn)n≥0, where

Strn(X,F, T, P) = (X,Fn, T, Pn), (3.1)

and it consists of three steps:

(1) the choice of a sequence (∼εn)n≥1 of equivalences on the simplex defined on the unit
ball of 	1 with εn → 0;

(2) the definition of a filtration (Fn)n based on (∼εn)n≥1 where each Fn is generated by
a countable partition of X;

(3) the choice of a suitable measure μ and the definition of (Pn)n≥0.

3.1. Preliminary Results on Measurability and Equivalency and
the Choice of (∼εn)n≥1

Associated to each countably generated sub σ-algebra A ⊆ X, we define the equivalence
relationship πA induced by the atoms of A:

xπAy ⇐⇒ [x]A := ∩{A ∈ A : x ∈ A} = ∩{A ∈ A : y ∈ A} =: [y]A. (3.2)

Thus, if (An)n is a sequence of countably generated σ-algebras, then

π∨nAn = ∩nπAn . (3.3)

Now, the atoms of the σ-algebra F of each simple target problem (X,F, T,Q) are at
most countable, by definition. Then Q may be represented as a transition matrix on the state
set N. Each row of Q is a distribution probability on N (i.e., a sequence (pn)n≥1 in the simplex
S of 	1). The first step of the target algorithm is to equip Swith the 	1-norm and then to define
an ε-equivalence on S.

We will alternatively use both the discrete equivalencies and the countable measurable
partitions, as a consequence of the following result, whose proof is left to the appendices.

Lemma 3.1. Given a measurable space (X,X), there exists a natural bijection between the set of
discrete equivalencies on X and the set of the countable measurable partitions of it.

Let S	1 be the unit sphere in 	1 and S = {x ≥ 0} ∩ S	1 be the simplex on 	1. Let Ωn =
[0, 1], for any n, and τ be the standard topology on [0, 1]. Denote by B[0,1] the Borel σ-algebra
on [0, 1] generated by τ . We look at S as a subset of Π∞

n=1Ωn so that the Borel σ-algebra BS

induced on S is
⊗∞

n=1B[0,1] ∩ S.

Definition 3.2. ∼ε is an ε-equivalence on S if it is the product of finite equivalences on each
(Ωn,B[0,1]), and ‖p − q‖1 < ε whenever p∼εq.

Remark 3.3. The choice of the 	1-norm on S is linked to the total variation distance between
probability measures. This distance between two probability measures P andQ is defined by
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dTV(P,Q) = supA∈Ω|P(A) − Q(A)|. On the other hand, the total variation of a measure μ is
‖μ‖(Ω) = sup

∑
i |μ(Ai)|, where the supremum is taken over all the possible partitions of Ω.

As (P −Q)(Ω) = 0, we have that dTV(P,Q) = (1/2)‖P −Q‖; see [6]. To each p ∈ S corresponds
the probability measure P on N with P(i) = pi (and vice versa). In fact, p ∈ S implies pi ≥ 0
and
∑

i pi = 1. Therefore, since ‖p − q‖1 = ‖P −Q‖ = 2dTV(P,Q), we have

p∼εq =⇒ dTV(P,Q) <
ε

2
. (3.4)

Example 3.4. Define the ε-cut as follows: p∼εq ⇔ �pn/ε2−n� = �qn/ε2−n�, for all n, where �x�
denotes the entire part of x. ∼ε is an ε-equivalence on S. Indeed,

(i) for each n, define pn ∼nqn ⇔ �pn/ε2−n� = �qn/ε2−n�. Then ∼n is a finite equivalence
on Ωn and p∼εq ⇔ (pn ∼nqn), for all n,

(ii) for any p ∈ S

[
p
]
=
{
q ∈ S : π∼ε

(
q
)
= π∼ε

(
p
)}

=
∏
n

[⌊
2npn/ε

⌋
ε

2n
,

(⌊
2npn/ε

⌋
+ 1
)
ε

2n

) ⋂
S (3.5)

is measurable with respect to BS,

(iii) for all p∼εq,
∥∥p − q∥∥1 ≤

∑
n

ε2−n = ε. (3.6)

3.2. The Choice of (Fn)n≥0

The following algorithm is a good candidate to be a strategy for the approximating problem
we are facing. Given a sequence (∼εn)n≥1 of ε-equivalences on S, we define (Fn)n≥0 inductively.
Consider the equivalence classes given by Fn−1 and divide them again according to the next
rule. Starting from any two points in the same class, we check whether the probabilities to
attain any other Fn−1-classes are ε-the same. Mathematically speaking: we have the following
steps.

Step 0. F0 = σ(T) = {∅, T, X \ T,X}.

Step n. Fn is based on the equivalence Fn−1 and on ∼εn , inductively. Fn−1 is generated by a
countable partition of X, say (A(n−1)

i )i. We define, for any couple (x, y) ∈ X2,

(
xπny

)⇐⇒ (xπn−1y) ∧
((
P
(
x,A

(n−1)
i

)
i

)
∼εn
(
P
(
y,A

(n−1)
i

)
i

))
. (3.7)

Lemma 3.6 shows that πn is a discrete equivalency on (X,X), and therefore it defines Fn =
σ(X/πn) as generated by a countable partition of X.

Remark 3.5. The choice of the “optimal” sequence (∼εn)n≥1 is not the scope of this work. We
only note that the definition of ∼ε can be relaxed and the choice of the sequence (∼εn)n≥1 may
be done interactively, obtaining a fewer number of classes (A(n)

i )i at each step.



8 International Journal of Stochastic Analysis

Lemma 3.6. Let (X,F, T, P) be a target problem. (Fn)n≥0 defined as above, is a filtration on (X,F)
and for any n ∈ N, πn is a finite (and hence discrete) equivalency on (X,X).

Proof. The monotonicity of (Fn)n≥0 is a simple consequence of (3.7).
The statement is true for n = 0, since T ∈ X. For the induction step, let {A(n−1)

1 ,

A
(n−1)
2 , . . . , A

(n−1)
kn

} ∈ X be the measurable partition of X given by X/πn−1. The map h :

(X,X) → (S,B(S)) given by x �→ (P(x,A(n−1)
i ))i is therefore measurable. As ∼εn is a finite

equivalency on
∏kn

1 (Ωn,B[0,1]), the map π∼εn ◦h : (X,X) → (S/∼εn , 2S/∼εn ) is also measurable,
where π∼εn is the natural projection associated with ∼εn . Thus, two points x, y ∈ X are such
that

((
P
(
x,A

(n−1)
i

)kn
i=1

)
∼εn
(
P
(
y,A

(n−1)
i

)kn
i=1

))
(3.8)

if and only if their image by π∼εn ◦h is the same point of S/∼εn . It results that the new partition
of X built by πn is obtained as an intersection of the setsA(n−1)

i , 1 ≤ i ≤ kn—which formed the
πn−1-partition- with the counter-images of (

∏kn
i=1Ωi)/∼εn byπ∼εn ◦h. Intersections between two

measurable finite partitions of X being a measurable finite partition of X, we are done.

3.3. The Choice of μ and the Definition of (Pn)n≥0

Before defining (Pn)n≥0, we need the following result, which will be proved in Section 5.

Theorem 3.7. Let (πn)n≥0 be defined as in the previous section and let π∞ = ∩nπn. Then π∞ is a
compatible projection.

As a consequence of Theorems 2.7 and 3.7, a target problem (X,∨nFn, T, P∞) is well
defined. We intend to define Pn as the μ-weighted mean average of P∞ given the information
carried by Fn.

More precisely, let μ be a probability measure on (X,∨nFn) such that μ(F) > 0, for any
F ∈ Fn, F /= ∅ (the existence of such a measure is shown in Example 3.8).

For any F ∈ Fn, let YF be the ∨nFn-random variable such that YF(ω) = P∞(ω,F).
Define

Pn(x, F) = Eμ

[
YF | Fn

]
(x), ∀x ∈ X, ∀F ∈ Fn. (3.9)

Pn is uniquely defined on (X × Fn), the only μ-null set of Fn being the empty set. We claim
that Pn(x, ·) is a probability measure, for any x ∈ X.

We give in the following an example of themeasure μ that has been used in (3.9)which
justifies its existence.

Example 3.8. Let (Yn)n≥0 be a sequence of independent and identically distributed geometric
random variables, with PYi(j) = 1/2j , j ∈ N. Let An = σ(Y0, . . . , Yn) and set A = ∨An. There
exists a probability measure P on A such that

P
(∩ni=0{Yli = yi}) = PYl1

(
y1
) ⊗ · · · ⊗ PYln

(
yn
)
=

1
2
∑n

i=0 yi
, (3.10)
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and thus, P(A) > 0, for all A ∈ An,A/= ∅. Moreover, it follows that for any n,

A1 ∈ An, A2 ∈ σ(Yn+1), A1 /= ∅, A2 /= ∅,=⇒ P(A1 ∩A2) > 0. (3.11)

We check by induction that we can embed Fn intoAn, for any n ≥ 0. The required measure μ
will be the trace of P on the embedded σ-field ∨nFn.

For n = 0, define T �→ {Y0 = 1}, X \ T �→ {Y0 ≥ 2}. The embedding forms a nontrivial
partition, and therefore the restriction of P to the embedding of F0 defines a probability
measure on F0 with μ0(F) > 0 if F /= ∅.

For the induction step, suppose it is true for n. Given F(n)
i ∈ Fn, we have F(n)

i �→ A
(n)
i ,

where (A(n)
i )i is a nontrivial partition inAn and therefore the restriction of P to the embedding

of Fn defines a probability measure μn on Fn with μn(F) > 0 if F /= ∅.
Given F(n)

i , let H(n+1)
i := {F(n+1)

j : F(n+1)
j ⊆ F

(n)
i }. The monotonicity of πn ensures that

each F(n+1)
j will belong to one and only oneH(n+1)

i . Moreover, by definition of F(n+1)
j , we have

that

F
(n)
i = ∪

{
F
(n+1)
j : F(n+1)

j ∈ H(n+1)
i

}
. (3.12)

Since X/πn+1 is at most countable, we may order H(n+1)
i for any i. We have accordingly

defined an injective map X/πn+1 → N
2, where

F
(n+1)
j �−→ (i, k) ⇐⇒ F

(n+1)
j is the kth element in H

(n+1)
i . (3.13)

According to the cardinality ofH(n+1)
i , define the n + 1-embedding

F
(n+1)
j �−→ (i, k) �−→ A

(n+1)
j := A(n)

i ∩

⎧⎪⎨
⎪⎩
{Yn+1 = k} if k < #

{
H

(n+1)
i

}
,

{Yn+1 ≥ k} if k = #
{
H

(n+1)
i

}
.

(3.14)

By definition ofA(n+1)
j and (3.12), it follows that we havemappedFn+1 into a partition inAn+1.

Moreover, P(A(n+1)
j ) > 0 as a consequence of (3.11). The restriction of P to the embedding of

Fn+1 defines a probability measure on Fn+1 with μn+1(F) > 0 if F /= ∅. Note that μn+1 is by
construction an extension of μn to Fn+1 since by (3.14),

μn
(
F
(n)
i

)
=

∑
F
(n+1)
j ∈H(n+1)

i

μn+1
(
F
(n+1)
j

)
. (3.15)

Finally, the Carathéodory’s extension theorem ensures the existence of the required μ,
as μ(F) = μn(F), for any F ∈ Fn. Note that μ is just mapped to the trace of P on the embedded
F∞.

4. Blackwell

The problem of approximation is mathematically different if we start from a Markov process
with a countable set of states or with an uncountable one. Let us consider, for the moment, the
countable case: X is an at most countable set of the states and X = 2X is the power set. Each
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function on X is measurable. If we take any equivalence relation on X, it is both measurable
and identified by the σ-algebra it induces (see Theorem 4.6). This is not in general the case
when we deal with a measurable space (X,X), with X uncountable. In this section, we want
to connect the process of approximation with the upgrading information. More precisely, a
measurable equivalence π = πf defines both the partition X/π and the sigma algebra σ(f).
One wishes these two objects to be related, in the sense that ordering should be preserved.
Example 4.5 shows a paradox concerning πf and σ(f) when X is uncountable. In fact, we
have the following lemma.

Lemma 4.1. LetA1 ⊆ A2 be countably generated sub σ-algebras of a measurable space (X,X). Then
[x]A1

⊇ [x]A2
.

In particular, let f, g be random variables. If σ(f) ⊇ σ(g), then πf ⊆ πg .

Proof. See Appendix A.

The problem is that even if a partition is more informative than another one, it is not
true that it generates a finer σ-algebra, that is, the following implication is not always true for
any couple of random variables f and g:

πf ⊆ πg =⇒ σ
(
f
) ⊇ σ(g). (A0)

Then Lemma 4.1 is not invertible, if we do not require the further assumption (A0) on the
measurable space (X,X). This last fact connects the space (X,X)with the theory of Blackwell
spaces (see Lemma 4.3). We will assume the sole assumption (A0).

Example 4.2 (πf = πg � σ(f) = σ(g)). We give here a counterexample to assumption (A0),
where two random variables f, g generate two different sigma algebras σ(f)/=σ(g) with the
same set of atoms. Obviously, assumption (A0) does not hold. Let (X,BX) be a Polish space
and suppose BX � X. LetA ∈ X\BX and consider the sequence {An, n ∈ N} that determines
BX , that is, BX = σ(An, n ∈ N). Let A = σ(A,An, n ∈ N). BX � A. As a consequence of
Lemma A.3, there exist two random variables f, g such that BX = σ(f) and A = σ(g). The
atoms of BX are the points of X, and then the atoms of A are also the points of X, since
BX ⊆ A.

We recall here the definition of Blackwell spaces. A measurable space (X,X) is said
Blackwell if X is a countably generated σ-algebra of X and A = X whenever A is another
countably generated σ-algebra of X such that A ⊆ X, and A has the same atoms as X. A
metric space X is Blackwell if, when endowed with its Borel σ-algebra, it is Blackwell. The
measurable space (X,X) is said to be a strongly Blackwell space if X is a countably generated
σ-algebra of X and

(A1) A1 = A2 if and only if the sets of their atoms coincide, where A1 and A2 are
countably generated σ-algebras with Ai ⊆ X, i = 1, 2.

For what concerns Blackwell spaces, the literature is quite extensive. Blackwell proved
that every analytic subset of a Polish space is, with respect to its relative Borel σ-field, a
strongly Blackwell space (see [7]). Therefore, if (X,BX) is (an analytic subset of) a Polish
space and BX � X, then (X,X) cannot be a weakly Blackwell space (see Example 4.2).
Moreover, as any (at most) countable set equipped with any σ-algebra may be seen as an
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analytic subset of a Polish space, then it is a strongly Blackwell space. More connections and
examples involving Blackwell spaces, measurable sets and analytical sets in connection with
continuum hypothesis (CH) may be found in [8–11]. Finally, note that assumption (A0) and
assumption (A1) coincide, as the following lemma states.

Lemma 4.3. Let (X,X) be a measurable space. Then (A0) holds if and only if (A1) holds.

Proof. Lemma A.3 in Appendix A asserts that A ⊆ X is countably generated if and only
if there exists a random variable f such that A = σ(f). In addition, as a consequence
of Lemma 4.1, we have only to prove that (A1) implies (A0). By contradiction, assume
(A1), πf ⊆ πg , but σ(g)/⊆σ(f). We have σ(f, g)/=σ(f), and then πσ(f,g) /=πf by (A1) and
Lemma A.3. On the other hand, from (3.3), we have thatπσ(f,g) = πσ(f)∨σ(g) = πf∩πg = πf .

We call weakly Blackwell space a measurable space (X,X) such that assumption (A0)
holds. If (X,X) is a weakly Blackwell space, then (X,F) is a weakly Blackwell space, for
any F ⊆ X. Moreover, every strong Blackwell space is both a Blackwell space and a weakly
Blackwell space whilst the other inclusions are not true in general. In [12, 13], examples are
provided of Blackwell spaces which may be shown not to be weakly Blackwell. The following
example shows that a weakly Blackwell space need not be Blackwell.

Example 4.4 (weakly Blackwell � Blackwell). Let X be an uncountable set and X be the
countable-cocountable σ-algebra on X.X is easily shown to be not countably generated, and
therefore (X,X) is not a Blackwell space. Take any countably generated σ-field A ⊆ X, that
is, A = σ({Ai, i ∈ N}).

(i) Since each set (or its complementary) of X is countable, then, without loss of
generality, we can assume the cardinality of X \Ai to be countable.

(ii) Each atom B of σ(Ai, i ∈ N) is of the form

B =
⋂

i=1,2,...

Ci, where Ci = Ai or Ci = X \Ai, for any i. (4.1)

Note that the cardinality of the set A := ∪i(X \ Ai) is countable, as it is a countable union of
countable sets. As a consequence of (4.1), we face two types of atoms:

(1) for any i, Ci = Ai. This is the atom made by the intersections of all the uncountable
generators. This is an uncountable atom, as it is equal to X \A.

(2) exists i such that Ci = X \Ai. This implies that this atom is a subset of the countable
set A. Therefore, all the atoms (except X \ A) are disjoint subsets of the countable
set A and hence they are countable.

It follows that the number of atoms of A is at most countable. Thus, (X,A) is a strongly
Blackwell space, that is, (X,X) is a weakly Blackwell space.

Example 4.5 (Information and σ-algebra (see [4])). Suppose X = [0, 1], X = σ(Y, A) where
Y is the countable-cocountable σ-algebra on X and A = [0, 1/2). Consider a decisionmaker
who chooses action 1 if x < 1/2 and action 2 if x ≥ 1/2. Suppose now that the information
is modeled either as the partition of all elements of X, τ = {x, x ∈ X} and in this case the
decisionmaker is perfectly informed, or as the partition τ ′ = {A,X \ A}. If we deal with σ-
algebras as a model of information then σ(τ) = Y and σ(τ ′) = σ(A). The partition τ is more
informative than τ ′, whereas σ(τ) is not finer than σ(τ ′). In fact A /∈ Y and therefore if the
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decisionmaker uses σ(τ) as its structure of information, believing it more detailed than σ(τ ′),
he will never knowwhether or not the eventA has occurred and can be led to take the wrong
decision. In this case, σ-algebras do not preserve information because they are not closed
under arbitrary unions. However, if we deal with Blackwell spaces, any countably generated
σ-algebra is identified by its atoms and therefore will possess an informational content (see,
e.g., [14]).

The following theorem, whose proof is in Appendix B, connects the measurability of
any relation to the cardinality of the space and assumption (A0). It shows the main difference
between the uncountable case and the countable one.

Theorem 4.6. Assume (CH). Let (X,X) be a measurable space. The following properties are
equivalent:

(1) any equivalence relation π on X is measurable and assumption (A0) holds,

(2) (X, 2X) is a weakly Blackwell space,

(3) X is countable and X = 2X .

5. Proofs

The following theorem mathematically motivates our approximation problem: any limit of a
monotone sequence of discrete equivalence relationships is a measurable equivalence.

Theorem 5.1. For all n ∈ N, let πn be a discrete equivalency. Then π∞ = ∩nπn is a measurable
equivalency. Conversely, for any measurable equivalency π , there exists a sequence (πn)n≥0 of discrete
equivalencies such that π∞ = ∩nπn.

Proof. See Appendix A.

Proof of Theorem 2.7. Let π = πf be a compatible projection. We define

Pπ(x, F) := P(x, F), ∀x ∈ X, ∀F ∈ σ(f). (5.1)

What remains to prove is that Pπ ∈ TrP(X,X, σ(f)). More precisely, we have to show that
Pπ(·, F) is σ(f)-measurable, for all F ∈ σ(f). By contradiction, there exists F ∈ σ(f) such that
the random variable YF(ω) = Pπ(ω,F) is not σ(f)-measurable. Then σ(YF)/⊆σ(f), and hence
πYF/⊇πf by assumption (A0), which contradicts (2.7).

Proof of Theorem 3.7. As a consequence of Theorem 5.1, π∞ = πf , where σ(f) = ∨nFn. Define

P∞(x, F) := P(x, F), ∀x ∈ X, ∀F ∈ σ(f). (5.2)

Wewill prove that, for any F ∈ σ(f), P∞(·, F) is σ(f)-measurable and consequently π∞ will be
a compatible projection. This implies that there exists a measurable function hF : (R,BR) →
(R,BR) so that P∞(ω,F) = hF(f(ω)). Therefore, if xπfy, then P∞(x, F) = P∞(y, F), which is
the thesis.

We need to show that for any F ∈ σ(f) and t ∈ R, we have

H := {x : P(x, F) ≤ t} ∈ σ(f). (5.3)
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We first show that it is true when F ∈ Fn by proving that

H =
⋂
m>n

π−1
m πm(H), (5.4)

which implies that H ∈ σ(f). The inclusion H ⊆ ∩mπ−1
m πm(H) is always true. For the other

inclusion, let y ∈ ∩m>nπ−1
m πm(H). Letm > n; there exists xm ∈ H such that yπmxm. Therefore,

(3.7) and the definition of ∼εn imply P(y, F) ≤ P(xm, F) + εm ≤ t + εm, for any m > n. As
εm ↘ 0, we obtain that y ∈ H. Then (5.3) is true on the algebra Alg := ∪nFn.

Actually, let Fn ∈ Alg such that Fn ↗ F. We prove that (5.3) holds for F by showing
that

H = {x : P(x, F) ≤ t} =
⋂
n

{x : P(x, Fn) ≤ t} =:
⋂
n

Hn. (5.5)

Again, since Fn ⊆ F, then P(x, Fn) ≤ P(x, F) and therefore H ⊆ ⋂n Hn. Conversely, the set
∩nHn \H is empty since the sequence ofX-measurable maps P(·, F)−P(·, Fn) converges to 0:

P(·, F) − P(·, Fn) = P(·, F \ Fn) −→ P(·, ∅) = 0. (5.6)

Then (5.3) is true on the monotone class generated by the algebra Alg = ∪nFn, that is, on
σ(f).

Proof of Theorem 2.8. Given a target algorithm (X,Fn, T, Pn)n, let π∞ = πf be defined as in
Theorem 3.7. We claim that π∞ is optimal. Let ψg be another compatible projection and
let (X, σ(g), T, Pg) be the target problem given by Theorem 2.7. We are going to prove by
induction on n that

∀n ∈ N, Fn ⊆ σ(g). (5.7)

In fact, for n = 0 it is sufficient to note that F0 = σ({T}) ⊆ σ(g).
Equation (3.7) states that Fn = σ(Fn−1, hn), where hn is the discrete random variable,

given by Lemma 3.1, s.t.

xπhn
y

P x,A
(n−1)
i

i
∼

n
P y,A

(n−1)
i

i
.

(5.8)

Let k(n−1)i : X → [0, 1] be defined as k(n−1)i (x) = P(x,A(n−1)
i ). Then

X

hn
(k(n−1)

i )i∈N

S
n

S/ n

(5.9)
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Obviously, σ(hn) ⊆ σ(k(n−1)1 , k
(n−1)
2 , . . .). For the induction step, as A(n−1)

i ∈ Fn−1 ⊆ σ(g),
we have that Pg(·, A(n−1)

i ) is σ(g)-measurable, and therefore σ(k(n−1)i ) ⊆ σ(g). Then Fn =
σ(Fn−1, hn) ⊆ σ(Fn−1, k

(n−1)
1 , k

(n−1)
2 , . . .) ⊆ σ(g). Therefore σ(f) = ∨nFn ⊆ σ(g), which implies

π∞ ⊇ ψg by Lemma 4.1, and hence π∞ is optimal.

Corollary 5.2. π∞ does not depend on the choice of Str.

Proof. π∞ = ∩nπn is optimal, for all (πn)n≥0 = Str(P). The optimal projection being unique,
we are done.

Proof of Theorem 2.4. Let π∞ = πf be defined as in Theorem 3.7 and (X, σ(f), T, P∞) be given
by Theorem 2.7 so that P(x, F) = P∞(x, F) for any F ∈ σ(f). Then each Pn of (3.9) can be
rewritten as

Pn(x, F) =

∫
[x]n

P∞(x, F)μ(dz)

μ([x]n)
, ∀x ∈ X, ∀F ∈ Fn, (5.10)

where [x]n is the πn-class of equivalence of x and μ([x]n) > 0 since [x]n /= ∅.
Note that d(P, Pm) ≤ 2

∑
n β

n. Then, for any ε > 0, there exists anN so that
∑

n>N βn ≤
ε/2. Therefore we are going to prove by induction on n that

sup
x

|Pnm(x, T) − Pn(x, T)| −→ 0 as m tends to infinity, (5.11)

which completes the proof. If n = 1, then by definition of εm, since T ∈ Fm−1, we have that

|Pm(x, T) − P(x, T)| ≤
∫
[x]m

|P∞(z, T) − P(x, T)|μ(dz)
μ([x]m)

=

∫
[x]m

|P(z, T) − P(x, T)|μ(dz)
μ([x]m)

≤ εm
∫
[x]m

μ(dz)

μ([x]m)
= εm.

(5.12)

For the induction step, we note that

∣∣∣Pn+1m (x, T) − Pn+1(x, T)
∣∣∣ ≤∑

i

∣∣∣∣∣Pm
(
x,A

(m)
i

)
Pnm

(
A

(m)
i , T

)
−
∫
A

(m)
i

P(x, dz)Pn(z, T)

∣∣∣∣∣, (5.13)

where (A(m)
i )i is the partition of X given by πm. By induction hypothesis, for any ε̃ > 0,

|Pnm(z, T) − Pn(z, T)| ≤ ε̃ (5.14)
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form ≥ m0 large enough. Since [z]m = A(m)
i if z ∈ A(m)

i , it follows that

∫
A

(m)
i

P(x, dz)
∣∣∣Pnm
(
A

(m)
i , T

)
− Pn(z, T)

∣∣∣ ≤ ε̃
∫
A

(m)
i

P(x, dz). (5.15)

Equation (5.13) becomes

∣∣∣Pn+1m (x, T) − Pn+1(x, T)
∣∣∣ ≤ ε̃ +∑

i

Pnm

(
A

(m)
i , T

)∣∣∣Pm
(
x,A

(m)
i

)
− P
(
x,A

(m)
i

)∣∣∣

≤ ε̃ +
∑
i

∣∣∣Pm
(
x,A

(m)
i

)
− P
(
x,A

(m)
i

)∣∣∣.
(5.16)

On the other hand, by (5.10),

Pm
(
x,A

(m)
i

)
− P
(
x,A

(m)
i

)
=
∫
[x]m

P∞
(
z,A

(m)
i

)
− P
(
x,A

(m)
i

)
μ([x]m)

μ(dz). (5.17)

The definition of ∼εm+1 states that

∑
i

∣∣∣P∞
(
z,A

(m)
i

)
− P
(
x,A

(m)
i

)∣∣∣ ≤ εm+1 (5.18)

whenever z ∈ [x]m and therefore

∣∣∣Pn+1m (x, T) − Pn+1(x, T)
∣∣∣ ≤ ε̃ +

∫
[x]m

∑
i

∣∣∣P∞
(
z,A

(m)
i

)
− P
(
x,A

(m)
i

)∣∣∣ μ(dz)
μ([x]m)

≤ ε̃ + εm+1.

(5.19)

Since εm → 0 asm tends to infinity, we get the result.

Proof of Theorem 2.9. By (3.9) and Lemma 3.6, (Pn(·, F))n≥m is a martingale with respect to the
filtration (Fn)n≥m, for any F ∈ Fm. Then, if YF(x) = P(x, F) as in (3.9), we have that

Pn(x, F) −→
n→∞

Eμ

[
YF | ∨nFn

]
(x) = YF(x), for μ-a.e. x ∈ X, ∀F ∈ Fm. (5.20)

Let π∞ = πf be defined as in Theorem 3.7 and (X, σ(f), T, P∞) given by Theorem 2.7 so that
P(x, F) = P∞(x, F) for any F ∈ σ(f). Unfortunately, (5.20) is not enough to state that

Pn(x, F) −→
n→∞

P∞(x, F), for x ∈ X, ∀F ∈
⋃
m

Fm, (5.21)

even if σ(f) is countably generated (see, e.g., [15], for counterexample). In fact, Polish
assumption is assumed in [15] to guarantee (5.21).
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Here, we will deal with the specific properties of Pn and P∞ to deduce (5.21). Take
F ∈ Fm and n > m. By (5.10) and the definition of εn, since F ∈ Fn−1, we have, for any x ∈ X,
that

|Pn(x, F) − P(x, F)| ≤
∫
[x]n

|P∞(z, F) − P(x, F)|μ(dz)
μ([x]n)

=

∫
[x]n

|P(z, F) − P(x, F)|μ(dz)
μ([x]n)

≤ εn
∫
[x]n

μ(dz)

μ([x]n)
= εn

(5.22)

since the only μ-null set in Fn is the empty set. Then

Pn(x, F) −→
n→∞

P∞(x, F) (5.23)

for any x ∈ X and F ∈ ∪mFm.

5.1. Weak Convergence of Conditional Probabilities

Let the target problem (X,F, T, P) be given and let Str = (Strn)n, where Strn(X,F, T, P) =
(X, F̃n, T, P̃n) be a target algorithm. In order to prove Theorem 2.13, which states the total
convergence of the probability measure Pn(x, ·) towards P(x, ·), we proceed as follows:

(i) first, we define the topology �P on X;

(ii) then, we define a “natural” topology τStr on X associated to any target algorithm
(Strn)n. We prove in Theorem 5.4 the total convergence of (Pn)n≥0 to P∞, under this
topology;

(iii) then, we define the topology τP on X as the intersection of all the topologies τStr;

(iv) finally, we show Theorem 2.13 by proving that �P ⊆ τStr. The nontriviality of �P will
imply that of τP .

We introduce the pseudometric dP on X as follows:

dP
(
x, y
)
=
∑
n

βn
∣∣Pn(x, T) − Pn(y, T)∣∣. (5.24)

Now, let τStr be the topology generated by ∪nFn. C is a closed set if and only if C =
∩nCn, Cn ∈ Fn. In fact, if C ∈ Fn, for a given n, then C ∈ Fn+p, for any p and therefore C is
closed. (X, τStr) is a topological space.

Remark 5.3. Let us go back to Example 2.11. The topology defined by asking that the sets
in each Fn are closed is strictly finer than the standard topology. On the other hand, the
same example may be explained with left closed-right opened dyadic subdivisions, which
leads to a different topology that also contains the natural one. Any other “reasonable” choice
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of subdivision will lead to the same point: the topologies are different, and all contain the
standard one. In the same manner, we are going to show that all the topologies τStr contain
the standard one, �P .

Theorem 5.4. Let the target problem (X,F, T, P) and the target algorithm (X,Fn, T, Pn)n be given.
For any target algorithm Str,

Pn(x, ·) tot−→
τStr

P(x, ·), ∀x ∈ X. (5.25)

Proof. Denote by Pn any extension of Pn to ∨nFn. We have to check that lim supnPn(x,C) ≤
P(x,C), for any closed set C of Str and x ∈ X (see, e.g., [6]).

Let {Cn ∈ Fn}, with Cn ⊇ Cn+1 and C = ∩nCn (take, e.g., Cn as the closure of C in Fn).
Note that, since C ∈ ∨nFn, we have P(x,C) = P∞(x,C). But, Pn(x,C) − P∞(x,C) ≤

Pn(x,Cn−1) − P∞(x,C) = Pn(x,Cn−1) − P∞(x,C). Actually,

Pn(x,Cn−1) − P∞(x,C) =

⎛
⎜⎝Pn(x,Cn−1) − P∞(x,Cn−1)︸ ︷︷ ︸

I

⎞
⎟⎠ +

⎛
⎜⎝P∞(x,Cn−1) − P∞(x,C)︸ ︷︷ ︸

II

⎞
⎟⎠.

(5.26)

I → 0 as n tends to infinity, from the target algorithm and II → 0 as n tends to infinity, from
the continuity of the measure.

An example of a natural extension of Pn to Pn is given by

Pn(x, F) = Eμ

[
YF | Fn

]
(x), ∀x ∈ X, ∀F ∈ ∨nFn, (5.27)

where, for any F ∈ ∨nFn, YF is the ∨nFn-random variable such that YF(ω) = P∞(ω,F). As
mentioned for Pn, Pn(x, ·) is a probability measure, for any x ∈ X.

Corollary 5.5. For any fixed strategy Str(P), let Pn be as in Theorem 2.4. We have

Pn(x, ·) tot−→
τP

P(x, ·), (5.28)

for any given x.

In order to describe the topology τP , we will denote by [[F]]∗ the closure of a set F ⊆ X
in a given topology ∗. Note that the monotonicity of πn implies

[[F]]τStr =
⋂
n

[[F]]τStrn (5.29)

where τStrn is the (discrete) topology on X generated by Fn. Since τP is the intersection of all
the topologies τStr, we have

[[F]]τP ⊇ [[F]]τStr =
⋂
n

[[F]]τStrn , ∀F ∈ 2X, ∀Str. (5.30)
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Proof of Theorem 2.13. Let F be the closed set in �P so defined

F :=
{
y ∈ X : dP

(
y, x
) ≥ r}, (5.31)

that is, F is the complementary of an open ball in (X, dP ) with center x and radius r. If we
show that F ∈ τP , then we are done, as the arbitrary choice of x and r spans a base for the
topology �P .

We are going to prove

F = [[F]]τStr =
⋂
m

[[F]]τStrm , ∀Str, (5.32)

which implies [[F]]τP = F. It is always true that F ⊆ [[F]]∗; we prove the nontrivial inclusion
F ⊇ ∩m[[F]]τStrm . Assume that y ∈ [[F]]τStr . Now, y ∈ [[F]]τStrm , for anym, and then there exists
a sequence (ym)n≥0 with ym ∈ F such that yπmym, for anym. Thus, y ∈ ∩m[ym]m, where [x]m
is the πm-class of equivalence of x. Thus

Pnm
(
ym, T

)
= Pnm

(
y, T
)
, ∀m,n (5.33)

since Pm(·, T) is Fm-measurable. By Theorem 2.4, for any n ∈ N,
∣∣Pn(y, T) − Pnm(y, T)∣∣ + ∣∣Pnm(ym, T) − Pn(ym, T)∣∣ −→

m→∞
0. (5.34)

Now, letN be such that
∑∞

n=N βn ≤ ε/4 and take n0 sufficiently large s.t.

N∑
n=0

∣∣Pn(y, T) − Pnn0(y, T)
∣∣ + ∣∣Pnn0(yn0 , T) − Pn(yn0 , T)

∣∣ ≤ ε

2
. (5.35)

We have

dP
(
yn0 , y

)
=
∑
n

βn
∣∣Pn(y, T) − Pn(yn0 , T)∣∣

≤
N∑
n=0

∣∣Pn(y, T) − Pn(yn0 , T)∣∣ + 2
∞∑

n=N

βn

≤
N∑
n=0

(∣∣Pn(y, T) − Pnn0(y, T)
∣∣

+
∣∣Pnn0(y, T) − Pnn0(yn0 , T)

∣∣ + ∣∣Pnn0(yn0 , T) − Pn(yn0 , T)
∣∣)

+ 2
ε

4
≤ ε

2
+
ε

2
= ε,

(5.36)

and therefore

dP
(
x, y
) ≥ dP(x, yn0) − dP(yn0 , y) ≥ r − ε. (5.37)

The arbitrary choice of ε implies y ∈ F, which is the thesis.
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Appendices

A. Results on Equivalence Relations

In this appendix we give the proof of auxiliary results that connect equivalency with
measurability.

Proof of Lemma 3.1. Let π = πf be a discrete equivalency on X. Then X/π defines a countable
measurable partition of X. Conversely, let {A1, A2, . . .} be a countable measurable partition
on X. Define f : X → N s.t. f(x) = n ⇔ x ∈ An. Therefore f is measurable and π = πf is a
discrete equivalency on X.

Lemma A.1. Let f, g be two random variables such that g(x) < g(y) ⇒ f(x) < f(y). Then
σ(g) ⊆ σ(f).
Proof. Let t ∈ R be fixed. We must prove that {g ≤ t} ∈ σ(f). If {g ≤ t} or {g > t} are empty,
then we are done. Assume then that {g ≤ t}, {g > t}/= ∅ and define t∗ = sup(f({g ≤ t})). We
have the following two cases.

Case 1 (t∗ ∈ f({g ≤ t}) : ∃x∗ ∈ {g ≤ t} such that t∗ = f(x∗)). By definition of t∗, {g ≤ t} ⊆
{f ≤ t∗}. Conversely, let y ∈ {g > t}. Since g(x∗) ≤ t < g(y), then f(x∗) = t∗ < f(y), that is,
{g > t} ⊆ {f > t∗}. Then {g ≤ t} = {f ≤ t∗} ∈ σ(f).

Case 2 (t∗ /∈ f({g ≤ t}) : ∀x ∈ {g ≤ t} we have that f(x) < t∗). Then {g ≤ t} ⊆ {f < t∗}.
Conversely, let y ∈ {g > t}. Since ∀x ∈ {g ≤ t}g(y) > g(x), then f(y) > f(x), which implies
f(y) ≥ sup f({g ≤ t}) = t∗, that is, {g > t} ⊆ {f ≥ t∗}. Then {g ≤ t} = {f < t∗} ∈ σ(f).

The next lemma plays a central rôle. Its proof is common in set theory.

Lemma A.2. For all n ∈ N, let πn be a discrete measurable equivalency. Then there exists a random
variable f such that σ(f) = ∨nσ(X/πn).

Proof. Before proving the core of the Lemma, we build a sequence (gn)n∈N
of functions gn :

N
n → R that will be used to define the function f .

Take h : N ∪ {0} → [0, 1) to be the increasing function h(m) = 1 − 2−m and let (gn)n∈N

the sequence of function gn : N
n → R so defined:

g1(m1) = h(m1 − 1),

g2(m1, m2) = g1(m1) + h(m2 − 1)Δg1(m1),

...

gn+1(mn,mn+1) = gn(mn) + h(mn+1)Δgn(mn),

...

(A.1)

where, for all n, mn = (m1, . . . , mn) and

Δgn(mn) = gn(mn−1, mn + 1) − gn(mn−1, mn). (A.2)
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As a first consequence of the definition, note that for any choice of n and mn+1, it holds that

gn(mn−1, mn) ≤ gn+1(mn+1) < gn(mn−1, mn + 1) (A.3)

since h ∈ [0, 1). We now prove by induction on n1+n2 that for any choice of n1 ∈ N, n2 ∈ N∪{0}
and mn1+n2 , we have

gn1(mn1−1, mn1) ≤ gn1+n2(mn1+n2) < gn1(mn1−1, mn1 + 1). (A.4)

Equation (A.4) is clearly true for n1 +n2 = 1, since h is strictly monotone. The same argument
shows that (A.4) is always true for n2 = 0 and therefore we check it only for n2 > 0. We
assume by induction that (A.4) is true for n1 + n2 ≤ n and we prove it for n1 + n2 = n + 1. By
using twice the induction hypothesis, as n2 − 1 ≥ 0, we obtain

gn1(mn1−1, mn1) ≤ gn1+n2−1(mn1+n2−2, mn1+n2−1)

< gn1+n2−1(mn1+n2−2, mn1+n2−1 + 1)

≤ gn1(mn1−1, mn1 + 1).

(A.5)

Equation (A.4) is now a consequence of (A.3).
Now, we come back to the proof of the lemma. First note that, without loss of

generality, we can (and we do) require the sequence (πn)n∈N
to be monotone, by taking

the sequence π ′
n = ∩ni=1πi instead of πn. π ′

n is again a countable measurable equivalency
on X. In fact, by Lemma 3.1 we can read this statement in trivial terms of partitions: an at
most countable intersection of countable measurable partitions is still a countable measurable
partition. Moreover, by definition, ∨i=11nσ(X/πi) = ∨i=11nσ(X/π ′

i).
Let τn = X/πn be the increasing sequence of countable measurable dissections of X.

We are going to give a consistent inductive method of numbering the set of atoms of τn
to build the functions fn. Let τ1 = {A(1)

1 , A
(1)
2 , . . .} be any ordering of τ1. By induction, let

{A(n+1)
mn,1

, A
(n+1)
mn,2

, . . .} be the partition of the atom A
(n)
mn

∈ τn given by τn+1. Define, for any n ∈ N,

fn(x) = gn(mn) ⇐⇒ x ∈ A(n)
mn
. (A.6)

To complete the proof, we first show that σ(fn) = σ(X/πn), ∀n, and then we prove σ(f) =
σ(f1, f2, . . .) by proving that fn → f pointwise.

To prove that σ(fn) = σ(X/πn) we show that fn(x) = fn(y) ⇔ ∃mn : x, y ∈ A
(n)
mn

.
One implication is a consequence of the fact that fn is defined on the partition of X given by
X/πn = τn. For the converse, assume that x ∈ A

(n)
mn /=A

(n)
m′

n
� y and consider n1 := min{j ≤ n :

mj /=m′
j}. Thus mn1−1 = m′

n1−1 and, without loss of generalities,mn1 < m
′
n1 . By (A.4), we have

fn(x) = gn(mn) < gn1(mn1−1, mn1 + 1) ≤ gn1
(
m′

n1−1, m
′
n1

)
≤ gn
(
m′

n

)
= fn
(
y
)
. (A.7)

We are going to prove that σ(f) = σ(f1, f2, . . .).
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Proof of ⊆. The sequence (fn)n is monotone by definition and bounded by (A.4). Then ∃f :
fn ↑ f and thus σ(f) ⊆ σ(f1, f2, . . .).

Proof of ⊇. Let n be fixed, and take x, y ∈ X with fn(x) < fn(y). Then, for any h ≥ 0, τn ⊆ τn+h
implies x ∈ A

(n+h)
mn+h /=A

(n+h)
m′

n+h
� y. As above, consider n1 := min{j ≤ n : mj /=m′

j}. As fn(x) <

fn(y), we have mn1−1 = m′
n1−1 andmn1 < m

′
n1 . Again, by (A.4), for h > n1 + 1 − n,

fn+h(x) = gn+h(mn+h)

< gn1+1(mn1 , mn1+1 + 1) = α

< gn1(mn1−1, mn1 + 1)

≤ gn
(
m′

n

)
= fn
(
y
)
,

(A.8)

that is, ∀h, fn+h(x) < α < fn(y). As fl ↑ f , f(x) < f(y). Apply Lemma A.1 with g = fn to
conclude that σ(fn) ⊆ σ(f).

As a consequence of Lemma A.2, any countably generated sub-σ-algebra is generated
by a measurable equivalence π , as the following lemma states.

Lemma A.3. A ⊆ X is countably generated if and only if there exists a random variable f such that
A = σ(f).

Proof. ⇒ Let A = σ(A1, A2, . . .). Apply Lemma A.2 with X/πn = {An,X \An}.
⇐ Take a countable base B1, B2, . . . of BR and simply note that σ(f) = σ({f−1(B1),

f−1(B2), . . .}).

Proof of Lemma 4.1. Let x ∈ X be fixed. By hypothesis, A1 ⊆ A2. If A1 = σ(A1
1, A

1
2, . . .) then

A2 will be of the form A2 = σ(A1
1, A

2
1, A

1
2, A

2
2, . . .). Without loss of generality (if needed, by

choosing X \ Aj
n instead of Aj

n) we can require x ∈ A
j
n, for any n ∈ N and j = 1, 2. Then

[x]A2
= ∩n(A1

n ∩A2
n) ⊆ ∩nA1

n = [x]A1
.

The last part of the proof is a consequence of Lemma A.3 and of the first point, since

f−1({f(x)}) = [x]πf ⊆ [x]πg = g
−1({g(x)}), (A.9)

or, equivalently, f(x) = f(y) ⇒ g(x) = g(y) which is the thesis.

Proof of Theorem 5.1. Note that X/π∞ ⊆ X is countable and generated by ∪nX/πn. Then π∞ is
a measurable equivalency by Lemma A.3.

Conversely, we can use the standard approximation technique: if π = πf is
measurable, let fn = 2−n�2nf� for any n. Since fn are discrete random variables, πn are defined
through Lemma 3.1. By Lemma 4.1 and (3.3), the thesis πf = ∩nπn will be a consequence of
the fact that σ(f) = ∨nσ(fn).

σ(fn) ⊆ σ(f) by definition, which implies σ(f1, f2, . . .) ⊆ σ(f). Finally, as fn → f , we
have σ(f) ⊆ σ(f1, f2, . . .), which completes the proof.
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B. Proof of Theorem 4.6

Before proving the theorem, we state the following lemma.

Lemma B.1. Let (X,X) be a measurable space.

(1) If any equivalence relationship π onX is measurable, thenX = 2X and card(X) ≤ card(R).

(2) The converse is true under the axiom of choice.

Proof. (1) ⇒ (2). Let πI be the identity relation: xπIy ⇔ x = y. By hypothesis, there exists f
such that πI = πf , and thus f is injective. Then card(X) ≤ card(R). Now, take A ⊆ X and let
πA be the relation so defined:

xπAy ⇐⇒ {x, y} ⊆ A or
{
x, y
} ⊆ X \A. (B.1)

Since any equivalency is measurable, then there exists f : (X,X) → (R,BR) such that πA =
πf . But σ(f) = σ(A), which shows that A ⊆ X ⇒ A ∈ X, that is, X = 2X .

(2) ⇒ (1). Since card(X) ≤ card(R), there exists an injective function h : X → R. Let π
be an equivalence relationship on X, and define the following equivalence on R:

r1Rr2 ⇐⇒
(
{r1, r2} ⊆ h(X), h−1(r1)πh−1(r2)

)
or {r1, r2} ⊆ R \ h(X). (B.2)

By definition of R, if we denote by πR the canonical projection of R on R/R, then πR ◦h : X →
R/R is such that

πR ◦ h(x) = πR ◦ h(y)⇐⇒ xπy. (B.3)

The axiom of choice ensures the existence of a injective map g : R/R → R. Then f := g ◦πR ◦
h : X → R is such that π = πf . f is measurable since X = 2X .

Proof of Theorem 4.6. (1) ⇒ (2). By Lemma B.1 and assumption (A0), (X, 2X) is weakly
Blackwell.

(2) ⇒ (3). Assume X is uncountable. By CH, exists Y ⊆ X s.t. (i.e., Y is in
bijection with R via g1). Take a bijection \{0}. Then the map

g(x) =

⎧⎨
⎩
g2
(
g1(x)

)
if x ∈ Y,

0 if x ∈ X \ Y,
(B.4)

is a bijective map from {Y, {X \ Y}} to R. Equip R with the Borel σ-algebra BR and let A1 =
g−1(BR). A1 is countably generated and its atoms are all the points in Y and the set X \ Y .
Now, take a nonBorel setN of the real line. A2 = g−1(σ(BR,N)) is also countably generated,
A1 � A2 and its atoms are all the points in Y and the set X \ Y , too. Since A1 ⊆ 2X and
A2 ⊆ 2X , (X, 2X) is not a weakly Blackwell space by Lemma 4.3.

(3) ⇒ (1). Since X is countable, then X/π is. Therefore, Lemma 3.1 ensures that any
equivalenceπ is measurable, sinceX = 2X . Finally, just note that each countable set is strongly
Blackwell. And thus Lemma 4.3 concludes the proof.
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