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In (Chen and Kulik, 2009), a method of renormalization was proposed for constructing some
more physically realistic random potentials in a Poisson cloud. This paper is devoted to the
detailed analysis of the asymptotic behavior of the annealed negative exponential moments for the
Brownian motion in a renormalized Poisson potential. The main results of the paper are applied to
studying the Lifshitz tails asymptotics of the integrated density of states for random Schrödinger
operators with their potential terms represented by renormalized Poisson potentials.

1. Introduction

This paper is motivated by the model of Brownian motion in Poisson potential, which
describes how a Brownian particle survives from being trapped by the Poisson obstacles. We
recall briefly the general setup of that model, referring the reader to the book by Sznitman
[1] for a systematic representation, to [2] for a survey, and to [3–6] for specific topics and for
recent development on this subject.

Let ω(dx) be a Poisson field in R
d with intensity measure νdx, and let B be an

independent Brownian motion in R
d. Throughout, P and E denote the probability law and

the expectation, respectively, generated by the Poisson field ω(dx), while Px and Ex denote
the probability law and the expectation, respectively, generated by the Brownian motion B

with B0 = x. For a properly chosen (say, continuous and compactly supported) nonnegative
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functionK onR
d (known as a shape function), define the respective random function (known

as a Poisson potential)

V (x) =
∫

Rd

K
(
y − x)ω(

dy
)
, (1.1)

which heuristically represents the net force at x ∈ R
d generated by the Poisson obstacles.

The model of Brownian motion in a Poisson potential is defined in two different settings. In
the quenched setting, the setup is conditioned on the random environment created by the
Poisson obstacles, and the model is described in the terms of the Gibbs measure μt,ω defined
by

dμt,ω
dP0

=
1
Zt,ω

exp

{
−
∫ t

0
V (Bκs)ds

}
, Zt,ω = E0 exp

{
−
∫ t

0
V (Bκs)ds

}
. (1.2)

Here, κ is a positive parameter, responsible for the time scaling s �→ κs, introduced here
for further references convenience. In the annealed setting, the model averages on both the
Brownian motion and the environment, and respective Gibbs measure μt is defined by

dμt
d(P ⊗ P0)

=
1
Zt

exp

{
−
∫ t

0
V (Bκs)ds

}
, Zt = E ⊗ E0 exp

{
−
∫ t

0
V (Bκs)ds

}
. (1.3)

Heuristically, the integral

∫ t

0
V (Bκs)ds (1.4)

measures the total net attraction to which the Brownian particle is subject up to the time t,
and henceforth, under the law μt,ω or μt, the Brownian paths heavily impacted by the Poisson
obstacles are penalized and become less likely.

In the Sznitman’s model of “soft obstacles,” the shape function K is assumed to be
locally bounded and compactly supported. However, these limitations may appear to be
too restrictive in certain cases. Important particular choice of a shape function, physically
motivated by the Newton’s law of universal attraction, is

K(x) = θ|x|−p, x ∈ R
d, (1.5)

which clearly is both locally unbounded and supported by whole R
d. This discrepancy is

not just a formal one and brings serious problems. For instance, under the choice (1.5), the
integral (1.1) blows up at every x ∈ R

d when p ≤ d.
To resolve such a discrepancy, in a recent paper [7], it was proposed to consider, apart

with a Poisson potential (1.1), a renormalized Poisson potential

V (x) =
∫

Rd

K
(
y − x)[ω(

dy
) − νdy]. (1.6)
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Assume for a while that K is locally bounded and compactly supported. Then,

V (x) =
∫

Rd

K
(
y − x)[ω(

dy
) − νdy]

=
∫

Rd

K
(
y − x)ω(

dy
) − ν

∫
Rd

K
(
y − x) dy

= V (x) − ν
∫

Rd

K
(
y
)
dy,

(1.7)

that is, V − V =const. Consequently, replacing V by V in (1.2) and (1.3) does not change the
measures μt,ω and μt, because both the exponents therein and the normalizers Zt,ω and Zt

are multiplied by the same constant etEV (0) (this is where the word “renormalization” comes
from). On the other hand, for unbounded and not locally supported K, the renormalized
potential (1.6) may be well defined, while the potential (1.1) blows up. The most important
example here is the shape function (1.5) under the assumption d/2 < p < d. In that case, V is
well defined as well as the Gibbs measures

dμt,ω
dP0

=
1

Zt,ω

exp

{
−
∫ t

0
V (Bκs)ds

}
, Zt,ω = E0 exp

{
−
∫ t

0
V (Bκs)ds

}
, (1.8)

dμt
d(P ⊗ P0)

=
1

Zt

exp

{
−
∫ t

0
V (Bκs)ds

}
, Zt = E ⊗ E0 exp

{
−
∫ t

0
V (Bκs)ds

}
, (1.9)

see [7, Corollary 1.3]. We use separate notation μt,ω, μt because the Gibbs measures (1.2) and
(1.3) are not well defined now.

The above exposition shows that using the notion of the renormalized Poisson
potential, one can extend the class of the shape functions significantly. Note that in general,
the domain of definition for (1.6) does not include the one for (1.1). For instance, for the shape
function (1.5), the potential V , and the renormalized potential V are well defined under the
mutually excluding assumptions p > d and d/2 < p < d, respectively. This, in particular,
does not give one a possibility to define respective Gibbs measures in a uniform way. This
inconvenience is resolved in the terms of the Poisson potential V h, partially renormalized at
the level h; see [7, Chapter 6]. By definition,

V h(x) =
∫

Rd

(
K
(
y − x) − h)+ω(

dy
)
+
∫

Rd

(
K
(
y − x) ∧ h)[ω(

dy
) − νdy], (1.10)

where h ∈ [0,∞] is a renormalization level. Clearly, V 0 = V, V∞ = V . It is known (see [7,
Chapter 6]) that V h is well defined for every h ∈ (0,+∞) as soon as V h′ is well defined for
some h′ ∈ [0,+∞], and in that case, there exists a constant CK,h,h′ such that V h −V h′ = νCK,h,h′ .
This makes it possible to define the respective Gibbs measures in a uniform way, replacing V
in (1.2), (1.3) by V h with (any) h ∈ (0,+∞). In addition, such a definition extends the class of
shape functions: for K given by (1.5), V h with h ∈ (0,+∞) is well defined for p > d/2.
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The main objective of this paper is to study the asymptotic behavior, as t → +∞, of
the annealed exponential moments

E ⊗ E0 exp

{
− 1
αt

∫ t

0
V (Bκs)ds

}
. (1.11)

This problem is clearly relevant with the model discussed above: in the particular case κ = 1,
αt ≡ 1, this is, just the natural question about the limit behavior of the normalizer Zt in the
formula (1.3) for the annealed Gibbs measure. In the quenched setting, similar problem was
studied in the recent paper ([8]). In some cases, we also consider (1.11) with a renormalized
Poisson potential V replaced by either a Poisson potential V or a partially renormalized
potential V h with h ∈ (0,+∞).

The function αt in (1.11) appears, on one hand, because of our further intent to study
in further publications the a.s. behavior

∫ t

0
V (Bκs)ds, t −→ ∞. (1.12)

On the other hand, this function can be naturally included into the initial model. One
can think about making penalty (1.4) to be additionally dependent on the length of the
time interval by dividing the total net attraction for the Brownian particle by some scaling
parameter. Because of this interpretation, further on, we call the function αt a “scale”.

Let us discuss two other mathematically related problems, studied extensively both in
mathematical and in physical literature. The first one is known as the continuous parabolic
Anderson model

∂tu(t, x) = κΔu(t, x) ±Q(x)u(t, x),
u(0, x) = 1, x ∈ R

d.
(1.13)

This problem appears in the context of chemical kinetics and population dynamics. Its name
goes back to the work by Anderson [9] on entrapment of electrons in crystals with impurities.
In the existing literature, the random field Q is usually chosen as the Poisson potential V ,
with the shape function K assumed to be bounded (and often locally supported), so that
the potential function (1.1) can be defined. A localized shape is analogous to the usual setup
in the discrete parabolic Anderson model, where the potential {Q(x);x ∈ Z

d} is an i.i.d.
sequence; we refer the reader to the monograph [10] by Carmona and Molchanov for the
overview and background of this subject.

On the other hand, there are practical needs for considering the shape functions of the
type (1.5), which means that the environment has both a long range dependency and extreme
force surges at the locations of the Poison obstacles. To that end, we consider (1.13) with a
renormalized Poisson potential V instead of Q. Note that in that case, the field Q represents
fluctuations of the environment along its “mean field value” rather than the environment
itself although this “mean field value” may be infinite.
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It is well known that (1.13) is solved by the following Feynman-Kac representation

u(t, x) = Ex exp

{
±
∫ t

0
Q(B2κs)ds

}
, (1.14)

when Q is Hölder continuous and satisfies proper growth bounds. When Q = V with K

from (1.5), local unboundedness of K induces local irregularity of Q (Proposition 2.9 in [7]),
which does not allow one to expect that the function (1.14) solves (1.13) in the strong sense.
However, it is known (Proposition 1.2 and Proposition 1.6 in [7]) that under appropriate
conditions, the function (1.14) solves (1.13) in the mild sense. It is a local unboundedness
of K again, that brings a serious asymmetry to the model, making essentially different the
cases “+” and “−” of the sign in the right hand sides of (1.13) and (1.14). For the sign “−”,
the random field (1.14) is well defined and integrable for d/2 < p < d (Theorem 1.1 in [7]).
For the sign “+”, the random field (1.14) is not integrable for any p. On the other hand, the
random field (1.14) is well defined for d/2 < p < min (2, d) (Theorem 1.4 and Theorem 1.5 in
[7]).

In view of (1.14), our main problem relates immediately to the asymptotic behavior
of the moments of the solution to the parabolic Anderson problem (1.13) with the sign “−”.
Here, we cite [10–20] as a partial list of the publications that deal with various asymptotic
topics related to the parabolic Anderson model.

Another problem related to our main one is the so called Lifshitz tails asymptotic
behavior of the integrated density of states function N of a random Schrödinger operator of
the type

H = −κ
2
Δ +Q. (1.15)

This function, written IDS in the sequel, is a deterministic spectral mean-field characteristic
ofH. Under quite general assumptions on the random potential Q, it is well defined as

N(λ) = lim
U↑Rd

1
|U|

∑
k

1λk,U≤λ, (1.16)

where {λk,U} is the set of eigenvalues for the operator H in a cube U with the Dirichlet
boundary conditions, |U| denotes the Lebesgue measure of U in R

d, and the limit pass is
made w.r.t. a sequence of cubes which has same center and extends to the whole R

d. The
classic references for the definition of the IDS function are [21, 22]; see also a brief exposition
in Sections 2 and 5.1 below.

Heuristically, the bottom (i.e., the left-hand side) λ0 of the spectrum of H mainly
describes the low-temperature dynamics for a system defined by the Hamiltonian (1.15). This
motivates the problem of asymptotic behavior of logN(λ), λ↘ λ0, studied extensively in the
literature. The name of the problem goes back to the papers by Lifshitz [23, 24]; we also give
[1, 21, 22, 25–44] as a partial list of references on the subject.
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Connection between the Lifshitz tails asymptotics for the IDS function N, and the
problem discussed above is provided by the representation for the Laplace transform ofN

∫
R

e−λtdN(λ) = (2πκt)−d/2E ⊗ E
κt
0,0 exp

[
−
∫ t

0
Q(Bκs)ds

]
, t ≥ 0. (1.17)

Here, E
κt
0,0 denotes the distribution of the Brownian bridge, that is, the Brownian motion

conditioned by Bκt = 0. Our estimates for (1.11) appear to be process insensitive to some
extent and remain true with E0 in (1.11) replaced by E

κt
0,0. This, via appropriate Tauberian

theorem, provides information on Lifshitz tail asymptotics for the respective IDS functionN.
Note that in this case, the asymptotic behavior of the logN(λ) as λ → −∞ should be studied,
because the bottom of the spectrum is equal λ0 = −∞, unlike the (usual) Poisson case, where
λ0 = 0. This difference is caused by the renormalization procedure, which brings the negative
part to the potential.

We now outline the rest of the paper. The main results about negative exponential
moments for annealed Brownian motion in a renormalized Poisson potential are collected in
Theorem 2.1. They are formulated for the shape function defined by (1.5). Depending on p in
this definition, we separate three cases

αt = o
(
t(d+2−p)/(d+2)

)
, t −→ ∞, (1.18)

t(d+2−p)/(d+2) = o(αt), t −→ ∞, (1.19)

αt ∼ αt(d+2−p)/(d+2) with some α > 0, t −→ ∞, (1.20)

calling them a “light-scale,” a “heavy-scale,” and a “critical” case, respectively. There is a close
analogy between our “light” versus “heavy” scale classification for a renormalized Poisson
potential and the well-known “classic” versus “quantum” regime classification for a (usual)
Poisson potential; see detailed discussion in Section 2.

In all three cases listed above, our approach relies on the identity

E ⊗ E0 exp

[
− 1
αt

∫ t

0
V (Bκs) ds

]
= E0 exp

[
ν

∫
Rd

ψ

(
1
αt
ξ(t, x)

)
dx

]
, (1.21)

with

ψ(u) = e−u − 1 + u, (1.22)

ξ(t, x) =
∫ t

0
K(Bκs − x)ds, (1.23)

see Proposition 2.7 and Proposition 3.1 in [7].
Further analysis of the Wiener integral in the r.h.s. of (1.21) in the light-scale case

is quite straightforward. First, the upper bound follows from Jensen’s inequality and is
“universal” in the sense that the Brownian motion B therein can be replaced by an arbitrary
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process. Then, we choose a ball in the Wiener space, which simultaneously is “sufficiently
heavy” in probability and “sufficiently small” in size. This smallness allows one to transform
the integral in the r.h.s. of (1.21) into

ν

∫
Rd

ψ

(
1
αt

∫ t

0
K(−x)ds

)
dx = ν

∫
Rd

ψ

(
t

αt
K(−x)

)
dx, (1.24)

which after a straightforward transformation gives a lower bound that coincides with the
universal upper bound obtained before.

We call this approach the “small heavy ball method”. It is quite flexible, and by means
of this method, we also give a complete description of the light-scale asymptotic behavior
for a Poisson potential V and a partially renormalized Poisson potential V h (Theorem 2.4).
This method differs from the functional methods, typical in the field, which go back to the
paper [41] by Pastur. It gives a new and transparent principle explaining the transition from
quantum to classical regime; note that the phenomenology of such a transition is a problem
discussed in the literature intensively; see [32, Section 3.5] for a detailed overview. In the
context of the small heavy ball method, we can identify the classic regime with the situation
where a sufficient amount of Brownian paths stay in a suitable neighborhood. So, the relation
V (Bκt) ≈ V (0) donimates in this regime.

In the quantum regime, that is, in the critical and the heavy-scale cases, the
contribution of Brownian paths cannot be neglected. In this situation, the key role in
our analysis of the Wiener integral in the r.h.s. of (1.21) is played by a large deviations
result (Theorem 4.1) formulated and proved in Section 4. In the same section, by means of
appropriate rescaling procedure, the asymptotics of the Wiener integral in the r.h.s. of (1.21)
in the quantum regime is obtained. In the heavy-scale case, this asymptotics appears to be
closely related to the large deviations asymptotics for a Brownian motion in a Wiener sheet
potential, studied in ([45]); we discuss this relation in Section 4.4.

Finally, we discuss an application of the main results of the paper to the Lifshitz tails
asymptotics of the integrated density of states functions for random Schrödinger operators,
with their potential terms represented by either renormalized Poisson potential or partially
renormalized Poisson potential.

2. Main Results

Throughout the paper, ωd denotes the volume of the d-dimensional unit ball. We denote

Fd =
{
g ∈W1

2

(
R
d
)
:
∫

Rd

g2(x)dx = 1
}
, (2.1)

whereW1
2 (R

d) is used for the Sobolev space of functions that belong toL2 together with their
first order derivatives. We also denote

ϕ(u) = 1 − e−u, Ξ(u, v) = ψ(u) − e−uϕ(v) = e−u−v − 1 + u, u, v ∈ R, (2.2)

(ψ is introduced in (1.22)). Clearly, the functions ψ, −ϕ, and Ξ are convex; this simple
observation is crucial for the most constructions below.
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Our main results about the asymptotics of negative exponential moments for annealed
Brownian motion in a renormalized Poisson potential are represented by the following
theorem.

Theorem 2.1. Let p ∈ (d/2, d).

(i) In the “light-scale” case,

lim
t→∞

(αt
t

)d/p
logE ⊗ E0 exp

[
− 1
αt

∫ t

0
V (Bκs)ds

]

= ν
∫

Rd

ψ
(
θ|x|−p)dx

= νωdθ
d/p

(
p

d − p
)
Γ
(
2p − d
p

)
= −νωdθ

d/pΓ
(
p − d
p

)
.

(2.3)

(ii) In the “critical” case,

lim
t→∞

t−d/(d+2) logE ⊗ E0 exp

[
− 1
αt

∫ t

0
V (Bκs) ds

]

= sup
g∈Fd

{
ν

∫
Rd

ψ

(
θ

α

∫
Rd

g2(y)∣∣x − y∣∣p dy
)
dx − κ

2

∫
Rd

∣∣∇g(y)∣∣2dy
}
.

(2.4)

(iii) In the “heavy-scale” case, under additional assumption p < (d + 2)/2,

lim
t→∞

α
4/(d+2−2p)
t t−(d+4−2p)/(d+2−2p) logE ⊗ E0 exp

[
− 1
αt

∫ t

0
V (Bκs) ds

]

= sup
g∈Fd

⎧⎨
⎩
νθ2

2

∫
Rd

(∫
Rd

g2(y)∣∣x − y∣∣p dy
)2

dx − κ

2

∫
Rd

∣∣∇g(y)∣∣2dy
⎫⎬
⎭.

(2.5)

Remark 2.2. The additional assumption p < (d+2)/2 in Statement (iii) is exactly the condition
for ξ(t, x) to be square integrable (see [45]), and henceforth, for respective central limit
theorem to hold true, see Proposition 4.4 and discussion in Section 4.4 below.

Let us discuss this theorem in comparison with the following, well-known in the field,
results for annealed Brownian motion in a Poisson potential.

Theorem 2.3. Let K be bounded and satisfy

K(x) ∼ θ|x|−p, |x| −→ ∞, (2.6)

with p > d.
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(i) (see [41]) If p ∈ (d, d + 2),

lim
t→∞

t−d/p logE ⊗ E0 exp

[
−
∫ t

0
V (Bκs) ds

]
= −νωdθ

d/pΓ
(
p − d
p

)
. (2.7)

(ii) (see [40]) If p = d + 2,

lim
t→∞

t−d/(d+2) logE ⊗ E0 exp

[
−
∫ t

0
V (Bκs) ds

]

= − inf
g∈Fd

{
ν

∫
Rd

ϕ

(
θ

∫
Rd

g2(y)∣∣x − y∣∣p dy
)
dx +

κ

2

∫
Rd

∣∣∇g(y)∣∣2dy
}
.

(2.8)

(iii) (see [46]) If p > d + 2,

lim
t→∞

t−d/(d+2) logE ⊗ E0 exp

[
−
∫ t

0
V (Bκs) ds

]

= − inf
g∈Fd

{
ν

∫
Rd

1g(x)>0 dx +
κ

2

∫
Rd

∣∣∇g(y)∣∣2dy
}
.

(2.9)

It is an effect, discovered by Pastur in [41], that the asymptotic behavior of the Brownian
motion in a Poisson potential is essentially different in the cases p > d + 2 and p ∈ (d, d + 2),
called frequently “light tailed” and “heavy tailed,” respectively. This differencewas discussed
intensively in the literature, especially in the connection with the asymptotic behavior of
respective IDS function. The main asymptotic term in (2.7) is completely determined by the
potential and does not involve κ, that is, the “intensity” of the Brownian motion. On the other
hand, (2.9) depends on κ but not on the shape function K. Since K and κ, heuristically, are
related to “regular” and “chaotic” parts of the dynamics, an alternative terminology “classic
regime” (p > d + 2) and “quantum regime” (p ∈ (d, d + 2)) is frequently used.

Theorem 2.1 shows that the dichotomy “classic versus quantum regimes” is still in
force for the model with a renormalized Poisson potential, with conditions on the shape
function K to be either heavy or light tailed replaced by conditions on the scale αt to be,
respectively, light or heavy. Note that for αt ≡ 1, (1.18) and (1.19) transform exactly to p < d+2
and p > d + 2, respectively. In the classic regime, an analogy between a Poisson potential and
a renormalized Poisson potential is very close: for αt ≡ 1, (2.3) and (2.7) coincide completely.
However, in the quantum regime, the right hand side in (2.5), although being principally
different from (2.3), is both scale dependent (i.e., involves αt) and shape dependent (i.e.,
involves p).

It is a natural question whether Theorem 2.1 can be extended to other types of
potentials, like a Poisson potential V or a partially renormalized Poisson potential V h. We
strongly believe that such an extension is possible in a whole generality; however, we cannot
give such an extension in the quantum regime (i.e., critical and heavy-scaled cases) so far,
because we do not have an analogue of Theorem 4.1 for functions υwhich are convex but are
not increasing (like −ϕ and Ξ). Such a generalization is a subject for further research.
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In the classic regime (i.e., light scale case), such an extension can be made efficiently.
Moreover, in this case, the assumptions on the shape function K can be made very mild:
instead of (1.5), we assume (2.6) with p > d/2 and, when p < d,

∫
Rd

ψ(K(x)) dx < +∞, (2.10)

which is just the assumption for V to be well defined.

Theorem 2.4. Let the shape function K satisfy (2.6) and scale function αt satisfy (1.18).

(i) Statement (i) of Theorem 2.1 holds true assuming K satisfies (2.10).

(ii) For p > d,

lim
t→∞

(αt
t

)d/p
logE ⊗ E0 exp

[
− 1
αt

∫ t

0
V (Bκs) ds

]

= −ν
∫

Rd

ϕ
(
θ|x|−p) dx = −νωdθ

d/pΓ
(
p − d
p

)
.

(2.11)

(iii) For p = d and h > 0,

logE ⊗ E0 exp

[
− 1
αt

∫ t

0
V h(Bκs) ds

]

= ν
[∫

Rd

(
min

(
K
(
y
)
, h

) − αt
t

)
+
dy +ωdθ Eu

](
t

αt

)
+ o

(
t

αt

)
, t −→ ∞,

(2.12)

where Eu = −Γ′(1) = 0, 57721 · · · is the Euler constant. In particular, whenK has the form
(1.5),

logE ⊗ E0 exp

[
− 1
αt

∫ t

0
V h(Bκs) ds

]

= νωdθ

[
log

(
t

αt

)
+ logh + Eu

](
t

αt

)
+ o

(
t

αt

)
, t −→ ∞.

(2.13)

The following theorem shows that statements of Theorems 2.1 and 2.4 are process
insensitive to some extent.

Theorem 2.5. Relations (4.4), (2.3)–(2.5), (2.11), (2.12), and (2.13) hold true with E0 replaced by
E
κt
0,0, that is, the expectation w.r.t. the law of the Brownian bridge.

This theorem makes it possible to investigate the Lifshitz tails asymptotics for
the integrated density of states of the random Schrödinger operators with (partially)
renormalized Poisson potentials. Let us outline the construction of respective objects.
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For a given random field Q(x), x ∈ R
d and a cube U ⊂ R

d, denote byHQ
U the random

Schrödinger operator inU with the potential Q and the Dirichlet boundary conditions

H
Q
Uf = −κ

2
Δf +Qf, f |∂U = 0. (2.14)

When the field Q is assumed to have locally bounded realizations, the operator HQ
U is a.s.

well defined as an operator on L2(U,dx) and is self-adjoint. In addition, respective semigroup

R
Q
t,U = e−tH

Q
U , t ≥ 0 has a Feynman-Kac representation ([1, page 13])

R
Q
t,Uf(x) = E

t
x

(
exp

[
−
∫ t

0
Q(Bκs)ds

]
χU,t(B·)f(Bt)

)
, x ∈ U, t ≥ 0, (2.15)

where

χU,t(B·) = lBκs∈U, s∈[0,t]. (2.16)

For general Q, we define HQ
U by the following limit procedure. Consider truncations QN =

(|Q| ∧ N)sgn Q. Under appropriate assumptions on Q, for almost every realization of this
field, operators RQN

t,U converge strongly for every t ≥ 0 asN → ∞. In that case,HQ
U is defined

as the generator of the limit semigroup R
Q
t,U, t ≥ 0. Assuming the spectrum of HQ

U to be

discrete (we verify this assumption below), we denote this spectrum {λQk,U} and define the
function

N
Q
U(λ) =

1
|U|

∑
k

lλQ
k,U

≤λ, λ ∈ R. (2.17)

Proposition 2.6. Let the shape functionK be such that for some g > 0, the following conditions hold:

(i) Kg(x) = (K(x) − g)+ is compactly supported,

(ii) Kg = min(K(x), g) is Lipschitz continuous and belongs to the Sobolev spaceW1
2 (R

d).

Consider either a partially renormalized potentialQ = V h with h ∈ (0,∞), or a renormalized potential
Q = V , in the latter case assuming additionally (2.10).

Then,

(a) for a.s. realization of the potential Q and every cube U, the described above procedure well
defines both the random Schrödinger operatorHQ

U and respective functionNQ
U ,

(b) there exists an integrated density of statesNQ, that is, a deterministic monotonous function
such that

NQ(λ) = lim
U↑Rd

N
Q
U(λ), (2.18)



12 International Journal of Stochastic Analysis

a.s. for every point of continuity ofNQ. Respective Laplace transform has the representation

∫
R

e−λtdNQ(λ) = (2πκt)−(d/2)E ⊗ E
κt
0,0 exp

[
−
∫ t

0
Q(Bκs)ds

]
, t ≥ 0. (2.19)

Note that in the proof of Proposition 2.6 (Section 5.1 below), most difficulties are
concerned with the statement (A) because of local irregularity of the potentialQ (Proposition
2.9 in [7]).

As a corollary of Theorem 2.5 and representation (2.19), we deduce the following
Lifshitz tails asymptotics for random Schrödinger operators with random potentials V and
V h.

Theorem 2.7. Let K satisfy (2.6).

(i) For p ∈ (d/2, d), assuming additionally (2.10), one has in limit λ → −∞

logNV (λ) = −
[
νωdΓ

(
2p − d
p

)]−p/(d−p)(θ
(
d − p)
d

)d/(d−p)
(−λ)d/(d−p)(1 + o(1)).

(2.20)

(ii) For p = d and h ∈ (0,∞), one has in limit λ → −∞

logNVh
(λ) = −νωdθ exp

[
− λ

νωdθ
− logh − Eu − 1

]
(1 + o(1))

= −νωdθ

h
exp

[
− λ

νωdθ
− Eu − 1

]
(1 + o(1)).

(2.21)

Theorem 2.7 involves the asymptotic results for exponential moments (Theorem 2.5) only in
a partial form, for the trivial scale function αt ≡ 1. This observation naturally motivates the
following extension of the definition of the IDS function and respective generalization of
Theorem 2.7.

Consider the family of random Schrödinger operators

Hγ = −κ
2
Δ + γQ, γ > 0. (2.22)

Assuming every potential Qγ = γQ being such that respective IDS function NQγ is well
defined, denoteNQ(λ, γ) =NQγ (λ). We call the family

NQ(λ, γ), λ ∈ R, γ > 0, (2.23)

the integrated density of states field of the family of random Schrödinger operators (2.22). In the
Theorem 2.8 below, we describe the asymptotic behavior of this field for random Schrödinger
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operators with a renormalized Poisson potential. Let us anticipate this theorem by a brief
discussion.

Three statements of Theorem 2.8 below relate directly to our light-scale, heavy-scale,
and critical cases, respectively. This means that the integrated density of states field for
random Schrödinger operators with a renormalized Poisson potential may demonstrate
asymptotic behavior typical either to the classic or to the quantum regime, while for the
integrated density of states function, only, the classic regime is available.

Next, observe that (d + 2 − p)/2 > (d + 4 − 2p)/4. Hence, conditions, that
(−λ)(d+4−2p)/4/γ → ∞ and (−λ)(d+2−p)/2/γ is bounded, yield λ → 0−. Therefore, the quantum
regime for the integrated density of states field requires that λ and γ tend to 0 in an adjusted
way (Statement (ii) of Theorem 2.8 below). On the contrary, conditions of the Statement (i)
of the same theorem allow λ → −∞ (in that case γ may tend to ∞), λ → 0−, or λ to stay
bounded away both from 0 and −∞ (in these two cases γ → 0+ necessarily). This is the
reason that two conditions (−λ)p/d/γ → ∞ and (−λ)(d+2−p)/2/γ → ∞ are imposed in this
case: when λ → −∞, the first one includes the second one, but when λ → 0−, the inclusion
is opposite.

Theorem 2.8. Let K be of the form (1.5) with p ∈ (d/2, d).

(i) When (−λ)p/d/γ → ∞ and (−λ)(d+2−p)/2/γ → ∞,

logNV (λ, γ) = −
[
νωdΓ

(
2p − d
p

)]−p/(d−p)(θ
(
d − p)
d

)d/(d−p)

× (−λ)d/(d−p)γ−d/(d−p)(1 + o(1)).
(2.24)

(ii) When (−λ)d+4−2p/4/γ → ∞ and (−λ)(d+2−p)/2/γ → 0, under additional assumption
p < (d + 2)/2,

logNV (λ, γ) = −
(

2C2

d+ 2−2p
)−(d+2−2p)/2( 2

d+4−2p
)(d+4−2p)/2

(−λ)(d+4−2p)/2γ−2(1+o(1)),
(2.25)

where C2 denotes the constant in the r.h.s of (2.5).

(iii) When λ → 0− and (−λ)(d+2−p)/2/γ is bounded away both from 0 and from∞,

logNV (λ, γ) =−
((

d − p)Cψ
p

)−p/(d−p)((
d − p)
d

)d/(d−p)
(−λ)d/(d−p)γ−p/(d−p)(1+o(1)),

(2.26)

where Cψ denotes the constant in the right hand side of (2.4) with α = 1.

Note that under the assumptions of Theorem 2.8, the right hand sides of (2.24), (2.25),
and (2.26) tend to −∞. So, Theorem 2.8 controls the exponential decay of the IDS field,
similarly to Theorem 2.7. What may look nontypical in this theorem when compared with
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other references in the field is that some part of the statements are formulated when λ → 0−.
This in general reflects the fact that for γ → 0+ the negative part of the spectrum becomes
negligible. Theorem 2.8, in particular, quantifies such a negligibility.

3. Classic Regime

In this section, we prove Theorem 2.4, which includes Statement (i) of Theorem 2.1 as a partial
case. For a given h > 0, denote

ξh(t, x) =
∫ t

0

(
K
(
y − x) − h)+ ds, ξh(t, x) =

∫ t

0

(
K
(
y − x) ∧ h)ds. (3.1)

Similarly to (1.21), we have

E ⊗ E0 exp

[
− 1
αt

∫ t

0
V (Bκs) ds

]
= E0 exp

[
−
∫

Rd

ϕ

(
1
αt
ξ(t, x)

)
dx

]
, (3.2)

E ⊗ E0 exp

[
− 1
αt

∫ t

0
V h(Bκs) ds

]
= E0 exp

[∫
Rd

Ξ
(

1
αt
ξh(t, x),

1
αt
ξh(t, x)

)
dx

]
. (3.3)

The first relation is provided by Proposition 2.7 and Proposition 3.1 in [7], the proof for the
second one is completely analogous and is omitted.

In what follows, we analyse the Wiener integrals in the r.h. sides of (1.21) and (3.2).
However, (3.3) appears not to be well designed for an immediate analysis, which motivates
the following auxiliary construction. Instead of V h, we consider a partially renormalized
Poisson potential with the properly chosen renormalization level, dependent on t. Let g > 0
and ht = gαt/t. Then, assuming p = d, (2.6) and (1.18), we will prove that

lim
t→∞

(αt
t

)
logE ⊗ E0 exp

[
− 1
αt

∫ t

0
V ht(Bκs) ds

]

= ν
∫

Rd

Ξ
((
θ|x|−d

)
∧ g,

(
θ|x|−d − g

)
+

)
dx = νωdθ

[
log g + Eu

]
.

(3.4)

Note that by Proposition 6.1 in [7],

V h′(x) − V h(x) = ν
∫

Rd

(min
(
K
(
y
)
, h

) − h′)+ dy, (3.5)

for any h ≥ h′ such that V h, V h′ is well defined. Henceforth, changing a renormalization level
just multiplies respective exponential moment by an explicit constant. Therefore, (2.12) is
provided by (3.4).

In Sections 3.1 and 3.2, we prove, respectively, upper and lower bounds in (2.3), (2.11),
and (3.4) with the constants represented in an integral form. Calculation of the integrals is
postponed to Section 3.3.
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3.1. Proof of the Upper Bound

For any convex function �, by the Jensen inequality, we have

�

(
1
αt
ξ(t, x)

)
= �

(∫ t

0

(
1
αt
K(Bκs − x)

)
ds

)
≤ 1
t

∫ t

0
�

(
t

αt
K(Bκs − x)

)
ds. (3.6)

Denote λt = (t/αt)
1/p, K(x, λ) = λpK(λx). By the inequality above, one has the following

estimate with nonrandom right hand side:

∫
Rd

�

(
1
αt
ξ(t, x)

)
dx ≤ 1

t

∫
Rd

∫ t

0
�

(
t

αt
K(Bκs − x)

)
dsdx

=
∫

Rd

�

(
t

αt
K(−x)

)
dx =

(
t

αt

)d/p ∫
Rd

�(K(x, λt))dx.

(3.7)

Assumption (1.18) yields λt → ∞. Therefore, in order to prove the upper bound either in
(2.3) or in (2.11), it is sufficient to apply (3.7) to either ψ or −ϕ and then prove, respectively,

∫
Rd

ψ(K(x, λ))dx −→
∫

Rd

ψ(K(x))dx or
∫

Rd

ϕ(K(x, λ))dx −→
∫

Rd

ϕ(K(x))dx, (3.8)

λ → ∞. By assumption (2.6), for every ε > 0, there exists λε such that

K(x, λ)|x|p ∈ [θ − ε, θ + ε], |x| > ε, λ > λε. (3.9)

When p > d, this easily provides

lim
λ→∞

∫
|x|>ε

ϕ(K(x, λ))dx =
∫
|x|>ε

ϕ(K(x))dx, ε > 0. (3.10)

Since ϕ is bounded on R
+, (3.10) provides the second relation in (3.8).

When p ∈ (d/2, d), similar argument leads to the relation analogous to (3.10) with ϕ
replaced by ψ. Consequently, with condition (2.10) in mind, it remains to prove that

lim
ε→ 0

lim sup
λ→∞

∫
|x|≤ε

ψ(K(x, λ)) dx = 0. (3.11)

To that end, we choose r1, θ1 such that K(x) ≤ θ1|x|−p, |x| > r and write for λ large enough

∫
|x|≤ε

ψ(K(x, λ))dx =

[∫
|x|≤r1/λ

+
∫
r1/λ<|x|≤ε

]
ψ(K(x, λ))dx

≤ λ−d
∫
|x|≤r1

ψ(λpK(x))dx +
∫
|x|≤ε

ψ
(
θ1|x|−p

)
dx.

(3.12)
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Recall that p < d, ψ(u) is dominated by u, and K is locally integrable under condition (2.10).
Then, the first term in the above sum is negligible when λ → ∞. This proves (3.10) and
completes the proof.

Similarly, for p = d from the Jensen’s inequality for the convex function Ξ : R
2 → R,

we have

Ξ
(

1
αt
ξh(t, x),

1
αt
ξh(t, x)

)
≤ 1
t

∫ t

0
Ξ
(
t

αt
(K(Bκs − x) ∧ h), t

αt
(K(Bκs − x) − h)+

)
ds, (3.13)

and consequently, for ht = gαt/t

∫
Rd

Ξ
(

1
αt
ξht(t, x),

1
αt
ξht(t, x)

)
dx ≤

∫
Rd

Ξ
(
t

αt
(K(−x) ∧ ht), t

αt
(K(−x) − ht)+

)
dx

=
(
t

αt

)d/p ∫
Rd

Ξ
(
K(x, λt) ∧ g,

(
K(x, λt) − g

)
+

)
dx.

(3.14)

Similarly to (3.8), one can prove

∫
Rd

Ξ
(
K(x, λ) ∧ g, (K(x, λ) − g)+)dx −→

∫
Rd

Ξ
(
K(x, λ) ∧ g, (K(x, λ) − g)+)dx, λ −→ ∞,

(3.15)

which provides the upper bound in (3.4).

3.2. Proof of the Lower Bound

For a fixed ε > 0, take R fixed but large enough so that

(θ − ε)|x|−p ≤ K(x) ≤ (θ + ε)|x|−p, |x| ≥ R. (3.16)

Take β > 0 and consider the set

At,β =

{
sup
s≤t

|Bκs| ≤ βλt
}
, (3.17)

keeping the notation λt = (t/αt)
1/p. By the scaling property and the well-known small balls

probability asymptotics for the Brownian motion, we have, for t large enough,

logP0
(
At,β

) ≥ −ct(βλt)−2 (3.18)
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with some constant c > 0. Therefore, condition αt = o(t(d+2−p)/(d+2)) yields

(αt
t

)d/p
logP0

(
At,β

) −→ 0, t −→ +∞. (3.19)

Take γ > 2β. On the set At,β, one has

|Bκs − x| ≥ β
(
t

αt

)1/p

, s ∈ [0, t], |x| ≥ γλt. (3.20)

Then, for t large enough to provide βλt > R, we have

(θ − ε)|Bκs − x|−p ≤ K(Bκs − x) ≤ (θ + ε)|Bκs − x|−p, s ∈ [0, t], |x| ≥ γλt. (3.21)

Therefore, a two-sided estimate

(θ − ε)
(
1 +

β

γ

)−p
|x|−p ≤ K(Bκs − x) ≤ (θ + ε)

(
1 − β

γ

)−p
|x|−p, s ∈ [0, t] (3.22)

is valid on the set At,β for every x with |x| > γλt. Observe that (3.22) is a pointwise estimate
for a Brownian trajectory from a “small ball” At,β and for a point x outside a “large ball”
{y : |y| ≤ γλt}. On the other hand, (3.19) shows the “small Brownian ball” At,β is “heavy”
in the sense that its probability is sufficiently large, in respective logarithmic scale. These
observations provide a straightforward tool for proving lower bounds in (2.3)–(3.4).

Since ψ is nonnegative and nondecreasing, (3.22) yields

∫
Rd

ψ

(
1
αt
ξ(t, x)

)
dx ≥

∫
|x|>γλt

ψ

(
t

αt
(θ − ε)

(
1 +

β

γ

)−p
|x|−p

)
dx =

(
t

αt

)d/p

I
ψ

ε,β,γ
, (3.23)

on At,β with

I
ψ

ε,β,γ
=
∫
|x|>γ

ψ

(
(θ − ε)

(
1 +

β

γ

)−p
|x|−p

)
dx. (3.24)

Together with (1.21) and (3.19), this inequality provides

lim inf
t→+∞

(αt
t

)d/p
logE ⊗ E0 exp

[
− 1
αt

∫ t

0
V (Bκs)ds

]
≥ Iψ

ε,β,γ
, (3.25)

for every ε > 0, β > 0, γ > 0. Since

lim
ε→ 0

lim
γ→ 0

lim
β→ 0

I
ψ

ε,β,γ =
∫

Rd

ψ
(
θ|x|−p)dx, (3.26)

this completes the proof of the lower bound in (2.3).
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Since (−ϕ) is nonincreasing and satisfies −ϕ ≥ −1, (3.22) yields

−
∫

Rd

ϕ

(
1
αt
ξ(t, x)

)
dx ≥ −

∫
|x|≤γλt

dx −
∫
|x|>γλt

ϕ

(
t

αt
(θ + ε)

(
1 − β

γ

)−p
|x|−p

)
dx=

(
t

αt

)d/p

I
ϕ

ε,β,γ ,

(3.27)

on At,β with

I
ϕ

ε,β,γ
= −

∫
|x|≤γ

dx −
∫
|x|>γ

ϕ

(
(θ + ε)

(
1 − β

γ

)−p
|x|−p

)
dx. (3.28)

Since

lim
ε→ 0

lim
γ→ 0

lim
β→ 0

I
ϕ

ε,β,γ
= −

∫
Rd

ϕ
(
θ|x|−p)dx, (3.29)

this provides the lower bound in (3.5).
Finally, Ξ is nondecreasing in first coordinate and nonincreasing in second coordinate.

In addition, Ξ ≥ −1, and hence (3.22) yields in the case d = p
∫

Rd

Ξ
(

1
αt
ξht(t, x),

1
αt
ξht(t, x)

)
dx

≥
∫
|x|>γλt

Ξ

(
t

αt

[{
(θ − ε)

(
1 +

β

γ

)−d
|x|−d

}
∧
{gαt

t

}]
,

t

αt

[{
(θ + ε)

(
1 − β

γ

)−d
|x|−d

}
− tgαt

t

]
+

)
dx =

(
t

αt

)
IΞε,β,γ ,

(3.30)

on At,β with

IΞε,β,γ = −
∫
|x|≤γ

dx +
∫
|x|>γ

Ξ

([
(θ − ε)

(
1 +

β

γ

)−d
|x|−d

]
∧ g,

[
(θ + ε)

(
1 − β

γ

)−d
|x|−d − g

]
+

)
dx.

(3.31)

Together with (3.2) and (3.19), this inequality provides

lim inf
t→+∞

(αt
t

)
logE ⊗ E0 exp

[
− 1
αt

∫ t

0
V (Bκs) ds

]
≥ IΞε,β,γ , (3.32)

for every ε > 0, β > 0, γ > 0. Since

lim
ε→ 0

lim
γ→ 0

lim
β→ 0

IΞε,β,γ =
∫

Rd

Ξ
((
θ|x|−d

)
∧ g,

(
θ|x|−d − g

)
+

)
dx, (3.33)

this completes the proof of the lower bound in (3.4).
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3.3. Calculation of the Integrals

In the above proof, we have obtained (2.3), (2.11), and (3.4) with the constants represented
as certain integrals. Explicit calculation of these integrals can be made in easy and standard
way, using sphere substitution and integration by parts. For such a calculation of the integral
(2.3), we refer to Lemma 7.1 in [8]; calculation of the integral (2.11) is completely analogous
and omitted. Here, we calculate the integral in (3.4) and prove (2.13).

By sphere substitution, and change of variables,

∫
Rd

Ξ
((
θ|x|−d

)
∧ g,

(
θ|x|−d − g

)
+

)
dx = ωd

∫∞

0
Ξ
((

θ

r

)
∧ g,

(
θ

r
− g

)
+

)
dx

= ωd

∫∞

0

[
e−θ/r − 1 −

(
θ

r

)
∧ g

]
dr

= θωd

∫∞

0

e−s − 1 − s ∧ g
s2

ds

= ωdθ

[∫∞

0

e−s − 1 − s ∧ 1
s2

ds + log g
]
,

(3.34)

in the last identity we have used an elementary relation

∫∞

0

s ∧ g − s ∧ 1
s2

ds = log g. (3.35)

Integration by parts and n. 538 in [47] gives

∫∞

0

e−s − 1 − s ∧ 1
s2

ds =
∫ t

0

1 − e−s
s

ds −
∫∞

0

e−s

s
ds = Eu, (3.36)

which completes calculation of the integral in (3.4).
Finally, let K has the form (1.5). Take ht = αt/t, then ht < h for t large enough, and

∫
Rd

(
min

(
K
(
y
)
, h

) − αt
t

)
+
dy =

∫
Rd

(
θ|x|−d ∧ h − ht

)
+
dx

= ωdθ

∫∞

0

s ∧ h − s ∧ ht
s2

ds

= ωdθ
[
logh − loght

]
= ωdθ

[
logh + log

(
t

αt

)]
.

(3.37)

Combined with (2.12), this calculation provides (2.13).



20 International Journal of Stochastic Analysis

4. Quantum Regime

4.1. Large Deviations

Our analysis of the asymptotic behavior of the Brownian motion in a renormalized Poisson
integral in the quantum regime (i.e., in the critical and heavy-scale cases) is based on the
following large deviations result. Consider some function L : R

d → R
+ and denote

η(t, x) =
∫ t

0
L(Bκs − x) dx. (4.1)

Theorem 4.1. Let, for some sequence Ln, n ≥ 1 of nonnegative continuous compactly supported
functions,

L(x) = sup
n≥1

Ln(x), (4.2)

for a.a. x ∈ R
d. Let υ : R

+ → R be an increasing convex function with υ(0) = 0, and

∫
Rd

υ(L(x))dx < +∞. (4.3)

Then,

lim
t→∞

1
t
logE0 exp

{
t

∫
Rd

υ

(
1
t
η(t, x)

)
dx

}

= sup
g∈Fd

{∫
Rd

υ

(∫
Rd

g2(y)L(x − y)dy
)
dx − κ

2

∫
Rd

∣∣∇g(y)∣∣2dy
}
.

(4.4)

Proof of Theorem 4.1: the lower bound. By Jensen’s inequality,

υ

(
1
t
η(t, x)

)
= υ

(
1
t

∫ t

0
L(Bκs − x)ds

)
≤ 1
t

∫ t

0
υ(L(Bκs − x))ds, (4.5)

and therefore,

∫
Rd

υ

(
1
t
η(t, x)

)
dx ≤ 1

t

∫ t

0

∫
Rd

υ(L(Bκs − x))dxds =
∫

Rd

υ(L(x))dx < +∞. (4.6)

For every R > 0, we write

∫
Rd

υ

(
1
t
η(t, x)

)
dx ≥

∫
[−R,R]d

υ

(
1
t
η(t, x)

)
dx, (4.7)
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and note that (4.6) provides (1/t)η(t, ·) ∈ L1([−R,R]d), because υ has at least linear growth
at +∞.

For a fixed R, denote

L+
1,R =

{
h ∈ L1

(
[−R,R]d

)
, h ≥ 0

}
, (4.8)

and consider a convex function ΥR : L+
1,R → [0,+∞]

ΥR(h) =
∫
[−R,R]d

υ(h(x))dx. (4.9)

Denote by BR the class of bounded measurable functions f : [−R,R]d → R, and put

CΥ,f,R = sup

{
C : C +

∫
[−R,R]d

f(x)h(x)dx ≤ ΥR(h), h ∈ L+
1,R

}
, f ∈ BR. (4.10)

Lemma 4.2. For every h ∈ L+
1,R with ΥR(h) < +∞,

ΥR(h) = sup
f∈BR

(
CΥ,f,R +

∫
[−R,R]d

f(x)h(x)dx

)
. (4.11)

Remark 4.3. This statement is a version of the classic theorem in the finite-dimensional convex
analysis about representation of the epigraph of a convex function as an intersection of upper
half-spaces; see Theorem 12.1 in [48]. The idea of the proof, in our case, is principally the
same, but we have to take care about topological aspects and about the fact that in general,
ΥR is an improper function.

Proof. Consider the set

epiΥR =
{
(h, t) : h ∈ L+

1,R, t ≥ ΥR(h)
}
, (4.12)

clearly, epiΥR is a convex subset of the Banach space L1([−R,R]d) × R. In addition, this
subset is closed by the Fatou lemma. Therefore, the separation theorem (Theorem 9.2 in [49],
Chapter II) provides that epiΥR is the intersection of all the closed half-spaces containing
epiΥR. Note that every continuous linear functional on the space L1([−R,R]d) × R has the
form (f, a) with f ∈ BR, a ∈ R and

〈
(h, t),

(
f, a

)〉
=
∫
[−R,R]d

h(x)f(x)dx + at. (4.13)

Take h∗ ∈ L+
υ with ΥR(h∗) < +∞, and t∗ < ΥR(h∗). Then (h∗, t∗) /∈ epiΥR, and therefore, there

exists (f, a) and c ∈ R such that

〈
(h∗, t∗),

(
f, a

)〉
< c,

〈
(h, t),

(
f, a

)〉 ≥ c, (h, t) ∈ epiΥR. (4.14)
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By the definition of epiΥR, if (h, t) ∈ epiΥR, then (h, t′) ∈ epiΥR for every t′ > t, hence (4.14)
is impossible if either a = 0 or a < 0. Divide (4.14) by a and denote fa = −f/a, ca = c/a. Then,

ca +
∫
[−R,R]d

h∗(x)fa(x)dx > t∗, hspace10ptca +
∫
[−R,R]d

h(x)fa(x)dx ≤ t, (h, t) ∈ epiΥR.

(4.15)

Take t = ΥR(h) in the second inequality in (4.15); this yields ca ≤ CΥ,fa,R. Consequently,

t∗ ≤ sup
f∈BR

(
CΥ,f,R +

∫
[−R,R]d

f(x)h∗(x)dx

)
, (4.16)

which means that

ΥR(h∗) ≤ sup
f∈BR

(
CΥ,f,R +

∫
[−R,R]d

f(x)h∗(x)dx

)
, (4.17)

because t∗ < ΥR(h∗) is arbitrary. The inverse inequality is obvious.

Take f ∈ BR, then

E0 exp

{
t

∫
[−R,R]d

υ

(
1
t
η(t, x)

)
dx

}
≥ eCΥ,f,RtE0 exp

{∫
[−R,R]d

f(x)η(t, x)dx

}
. (4.18)

Note that

∫
[−R,R]d

f(x)η(t, x)dx =
∫ t

0
f̂(Bκs)ds, (4.19)

where

f̂
(
y
)
=
∫
[−R,R]d

f(x)L
(
y − x)dx (4.20)

is a bounded function. Henceforth, by the large deviations result by Kac [50] (see also
Theorem 4.1.6 in [51]), we have

lim inf
t→∞

1
t
logE0 exp

{
t

∫
[−R,R]d

υ

(
1
t
η(t, x)

)
dx

}

≥ CΥ,f,R + lim
t→∞

1
t
logE0 exp

{∫ t

0
f̂(Bκs)ds

}

≥ CΥ,f,R + sup
g∈Fd

{∫
Rd

f̂(x)g2(x)dx − 1
2

∫
Rd

∣∣∇g(x)∣∣2dx
}
.

(4.21)
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Note that

∫
Rd

f̂(x)g2(x)dx =
∫
[−R,R]d

f(x)
[∫

Rd

g2(y)L(x − y)dy
]
dx. (4.22)

Summarizing our proof,

lim inf
t→∞

1
t
logE0 exp

{
t

∫
Rd

υ

(
1
t
η(t, x)

)
dx

}

≥ sup
g∈Fd

{
CΥ,f,R +

∫
[−R,R]d

f(x)
[∫

Rd

g2(y)L(x − y)dy
]
dx − 1

2

∫
Rd

∣∣∇g(x)∣∣2dx
}
,

(4.23)

for every R > 0, f ∈ BR. We take supremum over f ∈ BR and get, by Lemma 4.2,

lim inf
t→∞

1
t
logE0 exp

{
t

∫
Rd

υ

(
1
t
η(t, x)

)
dx

}

≥ sup
g∈Fd

{
ΥR

(∫
Rd

g2(y)L(· − y)dy
)
− 1
2

∫
Rd

∣∣∇g(x)∣∣2dx
}
.

(4.24)

Note that by Jensen’s inequality, for every g ∈ Fd,

ΥR
(∫

Rd

g2(y)L(· − y)dy
)

=
∫
[−R,R]d

υ

(∫
Rd

g2(y)L(x − y)dy
)
dx

≤
∫
[−R,R]d

∫
Rd

g2(y)υ(L(x − y))dydx ≤
∫

Rd

υ(L(x))dx < +∞,

(4.25)

which makes it possible to apply Lemma 4.2. Finally, taking supremum over R > 0, we obtain
the lower bound in (4.4).

Proof of Theorem 4.1 (the upper bound). Assume first that L is continuous and supported by
some cube [−M,M]d. In that case, we reduce the proof of the upper bound to application
of the large deviation principle for empirical measures of the Brownian motion on a torus.
Such a reduction is standard, for example, [46]; the projection on the torus is required in
order to make it possible to use Donsker-Varadhan’s large deviation principle for empirical
measures of a Markov process with a compact state space, [52].

Note that υ(u + v) − υ(u) ≥ υ(v) − υ(0) because of the convexity, and υ(0) = 0. Hence,
the function υ satisfies

υ(u + v) ≥ υ(u) + υ(v), u, v ≥ 0. (4.26)
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Thus, for anyN >M,

∫
Rd

υ

(
1
t
η(t, x)

)
dx =

∑
z∈Zd

∫
[−N,N]d

υ

(
1
t
η(t, 2Nz + x)

)
dx

≤
∫
[−N,N]d

υ

(
1
t

∑
z∈Zd

η(t, 2Nz + x)

)
dx =

∫
[−N,N]d

υ

(
1
t
η̃(t, x)

)
dx,

(4.27)

where

η̃(t, x) =
∫ t

0
L̃(Bκs − x)ds, L̃(x) =

∑
z∈Zd

L(2Nz + x). (4.28)

Denote by TNd the torus of the size 2N, that is, the cube [−N,N]d with the sides identified.
Let us denote by JN the projection on this torus: by definition, for x ∈ R

d its projection JN(x)
is the unique point x̃ ∈ TNd such that x−x̃ ∈ 2NZ

d. Denote BNs = JN(B·), the Brownian motion
on the torus TNd . With this notation in mind, we rewrite the right hand side term in (4.27)

∫
[−N,N]d

υ

(
1
t
η̃(t, x)

)
dx =

∫
TN
d

υ

(
1
t
ηN(t, x)

)
dx, ηN(t, x) =

∫ t

0
(L ◦ JN)(Bκs − x)ds. (4.29)

Consider the empirical measures for the Brownian motion on the torus TN
d

QN
t (A) =

1
t

∫ t

0
1BNκs∈Ads, A ∈ B

(
TNd

)
. (4.30)

Note that

1
t
ηN(t, x) =

∫
TN
d

(L ◦ JN)
(
y − x)QN

t

(
dy

)
, (4.31)

and the mapping

μ −→
∫
TN
d

υ

(∫
TN
d

(L ◦ JN)
(
y − x)μ(dy)

)
dx (4.32)
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is continuous and bounded on the space of all probability distributions on TNd with the
metrics of weak convergence. Hence, combination of (4.27), the large deviation principle for
QN
t (Theorem 3 in [52]), and Varadhan’s lemma (Proposition 3.8 in [53]) yields

lim sup
t→∞

1
t
E0 exp

{
t

∫
Rd

υ

(
1
t
η(t, x)

)
dx

}

≤ sup
g∈FN

d

{∫
TN
d

υ

(∫
TN
d

(L ◦ JN)
(
x − y)g2(y) dy

)
dx − κ

2

∫
TN
d

∣∣∇g(y)∣∣2dy
}
,

(4.33)

where

FN
d =

{
g ∈W1

2

(
TNd

)
:
∫
TN
d

g2(x)dx = 1

}
. (4.34)

By smooth truncation, it is easy to verify that

sup
g∈Fd

{∫
Rd

υ

(∫
Rd

L
(
x − y)g2(y)dy

)
dx − κ

2

∫
Rd

∣∣∇g(y)∣∣2dy
}

≤ lim inf
N→∞

sup
g∈FN

d

{∫
TN
d

υ

(∫
TN
d

(L ◦ JN)
(
x − y)g2(y)dy

)
dx − κ

2

∫
TN
d

∣∣∇g(y)∣∣2dy
}
,

(4.35)

which completes the proof.
Finally, we remove the additional regularity assumption on L. Recall the assumption

(4.2) and note that one can assume the sequence Ln, n ≥ 1 to be pointwise increasing, because
otherwise, one can take L̃n = maxk≤nLn instead.

Write Δn = L − Ln and

η(t, x) = ηn(t, x) + ζn(t, x), ζn(t, x) =
∫ t

0
Δn(Bκs − x) ds. (4.36)

For every γ ∈ (0, 1), we have by convexity

υ

(
1
t
η(t, x)

)
≤ γυ

(
1
γt

ηn(t, x)
)
+
(
1 − γ)υ

(
1(

1 − γ)t ζn(t, x)
)

(4.37)

The Jensen inequality, analogously to (4.6), provides that

∫
Rd

υ

(
1(

1 − γ)t ζn(t, x)
)
dx ≤

∫
Rd

υ

(
1(

1 − γ)Δn(x)

)
dx. (4.38)
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Then, from the upper bound with a regular kernel Ln, we obtain

lim sup
t→∞

1
t
E0 exp

{
t

∫
Rd

υ

(
1
t
η(t, x)

)
dx

}

≤ sup
g∈Fd

{
γ

∫
Rd

υ

(
1
γ

∫
Rd

Ln
(
x − y)g2(y) dy

)
dx − κ

2

∫
Rd

∣∣∇g(y)∣∣2dy
}

+
∫

Rd

υ

(
1(

1 − γ) Δn(x)

)
dx,

(4.39)

for any n ≥ 1 and γ ∈ (0, 1). Passing to the limit first as n → ∞ and then as γ → 1 completes
the proof.

4.2. Proof of Theorem 2.1: Critical Case

The kernel (1.5) has the following scaling property: K(x) = τ−p/2K(τ−1/2x) for any τ > 0.
Then, by the scaling property of the Brownian motion,

ξ(t, x) d=
∫ t

0
K
(
τ−1/2Bsτ − x

)

= τp/(2−1)
∫ tτ

0
K
(
Bκs − τ1/2x

)
ds = τp/(2−1)ξ

(
tτ, xτ1/2

)
.

(4.40)

Henceforth, the integral under the exponent in the right-hand side of (1.21), after the variable
change τ1/2x �→ x, can be written as

τ−d/2
∫

Rd

ψ

(
τp/2−1

αt
ξ(tτ, x)

)
dx. (4.41)

We take τt = t−2/d+2. Under such a choice, τ−d/2t = tτt = td/d+2. Observe that

τp/2−1

αt
∼ 1
α
, t −→ ∞, (4.42)
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because of (1.20). By monotonicity of ψ, we can change the variables td/d+2 �→ t and, applying
Theorem 4.1 with L = K,υ(u) = ψ(u/(α ± ε)), obtain

lim sup
t→∞

t−d/(d+2) logE ⊗ E0 exp

[
− 1
αt

∫ t

o

V (Bκs)ds

]

≤ sup
g∈Fd

{
ν

∫
Rd

ψ

(
θ

(α − ε)
∫

Rd

g2(y)∣∣x − y∣∣p dy
)
dx − κ

2

∫
Rd

∣∣∇g(y)∣∣2dy
}
,

lim inf
t→∞

t−d/(d+2) logE ⊗ E0 exp

[
− 1
αt

∫ t

o

V (Bκs)ds

]

≥ sup
g∈Fd

{
ν

∫
Rd

ψ

(
θ

(α + ε)

∫
Rd

g2(y)∣∣x − y∣∣p dy
)
dx − κ

2

∫
Rd

∣∣∇g(y)∣∣2dy
}
.

(4.43)

Passing to the limit as ε → ∞ completes the proof of Statement (ii) of Theorem 2.1.

4.3. Proof of Theorem 2.1: Heavy Scale Case

Let us proceed with further transformations of the expression (4.41) for the integral under the
exponent in the right hand side of (1.21). Denote ψc(u) = c−2ψ(cu), c > 0 and ψ0(u) = u2/2.

It can be verified that ψc(u) ↑ ψ0(u)when c ↓ 0. In particular, ψ = ψ1 ≤ ψ0, and hence

τ−d/2
∫

Rd

ψ

(
τp/2−1

αt
ξ(tτ, x)

)
dx ≤ 1

2
τp−2−d/2

α2t

∫
Rd

ξ2(tτ, x)dx

=
1
2
t2τp−d/2

α2t

∫
Rd

(
1
tτ
ξ(tτ, x)

)2

dx.

(4.44)

Choose τt in such a way that

t2τ
p−d/2
t

α2t
= tτt, (4.45)

that is,

τt = α
−4/(d+2−2p)
t t2/(d+2−2p). (4.46)

Under such a choice,

tτt = α
−4/(d+2−2p)
t t(d+4−2p)/(d+2−2p), (4.47)

and the upper bound in (2.5) follows from the upper bound in (4.4)with υ(u) = νu2/2. Note
that Theorem 4.1 cannot be applied to this function υ, because (4.3) fails. We refer here to
Theorem 1.1 in [45], which, together with the Varadhan’s lemma, provides (2.5).
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To get the lower bound, take τt from (4.46) and write

τ−d/2t

∫
Rd

ψ

⎛
⎝τ

p/2−1
t

αt
ξ(tτt, x)

⎞
⎠ dx =

τ
p−2−d/2
t

α2t
τ−d/2

∫
Rd

ψct

(
1
tτt
ξ(tτt, x)

)
dx, (4.48)

with

ct = α−1t tτ
p/2
t = α2p/(d+2−2p)−1t t1−p/(d+2−2p) = t(d+2−p)/(d+2−2p)α−(d+2)/(d+2−2p)t . (4.49)

Condition (1.19) and assumption p < (d + 2)/2 provide ct → 0. Then, for every fixed c > 0,
we have ct < c for t large enough, and therefore,

lim inf
t→∞

α
4/(d+2−2p)
t t−(d+4−2p)/(d+2−2p) logE ⊗ E0 exp

[
− 1
αt

∫ t

0
V (Bκs)ds

]

≥ sup
g∈Fd

{
ν

∫
Rd

ψc

(
θ

α

∫
Rd

g2(y)∣∣x − y∣∣p dy
)
dx − κ

2

∫
Rd

∣∣∇g(y)∣∣2dy
}
,

(4.50)

by the lower bound in (4.4) with υ(u) = νψc(u). Since ψc(x) → ψ0(x) = x2/2 monotonously,
this proves the lower bound in (2.5).

4.4. Brownian Motion in a Wiener Sheet Potential

Let us recall briefly the construction of the Brownian motion in a Wiener sheet potential,
introduced in [45]. Let W be a Wiener sheet on R

d, independent on B. Write, for a given
shape function K,

U(x) =
∫

Rd

K
(
y − x)W(

dy
)
, Ut =

∫ t

0
U(Bκs) ds =

∫
Rd

ξ(t, x)W(dx), (4.51)

for the Wiener sheet potential and respective total net attraction, obtained by a Brownian
particle from this potential. If K is of the form (1.5), the potential U is not well defined in
mean square sense, becauseK /∈ L2(Rd) for any p. On the other hand, for p ∈ (d/2, (d+2)/2),
one has

E0

∫
Rd

ξ2(t, x)dx < +∞, (4.52)

and consequently Ut is well defined.
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It follows from [45, Corollary 1.5] (with β = 2) and the variation relation derived in [54,
Theorem 1.5] (with p there equal to 1) that under conditions of Statement (iii) of Theorem 2.1,

lim
t→∞

α
4/(d+2−2p)
t t−(d+4−2p)/(d+2−2p) logE ⊗ E0 exp

[
− 1
αt
Ut

]

= sup
g∈Fd

⎧⎨
⎩
θ2

2

∫
Rd

(∫
Rd

g2(y)∣∣x − y∣∣p dy
)2

dx − κ

2

∫
Rd

∣∣∇g(y)∣∣2dy
⎫⎬
⎭.

(4.53)

Comparing (4.53) and Statement (iii) of Theorem 2.1 below, we see that in the quantum
regime, asymptotic behavior of the Brownian motion in a renormalized Poisson potential is
principally determined by respective asymptotics of the Brownian motion in a Wiener sheet
potential. Such a relation between these random potentials is quite natural, according to the
following version of the central limit theorem.

Proposition 4.4. Let K have the form (1.5) with p ∈ (d/2, (d + 2)/2). Then, for every t > 0, the
distribution of

ν−1/2
∫ t

0
V (Bκs)ds, (4.54)

w.r.t. P ⊗ P0 weakly converges as ν → ∞ to the distribution of Ut w.r.t. P
W ⊗ P0, where P

W denotes
the distribution of the Wiener sheetW .

Proof. Characteristic function of (4.54) is equal

E0 exp
[
ν

∫
Rd

(
eizν

−1/2ξ(t,x) − 1 − izν−1/2ξ(t, x)
)
dx

]
, (4.55)

see Proposition 2.2 in [7]. For every z ∈ C, t > 0, x ∈ R
d,

ν
(
eizν

−1/2ξ(t,x) − 1 − izν−1/2ξ(t, x)
)
−→ −z

2

2
ξ2(t, x), ν −→ ∞. (4.56)

In addition,

ν
∣∣∣eizν−1/2ξ(t,x) − 1 − izν−1/2ξ(t, x)

∣∣∣ ≤ C0z
2ξ2(t, x), (4.57)

with some constant C0. Since for p ∈ (d/2, (d + 2)/2)

E0e
C
∫
Rd ξ

2(t,x)dx <∞, t > 0, C > 0, (4.58)
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(see [45]), we have by the dominated convergence theorem that the characteristic functions
(4.55) converge pointwise to

E0 exp

[
−z

2

2

∫
Rd

ξ2(t, x)dx

]
, (4.59)

which is just the characteristic function of Ut.

5. The integrated Density of States

5.1. Proof of Proposition 2.6

Statement A. We proceed in two steps. First, we show that under conditions of the
proposition, almost all realizations of Q are bounded from below on a given cube. We
consider the case Q = V ; the case of a partially renormalized potential is quite analogous.
To simplify notation, we assume in the sequel ν = 1.

Write

V (x) =
∫

Rd

Kg(x − y)[ω(
dy

) − dy] +
∫

Rd

Kg

(
x − y)[ω(

dy
) − dy]. (5.1)

The function Kg is supported by some ball {x : |x| ≤ R}, which brings the lower bound
−ωdR

d for the first summand. Henceforth, without loss of generality, we can remove this
term. In what follows, we consider a renormalized Poisson potential withKg instead ofK. To
simplify the notation, we just consider V assuming thatK is bounded, Lipschitz, and belongs
toW1

2 (R
d).

It is a simple observation that for a smooth compactly supported function L : R
d → R,

every realization of respective renormalized Poisson potential belongs toW1
2 (R

d), and

∇
∫

Rd

L
(
x − y)[ω(dx) − dy] =

∫
Rd

∇L(x − y)[ω(
dy

) − dy]. (5.2)

This, by usual approximation argument, provides that almost all realizations of the
renormalized Poisson potential with kernel K belong to W1

2 (R
d), and (5.2) holds true in

Sobolev sense for K = L.
Since K is Lipschitz, ∇K is bounded; the function K is bounded, as well. Then,

Proposition 2.7 in [7] provides

E exp
(∣∣∣V (0)

∣∣∣ +
∣∣∣∇V (0)

∣∣∣) < +∞. (5.3)

By shift invariance, this gives

E

∫
U

exp
(∣∣∣V (x)

∣∣∣ +
∣∣∣∇V (x)

∣∣∣) dx < +∞. (5.4)
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Therefore, almost all realizations of V belong to W1
∞(U) =

⋂
p>1W

1
p(U) and henceforth are

continuous by Sobolev’s inclusion theorem (e.g., [55]). In particular, these realizations are
bounded.

The second part of the proof is represented by the following deterministic lemma.

Lemma 5.1. Let Q : R
d → R be a function bounded from below andU a given cube.

Denote

QN = Q ∧N, (5.5)

and consider the Schrödinger operatorsHQN

U ,N ≥ 1 with the Dirichlet boundary conditions, defined
by (2.14) with Q replaced by QN .

Then,

(i) RQN

t,U = e−tH
QN
U , t ≥ 0 converge strongly asN → ∞ to a continuous semigroup RQ

t,U, t ≥ 0

of self-adjoint operators in L2(U,dx). R
Q
t,U, t ≥ 0 admits the Feynman-Kac representation

(2.15),

(ii) every operator RQ
t,U, t ≥ 0 is of trace class,

(iii) for the generator HQ
U of the semigroup RQ

t,U, t ≥ 0, the function (2.17) is well defined, and
its Laplace transform admits the representation

∫
R

e−λtdNQ
U(λ) = (2πκt)−d/2

1
|U|

∫
U

E
κt
0,0

(
exp

[
−
∫ t

0
Q(Bκs + x)ds

]
χU,t(B· + x)

)
dx. (5.6)

Proof. For every N, the semigroup R
QN

t,U = e−tH
QN
U , t ≥ 0 admits the Feynman-Kac repre-

sentation (2.15). An alternative form of this representation ([1, page 13]) is that RQN

t,U is an
integral operator with the kernel

r
QN

t,U

(
x, y

)
= pt

(
x, y

)
E
t
x,y

(
exp

[
−
∫ t

0
QN(Bκs)ds

]
χU,t(B·)

)
, (5.7)

where

pt
(
x, y

)
= (2πκt)−d/2e−|x−y|

2/2κt (5.8)

is the transition probability density for the process Bκs, s ≥ 0, and E
t
x,y denotes the expectation

w.r.t. law of the Brownian bridgewhich takes values x and y at s = 0 and s = t, respectively. By
Propositions 3.2 and 3.5 in [1], for a givenN, the function rQN

t,U is continuous and symmetric.
Then, by the monotone convergence theorem, there exists a monotonous limit

r
Q
t,U

(
x, y

)
= lim

N→∞
r
QN

t,U

(
x, y

)
= (2πκt)−d/2e−|x−y|

2/(2κt)
E
t
x,y

(
exp

[
−
∫ t

0
Q(Bκs)ds

]
χU,t(B·)

)
,

(5.9)
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which is bounded and symmetric. Integral operators RQN

t,U converge to the operator RQ
t,U with

kernel rQt,U in the Hilbert-Schmidt norm, because respective kernels converge in L2(U×U,dx).
This proves Statement (i) immediately. Since

R
Q
t,U = RQ

t/2,UR
Q
t/2,U, (5.10)

and every RQ
t/2,U is a Hilbert-Schmidt operator, the operator RQ

t,U is of trace class. This proves
Statement (ii).

We have just proved that RQ
t,U is of trace class, which means that it has a purely point

spectrum and

Trace RQ
t,U =

∑
k

λk,Q,t < +∞, (5.11)

where {λk,Q,t} denote eigenvalues of RQ
t,U, counted with their multiplicities. By the spectral

decomposition theorem, this yields that the generator HQ
U of the semigroup R

Q
t,U, t ≥ 0 has

a purely point spectrum locally finite on every interval (−∞, λ]. In addition, λk,Q,t = e−λk,Qt,
where {λk,Q} are respective eigenvalues of HQ

U , counted with their multiplicities. Therefore,
the function (2.17) is well defined, and its Laplace transform has the form

∫
R

e−λtdNQ
U(λ) =

1
|U|

∑
k

e−tλk,U =
1
|U|Trace R

Q
t,U =

1
|U|

∫
U×U

r
Q
t/2,U

(
x, y

)
r
Q
t/2,U

(
y, x

)
dxdy,

(5.12)

in the last equality, we have used the standard relation (e.g., [56, Chapter III, Section 9])

Trace A∗A = ‖A‖2HS, (5.13)

with the Hilbert-Shmidt norm of the operator A in the right hand side. By the Feynman-Kac
representation (2.15) and the Markov property of the Brownian bridge, the last integral can
be written as

(2πκt)−(d/2)
1
|U|

∫
U

E
κt
x,x

(
exp

[
−
∫ t

0
Q(Bκs) ds

]
χU,t(B·)

)
dx. (5.14)

which completes the proof of the lemma.

Statement B (sketch of the proof ). In the second part of the proposition, the classic argument
which goes back to [21] is applicable. In order to keep the exposition self-sufficient, we give
a brief sketch of this argument here.

The random fields Q = V and Q = V h are ergodic (or metrically transitive) in the sense
that the σ-algebra generated by functionals, invariant w.r.t. the transformations

Sh : Q(·) �−→ Q(· + h), h ∈ R
d (5.15)
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is degenerate. The argument here is a straightforward modification of the classic one for one-
dimensional moving average integrals; see Theorem 1.1 and Example 3 in Chapter XI, [57].
Then, the Birkhoff’s ergodic theorem (its modification for random fields, e.g., Chapter 6.5 in
[58]) yields that for any integrable function f on the space of realizations of the field Q,

lim
U↑Rd

1
|U|

∫
U

f(Q(· + x))dx = Ef(Q), (5.16)

both almost surely and in mean sense.
By Proposition 2.7 in [7], Ee−cQ(0) < +∞ for every c > 0. This, by the Jensen inequality,

provides

E ⊗ E
κt
0,0 exp

[
−
∫ t

0
Q(Bκs)ds

]
< +∞, t ≥ 0, (5.17)

the argument here is the same as at the beginning of Section 3.1. Then, (5.16) applied to the
function

f : q �−→ E
κt
0,0 exp

[
−
∫ t

0
q(Bκs)ds

]
(5.18)

yields

lim
U↑Rd

1
|U|

∫
U

E
κt
0,0

(
exp

[
−
∫ t

0
Q(Bκs + x)ds

])
dx = E ⊗ E

κt
0,0 exp

[
−
∫ t

0
Q(Bκs)ds

]
(5.19)

both in mean and in a.s. sense. Straightforward calculation shows that with probability 1,

lim
U↑Rd

1
|U|

∫
U

χU,t(B· + x)dx = 1. (5.20)

Together with mean convergence (5.19), this provides

lim
U↑Rd

1
|U|

∫
U

E
κt
0,0

(
exp

[
−
∫ t

0
Q(Bκs + x)ds

](
1 − χU,t(B· + x)

))
dx = 0, (5.21)

which completes the proof.

5.2. Proof of Theorem 2.5

5.2.1. Classic Regime

Arguments in Section 3.1 are process insensitive. Henceforth, the upper bounds in (2.3),
(2.11), and (3.4) hold true with E0 replaced by E

κt
0,0.
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On the other hand, Brownian bridge measures enjoy the scaling property similar to
the Brownian one ([1, page 140]): its law P

t
0,0 is the image of measure of P

1
0,0 under the map

w(·) �−→
√
tw

( ·
t

)
. (5.22)

In addition, the Brownian bridge measure P
1
0,0 has the small balls asymptotics similar to the

Brownian one [59]

ε2 logP
1
0,0

(
sup
s∈[0,1]

|B(s)| ≤ ε
)

−→ −1
2
j2(d−2)/2, (5.23)

where j(d−2)/2 is the smallest positive root of the Bessel function J(d−2)/2. Henceforth, the heavy
small ball argument from Section 3.2 can be applied to get the lower bounds in (2.3), (2.11),
and (3.4) with E

κt
0,0 instead of E0.

The argument which deduce (2.12) from (3.4) is process insensitive.

5.2.2. Quantum Regime

The upper bound in (4.4)with E
κt
0,0 instead of E0 can be deduced from the same upper bound

in its original form. In the proof, we combine the standard trick based on theMarkov property
of the Brownian bridge (e.g., Lemma 3 in [27]) with the “universal” upper bound provided
by the convexity; see the end of Section 4.1.

Write

η(t, x) = η(t − 1, x) + ζ(t, x), ζ(t, x) =
∫ t

t−1
L(Bκs − x) ds. (5.24)

For every γ ∈ (0, 1), we have by convexity

υ

(
1
t
η(t, x)

)
≤ γυ

(
1
γt
η(t − 1, x)

)
+
(
1 − γ)υ

(
1(

1 − γ)t ζ(t, x)
)
. (5.25)

Analogously to (4.6), we have

∫
Rd

υ

(
1(

1 − γ)t ζ(t, x)
)
dx ≤

∫ t

t−1

∫
Rd

υ

(
1(

1 − γ)tL(Bκs − x)
)
dxds

=
∫

Rd

υ

(
1(

1 − γ)tL(x)
)
dx.

(5.26)
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The last term vanishes when t → ∞. Therefore, for every γ ∈ (0, 1),

lim sup
t→∞

1
t
E
κt
0,0 exp

{
t

∫
Rd

υ

(
1
t
η(t, x)

)
dx

}

≤ lim sup
t→∞

1
t
E
κt
0,0 exp

{
γt

∫
Rd

υ

(
1
γt
η(t − 1, x)

)
dx

}
.

(5.27)

On the other hand, applying the Markov property at time t − 1, we arrive at

E
κt
0,0 exp

{
γt

∫
Rd

υ

(
1
γt
η(t − 1, x)

)
dx

}
= E0 exp

{
γt

∫
Rd

υ

(
1
γt
η(t − 1, x)

)
dx

}
p1

(
Bκ(t−1), 0

)

≤ E0 exp
{
γt

∫
Rd

υ

(
1
γt
η(t, x)

)
dx

}
p1

(
Bκ(t−1), 0

)
.

(5.28)

Because

p1
(
x, y

) ≤ (2πκ)−d/2, x, y ∈ R
d, (5.29)

we get from the upper bound in (4.4) that for every γ ∈ (0, 1),

lim sup
t→∞

1
t
E
κt
0,0 exp

{
t

∫
Rd

υ

(
1
t
η(t, x)

)
dx

}

≤ sup
g∈Fd

{
γ

∫
Rd

υ

(
1
γ

∫
Rd

L
(
x − y)g2(y)dy

)
dx − κ

2

∫
Rd

∣∣∇g(y)∣∣2dy
}
.

(5.30)

Passing to the limit γ → 1 completes the proof of the upper bound.
The lower bound in (4.4) with E

κt
0,0 instead of E0 can be obtained by almost the same

argument, as it was used to prove lower bound in (4.4) in its initial form. Only minor changes
of the argument are required; let us discuss these changes.

Consider the large deviation result by Kac, which was the basic point in the proof of
the lower bound

lim
t→∞

1
t
logE0 exp

{∫ t

0
f̂(Bκs) ds

}

≥ CΥ,f,R + sup
g∈Fd

{∫
Rd

f̂(x)g2(x)dx − 1
2

∫
Rd

∣∣∇g(x)∣∣2dx
}
.

(5.31)

Note that under P0,

Bκs − s

κt
Bκt (5.32)
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is a Gaussian process with the covariance κ(s∧s′)−κ(ss′/t) and, therefore, has the distribution
P
t
0,0 ([1, page 140]). Then, for any Lipschiz continuous bounded function f̂ , (5.31) holds true

with E
κt
0,0 instead of E0.
Note that the statement of the Lemma 4.2 still holds true when BR is replaced with

any class of functions K ⊂ BR separating points in L1([−R,R]d); in particular, one can take
K = BLR, the class of Lipschitz continuous bounded functions. Clearly, for f ∈ BLR the
function

f̂
(
y
)
=
∫
[−R,R]d

f(x)L
(
y − x)dx (5.33)

is Lipschitz continuous and bounded. Applying the modified (5.31) and proceeding literally
as in the proof of the lower bound in Theorem 4.1, we get the required lower bound.

Once we have proved the modified large deviation asymptotics (4.4), we can repeat
the arguments from Sections 4.2 and 4.3 (with the the scaling property of the Brownian bridge
used instead of the same property of the Brownian motion) and deduce (2.4), (2.5) with E0

replaced by E
κt
0,0.

5.3. Proof of Theorem 2.7

Theorem 9.7 in [42], Chapter IV gives (2.20) as a straightforward corollary of (2.3). Because
t �→ t log t is a regularly varying function of the order 1, this theorem is not applicable when
(2.21) is considered.

From (2.13) (with E
κt
0,0 instead of E0), we have

log
∫

R

e−(λ+νωdθ(logh+Eu))tdNVh

(λ) = νωdθt log t + o(t), t −→ +∞. (5.34)

Henceforth, the proof of (2.21) by elementary transformations can be reduced to the proof of
the following lemma.

Lemma 5.2. Let, for a nonnegative and nondecreasing functionN(λ), λ ∈ R,

log
∫

R

e−λtdN(λ) = at log t + o(t), t −→ +∞, (5.35)

with some a > 0.
Then,

logN(λ) = −a exp
[
−λ
a
− 1

]
(1 + o(1)), λ −→ −∞. (5.36)
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Proof. The upper bound, in a standard way, is provided by the Chebyshev inequality: for
every t > 0, λ < 0,

logN(λ) ≤ λt + log
∫

R

e−χtdN
(
χ
)
. (5.37)

Take tλ = exp[−λ/a − 1], the solution of the minimization problem

tλ = argmin
(
λt + at log t

)
. (5.38)

Clearly, tλ → +∞, λ → −∞. By (5.35) and (5.37),

logN(λ) ≤ −atλ + o(tλ), λ −→ −∞, (5.39)

which gives the upper bound in (5.36).
Assume that the lower bound in (5.36) fails; that is, there exist b > a and a sequence

λn → −∞ such that

logN(λn) ≤ −b exp
[
−λn
a

− 1
]
, n ≥ 1. (5.40)

Fix c < a and δ > 0, which will be specified below. Since the upper bound in (5.36) is already
proved, there exists Λc < 0 such that

logN(λ) ≤ −c exp
[
−λ
a
− 1

]
, λ < Λc. (5.41)

Let n be large enough for λn < Λc. Denote tn = e−(λn−δ)/a−1 and write

∫
R

e−λtndN(λ) =
∫Λc

−∞
e−λtnN(λ)dλ +

[
e−Λctn +

∫∞

Λc

e−λtndN(λ)

]

=
∫λn−2δ

−∞
e−λtnN(λ)dλ +

∫λn

λn−2δ
e−λtnN(λ)dλ +

∫Λc

λn

e−λtnN(λ)dλ

+

[
e−Λctn +

∫∞

Λc

e−λtndN(λ)

]

= I1n + I
2
n + I

3
n + I

4
n.

(5.42)

Let us estimate I1n – I
4
n. Clearly,

I4n ≤ Ce−Λctn , (5.43)
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with appropriate constant C. Assumption (5.40) yields, via monotonicity,

I2n ≤ 2δ exp
[
−(λn − 2δ)tn − be−λn/(a−1)

]

= 2δ exp
[(
δ + a log tn + a

)
tn − be−δ/atn

]

= 2δ exp
[
atn log tn −

(
be−δ/a − a − δ

)
tn
]
,

(5.44)

here we have used the relation

λn = −a log tn − a + δ, (5.45)

which comes from the definition of tn.
Consider the function Θ : λ �→ −λtn − ce−λ/a−1. Straightforward computation shows

that assuming

c > ae−δ/a, (5.46)

its derivative is increasing on (−∞, λn − 2δ], and

Θ′
n(λn − 2δ) =

( c
a
eδ/a − 1

)
tn > 1, (5.47)

for n large enough. Then, with (5.41) in mind, we get

I1n ≤
∫λn−2δ

−∞
eλ−λn+2δeΘn(λn−2δ)dλ = eΘn(λn−2δ) = exp

[
atn log tn −

(
ceδ/a − a − δ

)
tn
]
. (5.48)

Similar argument leads to

I3n ≤
∫+∞

λn

e−λ+λneΘn(λn)dλ = eΘn(λn) = exp
[
atn log tn −

(
δ + ceδ/a − a

)
tn
]
. (5.49)

Now, we can finalize the proof. Take δ > 0 such that be−δ/a − a − δ > 0. Note that

aeδ/a − a − δ > 0, δ + aeδ/a − a > 0. (5.50)

Therefore, c < a can be chosen in such a way that (5.46) holds true and

ceδ/a − a − δ > 0, δ + ceδ/a − a > 0. (5.51)
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Under such a choice of the constants δ and c, (5.43), (5.44) (5.48), and (5.49) provide that for
n large enough,

log
∫

R

e−λtndN(λ) ≤ atn log tn − εtn, (5.52)

with some positive ε. This contradicts to (5.35) and proves that assumption (5.40) is im-
possible.

Remark 5.3. In the proof of the lower bound in Lemma 5.2, we have combined the upper
bound from the same lemma with the estimates, typical for the Laplace method (e.g., [60]).
Note that such a structure of the proof is similar to the one for the Gärtner-Ellis theorem
(see Section 1.1 in [51]) although we cannot deduce the statement of the lemma from the
Gärtner-Ellis theorem directly.

5.4. Proof of Theorem 2.8

Our argument is based on the following version of the Gärtner-Ellis theorem.

Lemma 5.4. Consider a sequence Nn, n ≥ 1 of nonnegative monotonous functions on R, which
vanish at −∞, and assume that there exist a > 1, c > 0, and a sequence Υn → +∞ such that

1
Υn

log
∫

R

e−μΥnxdNn(x) −→ I
(
μ
)
= cμa, n −→ ∞, μ > 0. (5.53)

Then,

1
Υn

logNn(−x) = −I∗(x)(1 + o(1)), n −→ ∞, (5.54)

uniformly by x ∈ [A,B] for every [A,B] ⊂ (0,+∞). Here,

I∗(x) = sup
μ>0

[
μx − I(μ)] = (c(a − 1))−1/(a−1)

(
a − 1
a

)a/(a−1)
xa/(a−1). (5.55)

The only difference between conditions of Lemma 5.4 and standard assumptions of the
Gärtner-Ellis theorem is that functions Nn are not assumed to be distribution functions and
are allowed to define nonprobability measures. One can see easily that this difference is
inessential, and Lemma 5.4 can be proved in the same way with the Gärtner-Ellis theorem
(or with Lemma 5.2 above).

Corollary 5.5. Let the field {N(λ, γ), λ ∈ R, γ > 0} be such that

(a) every functionN(·, γ), γ > 0 is nonnegative and nondecreasing,



40 International Journal of Stochastic Analysis

(b) for every t > 0,

Ñ
(
t, γ

)
:=

∫
R

e−λtN
(
dλ, γ

)
<∞, (5.56)

(c) for given a > 1, b ∈ R, c > 0, and given sequences λn > 0, γn > 0, n ≥ 1 with λanγ
−b
n → ∞,

log Ñ
(
μλ

1/(a−1)
n γ

−b/(a−1)
n , γn

)

= cμaλa/(a−1)n γ
−b/(a−1)
n (1 + o(1)), n → ∞, μ > 0.

(5.57)

Then,

logN
(−λnx, γn)

=(c(a − 1))−1/(a−1)
(
a−1
a

)a/(a−1)
λ
a/(a−1)
n γ

−b/(a−1)
n xa/(a−1)(1 + o(1)), n → ∞,

(5.58)

uniformly by x ∈ [A,B] for every [A,B] ⊂ (0,+∞).

Proof. Put Υn = λa/(a−1)n γ
−b/(a−1)
n ,

Nn(x) =N
(
λnx, γn

)
, x ∈ R. (5.59)

Because a > 1 and λanγ
−b
n → ∞, we have Υn → ∞. Condition (5.57) provides (5.53). Hence-

forth, (5.58) follows by Lemma 5.4.

Now, we can finalize the proof of Theorem 2.8.

Statement (i)

Take

a = b =
d

p
, c = νωdθ

d/p

(
p

d − p
)
Γ
(
2p − d
p

)
. (5.60)

For given sequences λn < 0, γn > 0, n ≥ 1 and arbitrary μ > 0 denote

tn = μ(−λn)1/(a−1)γ−b/(a−1)n , αtn =
1
γn
. (5.61)

Condition (−λn)p/d/γn → ∞ yields tn → ∞, and condition (−λn)(d+2−p)/2/γn → ∞ yields
αtn = o(tn). Therefore, (5.57) is provided by (2.3). In addition, we have (−λn)/γn → ∞
because p/d < 1, (d+2−p)/2 > 1, and consequently (−λn)aγ−bn → ∞. Applying Corollary 5.5
with x = −1 and λn replaced by −λn, we obtain the required statement.
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Statement (ii)

Take

a =
d + 4 − 2p
d + 2 − 2p

, b =
4

d + 2 − 2p
, c = C2, (5.62)

and keep the notation (5.58). Condition (−λn)(d+4−2p)/4/γn → ∞ yields (−λn)aγ−bn → ∞.
Condition (−λn)(d+2−p)/2/γn → 0 yields t(d+2−p)/(d+2)n = o(αtn). Finally, these two conditions
yield λn → 0−, and consequently (−λn)(d+2−2p)/4/γn → ∞which is equivalent to tn → ∞.

Therefore, (5.57) is provided by (2.5). Applying Corollary 5.5 with x = −1 and λn
replaced by −λn, we obtain the required statement.

Statement (iii)

In the critical case, one can transform easily (2.4) to

lim
t→∞

(αt
t

)d/p
logE ⊗ E0 exp

[
− 1
αt

∫ t

0
V (Bκs) ds

]
= Cψ. (5.63)

Using this relation and following the proof of Statement (i) with appropriate modifications,
we obtain the required statement.
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