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Should the regime-switching risk be priced? This is perhaps one of the important “normative”
issues to be addressed in pricing contingent claims under a Markovian, regime-switching, Black-
Scholes-Merton model. We address this issue using a minimal relative entropy approach. Firstly,
we apply a martingale representation for a double martingale to characterize the canonical space
of equivalent martingale measures which may be viewed as the largest space of equivalent
martingale measures to incorporate both the diffusion risk and the regime-switching risk. Then
we show that an optimal equivalent martingale measure over the canonical space selected by
minimizing the relative entropy between an equivalent martingale measure and the real-world
probability measure does not price the regime-switching risk. The optimal measure also justifies
the use of the Esscher transform for option valuation in the regime-switching market.

1. Introduction

Regime-switching models are one of the major classes of models for economic and financial
dynamics. They allow the flexibility that model parameters can change over time according
to an underlying state process, which is usually modeled by a Markov chain. The idea of
regime switching has a long history in engineering though it also appeared in some early
works in statistics and econometrics. Quandt [1] and Goldfeld and Quandt [2] adopted
regime-switching regression models to investigate nonlinearity in economic data. Tong [3–
5] introduced the idea of probability switching in nonlinear time series analysis when the
field was at its embryonic stage. Hamilton [6] popularized the application of (Markovian)
regime-switching models in economics and econometrics. Since then, much attention has
been paid to various applications of Markovian regime-switching models in economics and
finance. There is a considerable amount of works on option valuation in Markovian regime-
switching models. Some early works include Naik [7], Guo [8], Buffington and Elliott [9],



2 International Journal of Stochastic Analysis

Elliott et al. [10], and Siu [11]. This topic is of practical importance since manymodels used in
practice cannot incorporate the impact of changing economic conditions, which may lead to
inaccurate valuation results. From the theoretical perspective, option valuation in Markovian
regime-switching models is a challenging issue due to the presence of the regime-switching
risk, which is attributed to changing economic conditions and is described by the modulating
Markov chain in a Markovian regime-switching model. The market in a Markovian regime-
switching model is, in general, incomplete. Consequently, not all contingent claims can be
perfectly hedged and there is more than one equivalent martingale measure for option
valuation.

Guo [8] introduced an approach based on the completion of a Markovian regime-
switching market using a set of “fictitious” securities and valued options in the completed
market. Amajor concern about this approach is that the “fictitious” securities are not tradable
in reality. Elliott et al. [10] introduced an approach based on the Esscher transform, a time-
honored tool in actuarial science, for option valuation in a Markovian regime-switching
model. Indeed, Gerber and Shiu [12] pioneered the use of the Esscher transform in finance,
in particular in option valuation. It provides a convenient method to specify an equivalent
martingale measure. Siu [13] justified the use of the Esscher transform for option valuation
in a regime-switching diffusion model and a regime-switching jump-diffusion model using a
game theoretic approach. In particular, the pricing kernels selected by the Esscher transform
are related to the saddle points (i.e., special cases of the Nash equilibrium) of stochastic
differential games.

The Esscher transform in Elliott et al. [10] does not price regime-switching risk since
the probability laws of the modulating Markov chain remain unchanged after the measure
change. Siu and Yang [14] considered a modified version of the Esscher transform used
in Elliott et al. [10] to incorporate explicitly the intensity matrix of the Markov chain in
the specification of an equivalent martingale measure. Elliott and Siu [15] and Elliott et al.
[16] considered the pricing of both the diffusion risk and the regime-switching risk using
a product of two density processes, one for a measure change for a diffusion process and
another one for a measure change for a Markov chain. Intuitively, one would expect that the
regime-switching risk should be priced. This is not unlike the situation where one should
price the jump risk in a jump-diffusion model for option valuation. Nevertheless, in the
original contribution by Merton [17], it was assumed that the jump risk can be diversified,
so it was not priced. By the same token, in the context of regime-switching models for option
valuation, it is interesting to ask whether the regime-switching risk should be priced.

In this paper, we address this question using a minimal entropy approach. In a
Markovian regime-switching market, the price process of an underlying risky asset, say a
share, is modeled by aMarkovian, regime-switching, geometric Brownian motion modulated
by a continuous-time, finite-state, Markov chain. The states of the chain can be interpreted
as proxies for different levels of observable macroeconomic factors, such as gross domestic
product, retail price index, and sovereign credit ratings. There are two sources of risk, namely,
the diffusion risk described by a standard Brownian motion and the regime-switching risk
described by theMarkov chain. We first apply a version of the martingale representation for a
double martingale in Elliott [18] to characterize the canonical space of equivalent martingale
measures, which may be viewed as the largest space of equivalent martingale measures with
respect to the enlarged filtration generated by information about the price process of the
underlying risky asset and the Markov chain. This space of equivalent martingale measures
is general and flexible enough to incorporate both the diffusion risk and the regime-switching
risk. Then we use the minimal relative entropy approach to select an equivalent martingale
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measure from the canonical space which minimizes the distance between an equivalent
martingale measure and the real-world probability measure. Here the distance between the
two probability measures is described by their relative entropy. We show that an optimal
equivalent martingale measure over the canonical space selected by minimizing the relative
entropy does not price the regime-switching risk. This result also justifies the use of the
Esscher transform for option valuation in the regime-switching market proposed in Elliott
et al. [10].

The rest of the paper is organized as follows. The next section describes the model
dynamics. Section 3 presents a martingale representation and its use for characterising
the canonical space of equivalent martingale measures in the Markovian regime-switching
model. In Section 4, we determine the optimal equivalent martingale measure using the
minimal relative entropy approach. The final section summarizes the paper.

2. The Model Dynamics

We consider a simplified, continuous-time economy with two primitive securities, namely,
a bond and a share. These securities are tradable continuously over time in a finite time
horizon T := [0, T], where T < ∞. As usual, to describe uncertainty, we consider a complete
probability space (Ω,F,P), where P is a real-world probability measure.

Let X := {X(t) | t ∈ T} be a continuous-time, finite-state, Markov chain on (Ω,F,P)
with state space S := {s1, s2, . . . , sN} ⊂ RN . We suppose that the chain X is observable. To
facilitate the use of mathematics, as in Elliott et al. [19], we identify, without loss of generality,
the state space of the chain X with a finite set of standard unit vectors E := {e1, e2, . . . , eN} ⊂
RN , where the jth component of ei is the Kronecker delta δij , for each i, j = 1, 2, . . . ,N. The
space E is called the canonical state space of X.

Suppose {A(t) | t ∈ T} is the family of rate matrices, or intensity matrices, of the chain
X under the measure P, where, for each t ∈ T, A(t) := [aji(t)]i,j=1,2,...,N . The probability laws
of the chain X under P are specified by {A(t) | t ∈ T}. For each i, j = 1, 2, . . . ,N with i /= j and
each t ∈ T, aji(t) is the instantaneous intensity of a transition of the chain X from state ei to
state ej at time t. Note that for each i, j = 1, 2, . . . ,N and each t ∈ T,

aji(t) ≥ 0, ∀i /= j;
N∑

j=1

aji(t) = 0, so aii(t) ≤ 0.
(2.1)

Let F
X := {FX(t) | t ∈ T} be the P-augmentation of the natural filtration generated by the

chain X. Note that F
X is right continuous. Write, for each t ∈ T, V(t) :=

∫ t
0 A(u)X(u−)du.

Then with the canonical state space of the chain X, Elliott et al. [19] obtained the following
semimartingale dynamics for X:

X(t) = X(0) +V(t) +M(t), t ∈ T. (2.2)

Here M := {M(t) | t ∈ T} is an RN-valued, (FX,P)-martingale; V := {V(t) | t ∈ T} is a
predictable process of bounded variation. Hence X is, indeed, a special semimartingale, and
the above semimartingale decomposition is unique.
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For each t ∈ T, let r(t) be the continuously compounded rate of interest of the bond at
time t. We suppose that the interest rate r(t) is modulated by the chain X as follows:

r(t) := 〈r,X(t)〉, (2.3)

where r := (r1, r2, . . . , rN)′ ∈ RN with ri > 0, for each i = 1, 2, . . . ,N; ri is the interest rate of the
bond when the economy is in the ith state; y′ is the transpose of a matrix, or a vector, y; the
scalar product 〈·, ·〉 in RN selects the component of r in force depending on the state of the
chain X at a particular time.

The price process {B(t) | t ∈ T} of the bond evolves over time as follows:

dB(t) = r(t)B(t)dt, t ∈ T, B(0) = 1. (2.4)

Let W := {W(t) | t ∈ T} be a standard Brownian motion on (Ω,F,P) with the right-
continuous, P-completed, natural filtration F

W := {FW(t) | t ∈ T}. To simplify our analysis,
we suppose that W and X are independent under P.

For each t ∈ T, let μ(t) and σ(t) be the appreciation rate and the volatility of the share
at time t, respectively. Again we assume that the chain determines μ(t) and σ(t) as follows:

μ(t) := 〈μ,X(t)〉,
σ(t) := 〈σ,X(t)〉.

(2.5)

Here μ := (μ1, μ2, . . . , μN)′ ∈ RN with μi > ri and σ := (σ1, σ2, . . . , σN)′ ∈ RN with
σi > 0; μi and σi are the appreciation rate and the volatility of the share when the economy is
in the ith state, respectively, for each i = 1, 2, . . . ,N.

Then under P the share price process {S(t) | t ∈ T} evolves over time according to the
following Markovian, regime-switching, geometric Brownian motion (GBM):

dS(t) = μ(t)S(t)dt + σ(t)S(t)dW(t),

S(0) = s > 0.
(2.6)

3. Martingale Representation and Canonical Space of
Equivalent Martingale Measures

In this section, we first present a martingale representation for a double martingale in Elliott
[18], where the double martingale is a martingale with respect to an enlarged filtration
generated by both the Brownian motion W and the Markov chain X. By the martingale
representation, any double martingale can be represented as the sum of a stochastic integral
with respect to the Brownian motion W and integrals with respect to basic martingales
associated with the chain X. The martingale representation is then used to specify the
canonical space of equivalent martingale measures in the Markovian regime-switching
market.
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Firstly, we define a set of basic martingales associated with the chain X. For each i, j =
1, 2, . . . ,N with i /= j and t ∈ T, let Nij(t) be the number of jumps of the chain X from state ei
to state ej up to time t. Write

Mij(t) :=
∫ t

0
〈X(s−), ei〉

〈
dM(s), ej

〉
. (3.1)

Then

Nij(t) :=
∑

0<s≤t
〈X(s−), ei〉

〈
X(s), ej

〉

=
∑

0<s≤t
〈X(s−), ei〉

〈
ΔX(s), ej

〉

=
∫ t

0
〈X(s−), ei〉

〈
dX(s), ej

〉

=
∫ t

0
〈X(s−), ei〉

〈
A(s)X(s−), ej

〉
ds +

∫ t

0
〈X(s−), ei〉

〈
dM(s), ej

〉

=
∫ t

0
aij(s)I{X(s−)=ei}ds +Mij(t).

(3.2)

Consequently, for each i, j = 1, 2, . . . ,N with i /= j,

Mij(t) = Nij(t) −
∫ t

0
aij(s)I{X(s−)=ei}ds

=
∫ t

0
〈X(s−), ei〉

〈
dM(s), ej

〉
, t ∈ T ,

(3.3)

is an (FX,P)-martingale.
For each i, j = 1, 2, . . . ,N with i /= j, let Nij := {Nij(t) | t ∈ T}. Then the chain X

is isomorphic to the family of jump processes {Nij | i, j = 1, 2, . . . ,N, i /= j}. Write Mij :=
{Mij(t) | t ∈ T}. Then the family of martingales {Mij | i, j = 1, 2, . . . ,N, i /= j} is the set of basic
martingales of the chain X under P. These martingales are orthogonal, purely discontinuous,
and square integrable. Furthermore, Mij(0) = 0.

For each t ∈ T, let G(t) := FW(t) ∨ FX(t), the minimal σ-field containing both FW(t)
and FX(t). Write G := {G(t) | t ∈ T}. Before we present the martingale representation for a
double martingale by Elliott [18], we have to define the following spaces of processes

Definition 3.1. L2(W) is the space of real-valued, G-predictable processes {θ(t) | t ∈ T} such
that

E

[∫∞

0
|θ(t)|2d〈W,W〉(t)

]
= E

[∫∞

0
|θ(t)|2dt

]
< ∞. (3.4)

Here E is an expectation under P and {〈W,W〉(t) | t ∈ T} is the quadratic variation of the
Brownian motion W .
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Definition 3.2. For each i, j = 1, 2, . . . ,N with i /= j, L1(Mij) is the space of real-valued, G-
predictable processes {ηij(t) | t ∈ T} such that

E

[∫∞

0

∣∣ηij(t)
∣∣dMij(t)

]
< ∞. (3.5)

Definition 3.3. L2
loc(W) is the space of processes {θ(t) | t ∈ T} such that there is an increasing

sequence of stopping times {Tn | n = 1, 2, . . .} with limn→∞Tn = ∞, P-a.s., such that for each
n = 1, 2, . . ., {θ(t)I{t<Tn} | t ∈ T} ∈ L2(W), where I{t<Tn} is the indicator function of the event
{t < Tn}.

Note that L2
loc(W) is called the localization of L2(W) and that the sequence of stopping

times {Tn | n = 1, 2, . . .}, whichmay depend on {θ(t) | t ∈ T}, is called the localizing sequence.

Definition 3.4. For each i, j = 1, 2, . . . ,N with i /= j, L1
loc(Mij) is the space of processes {ηij(t) |

t ∈ T} such that there is an increasing sequence of stopping times {Tij
n | n = 1, 2, . . .} with

limn→∞T
ij
n = ∞, P-a.s., such that for each n = 1, 2, . . ., {ηij(t)I{t<Tij

n }
| t ∈ T} ∈ L1(Mij).

Again, for each i, j = 1, 2, . . . ,N with i /= j, L2
loc(Mij) is the localization of L2(Mij).

We now present a martingale representation for a (G,P)-(local)-martingale. This
martingale representation follows directly from the martingale representation for a double
martingale by Elliott [18, Theorem 5.1] where the set of basic martingales associated to
a jump process in Davis [20] and Elliott [18] is replaced by the set of basic martingales
{Mij | i, j = 1, 2, . . . ,N, i /= j} associated to the Markov chain X here.

Theorem 3.5. Suppose L := {L(t) | t ∈ T} is a (G,P)-(local)-martingale. Then there are unique
processes {θ̃(t) | t ∈ T} ∈ L2

loc(W) and {η̃ij(t) | t ∈ T} ∈ L1
loc(Mij), i, j = 1, 2, . . . ,N with i /= j,

such that for each t ∈ T,

L(t) = L(0) +
∫ t

0
θ̃(u)dW(u) +

N∑

i,j=1, i /= j

∫ t

0
η̃ij(u−)dMij(u), P-a.s. (3.6)

In the sequel, we shall apply Theorem 3.5 to characterize the canonical space of
equivalent martingale measures. Suppose Q is a probability measure equivalent to the
measure P on the σ-field G(T). Then there is a G(T)-measurable, strictly positive, random
variable, denoted by Λ(T), such that

dQ

dP

∣∣∣∣
G(T)

:= Λ(T). (3.7)

Let Λ := {Λ(t) | t ∈ T} be a process such that for each t ∈ T, Λ(t) is a right-continuous
version of the conditional expectation E [Λ(T) | G(t)]. Then by definition, Λ is a (G,P)-
martingale. Note that Q is a probability measure, so

Λ(0) = E [Λ(T) | G(0)] = E [Λ(T)] = 1. (3.8)
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Consequently by Theorem 3.5, there are unique processes {θ̃(t) | t ∈ T} ∈ L2
loc(W) and

{η̃ij(t) | t ∈ T} ∈ L1
loc(Mij), i, j = 1, 2, . . . ,N with i /= j, such that for each t ∈ T,

Λ(t) = 1 +
∫ t

0
θ̃(u)dW(u) +

N∑

i,j=1, i /= j

∫ t

0
η̃ij(u−)dMij(u), P-a.s. (3.9)

For each t ∈ T and i, j = 1, 2, . . . ,N with i /= j, let

θ(t) :=
θ̃(t)
Λ(t−) , ηij(t) :=

η̃ij(t)
Λ(t−)

. (3.10)

For each t, Λ(t−) is strictly positive, P-a.s., so the processes {θ(t) | t ∈ T} and {ηij(t) | t ∈ T}
are well defined. It is also obvious that {θ(t) | t ∈ T} ∈ L2

loc(W) and {ηij(t) | t ∈ T} ∈
L1
loc(Mij). Then for each t ∈ T,

Λ(t) = 1 +
∫ t

0
θ(u)Λ(u−)dW(u) +

N∑

i,j=1, i /= j

∫ t

0
ηij(u−)Λ(u−)dMij(u), P-a.s. (3.11)

This means that the density process Λ for the measure change from P to Q has the above
(double) martingale representation (3.11). Since Q is any arbitrary probability measure
equivalent to P on G(T), the density process of any arbitrary probability measure equivalent
to P on G(T) has the representation (3.11).

Let η := {ηij | i, j = 1, 2, . . . ,N, i /= j}, where ηij := {ηij(t) | t ∈ T} ∈ L1
loc(Mij). Write

L1
loc(M) for the space of such families of processes η. For each θ ∈ L2

loc(W) and η ∈ L1
loc(M),

we define the process Λθ,η := {Λθ,η(t) | t ∈ T} by

Λθ,η(t) = 1 +
∫ t

0
θ(u)Λθ,η(u−)dW(u) +

N∑

i,j=1, i /= j

∫ t

0
ηij(u−)Λθ,η(u−)dMij(u), P-a.s. (3.12)

For each θ ∈ L2
loc(W) and η ∈ L2

loc(M), let Q
θ,η be a probability measure equivalent to

P on G(T) such that

dQ
θ,η

dP

∣∣∣∣∣
G(T)

:= Λθ,η(T). (3.13)

Then the space of probability measures equivalent to P on G(T), denoted by Qe(G(T),P), is
generated by

Qe(G(T),P) =
{

Q
θ,η | θ ∈ L2

loc(W), η ∈ L1
loc(M)

}
. (3.14)

We call this the canonical space of probability measures equivalent to P on G(T).
We now restrict the space Qe(G(T),P) to the space of equivalent (local) martingale

measures using the fundamental theorem of asset pricing. This theorem was originally
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developed by Harrison and Kreps [21] and Harrison and Pliska [22, 23]. It was later
extended by a number of authors (see, for example, Delbaen and Schachermayer [24, 25]
and the references therein). A version of this theorem states that the absence of arbitrage
opportunities is (essentially) equivalent to the existence of an equivalent (local) martingale
measure under which discounted asset price processes are (local)-martingales with respect
to some filtration. In our case, the filtration is given by the enlarged filtration G, which is the
observed filtration.

Let Me(G(T),P) be the space of equivalent, (local), martingale measures. Then
Me(G(T),P) is a subspace of Qe(G(T),P) such that for each Q

θ,η ∈ Me(G(T),P), the
discounted share price process is a (G,Qθ,η)-(local)-martingale. The following theorem gives
a characterization for Me(G(T),P).

Theorem 3.6. For each t ∈ T, let

θ†(t) =
r(t) − μ(t)

σ(t)
. (3.15)

Write θ† := {θ†(t) | t ∈ T}. Then

Me(G(T),P) =
{

Q
θ†,η ∈ Qe(G(T),P) | η ∈ L1

loc(M)
}
. (3.16)

Proof. Let S̃ := {S̃(t) | t ∈ T} be the discounted share price process, where S̃(t) =
exp(−

∫ t
0 r(u)du)S(t) for each t ∈ T. Then under P,

dS̃(t) =
(
μ(t) − r(t)

)
S̃(t)dt + σ(t)S̃(t)dW(t). (3.17)

Note that S̃ is a (G,Qθ,η)-(local)-martingale, where Q
θ,η ∈ Qe(G(T),P), if and only if Λθ,ηS̃ is

a (G,P)-(local)-martingale. Applying Itô’s differentiation rule to Λθ,η(t)S̃(t) gives

Λθ,η(t)S̃(t) = Λθ,η(0)S̃(0) +
∫ t

0
S̃(u−)dΛθ,η(u) +

∫ t

0
Λθ,η(u)dS̃(u) +

[
S̃,Λθ,η

]
(t)

= Λθ,η(0)S̃(0) +
∫ t

0
Λθ,η(u)S̃(u)

(
μ(u) − r(u) + θ(u)σ(u)

)
du

+
∫ t

0
Λθ,η(u)S̃(u)(θ(u) + σ(u))dW(u) +

N∑

i,j=1, i /= j

∫ t

0
Λθ,η(u)S̃(u)ηij(u)dMij(u).

(3.18)

This is a (G,P)-(local)-martingale if and only if for each t ∈ T,

μ(t) − r(t) + θ(t)σ(t) = 0. (3.19)

This proves the result.
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Note that Me(G(T),P) is the largest subspace of Qe(G(T),P) such that for each Q ∈
Me(G(T),P), the discounted share price process S̃ is a (G,Q)-(local)-martingale. We call
Me(G(T),P) the canonical space of equivalent martingale measures. This space is generated
by the density processes Λθ†,η, η ∈ L1

loc(M), from the martingale representation of a double
martingale presented in Theorem 3.5.

Note that the martingale condition alone is not sufficient to determine a unique
equivalent martingale measure. In particular, η ∈ L1

loc(M) is undetermined. Consequently,
Me(G(T),P) has more than one element. In the next section 4, we shall determine a unique
equivalent martingale measure which is optimal in some sense over all of the equivalent
martingale measures in the canonical space Me(G(T),P).

4. The Minimal Relative Entropy Approach

In this section we shall employ the minimal relative entropy approach to select an equivalent
martingale measure from the canonical space Me(G(T),P). The idea of entropy has a
long history in physics. Boltzmann [26] was the first to introduce the concept of entropy
in thermodynamics, where the thermodynamic entropy was introduced and its historical
probabilistic interpretation was given. The concept of entropy also plays a fundamental
role in statistics. In particular, Akaike [27] provided a statistical characterization of entropy
based on a multinomial distribution and introduced the famous Akaike information criterion
(AIC) by linking the maximization of likelihood function with the maximization of entropy,
(see also Tong [28] for further discussion). Nowadays, AIC is a standard tool for model
identification and selection in statistical science.

The concept of entropy also plays an important role inmathematical finance. Miyahara
[29] was the first to introduce the minimal entropy martingale measure (MEMM) approach
to select an equivalent martingale measure in an incomplete market. Nowadays, the MEMM
approach has become one of the major approaches for option valuation in an incomplete
market. The basic idea of the MEMM approach is to select an equivalent martingale measure
so as to minimize the “distance” between an equivalent martingale measure and a real-
world probability measure described by their relative entropy. Consequently, the MEMM
is the equivalent martingale measure which is closest to the real-world probability measure.
Indeed, the MEMM can be related to a known tool in actuarial science, namely, the Esscher
transform (see Bühlmann et al. [30]). The Esscher transform was first introduced to finance,
in particular, option valuation, by the seminal work of Gerber and Shiu [12]. For details about
theMEMMapproach for option valuation, interested readersmay refer to works byMiyahara
[31, 32], Fujiwara and Miyahara [33], and Schweizer [34]. In addition to option valuation,
the concept of relative entropy has been considered in risk measurement. For example, the
entropic risk measure is introduced by assuming that the penalty function of a convex risk
measure is a relative entropy (see, for example, Föllmer and Schied [35]).

Before presenting the MEMM approach for pricing regime-switching risk, we first
give the dynamics of the share price process S and the Markov chain X under an equivalent
martingale measure Q

θ†,η ∈ Me(G(T);P).
Consider the following process Z := {Z(t) | t ∈ T} defined by putting the following:

Z(t) :=
∫ t

0
θ†(u)dW(u) +

N∑

i,j=1, i /= j

∫ t

0
ηij(u)dMij(u). (4.1)
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Then the density process Λθ†,η associated with the measure Q
θ†,η can be written as follows:

Λθ†,η(t) = 1 +
∫ t

0
Λθ†,η(u−)dZ(u). (4.2)

Consequently, by Elliott [36, see Theorem 13.5], we have, for each t ∈ T, P-a.s., that

Λθ†,η(t) = E(Z)(t)

= exp
(
Z(t) − 1

2
〈Zc,Zc〉(t)

)∏

0<u≤t
(1 + ΔZ(u))e−ΔZ(u),

(4.3)

where E(Z) := {E(Z)(t) | t ∈ T} is the stochastic exponential of the process Z; Zc := {Zc(t) |
t ∈ T} is the continuous part of the processZ; {〈Zc,Zc〉(t) | t ∈ T} is the predictable quadratic
variation process of Zc; ΔZ(t) := Z(t) − Z(t−), the jump at time t.

Then for each t ∈ T,

Λθ†,η(t) = exp

⎛

⎝
∫ t

0
θ†(u)dW(u) − 1

2

∫ t

0

(
θ†(u)

)2
du +

N∑

i,j=1,i /= j

∫ t

0
ln
(
1 + ηij(u)

)
dMij(u)

+
N∑

i,j=1,i /= j

∫ t

0

[
ln
(
1 + ηij(u)

)
− ηij(u)

]
aij(u)I{X(u−)=ei}du

⎞

⎠.

(4.4)

Note that the density process Λθ†,η is strictly positive P-a.s. if and only if η(t) > −1, P-a.s., for
each t ∈ T. Consequently, we must impose the condition that η(t) > −1, P-a.s., for each t ∈ T.

By the Girsanov theorem for jump processes, (see Elliott [36], Chapter 13 therein),
under the measure Q

θ†,η, the process Wθ†,η := {Wθ†,η(t) | t ∈ T} defined by putting the
following:

Wθ†,η(t) := W(t) −
∫ t

0
θ†(u)du, t ∈ T, (4.5)

is a standard Brownian motion with respect to G. This implies that under Q
θ†,η, the share

price process is governed by

dS(t) = r(t)S(t)dt + σ(t)S(t)dWθ†,η(t). (4.6)

Furthermore, for each i, j = 1, 2, . . . ,N with i /= j, the process M
θ†,η

ij := {Mθ†,η

ij (t) | t ∈ T}
defined by putting the following:

M
θ†,η

ij (t) := Nij(t) −
∫ t

0

(
1 + ηij(u)

)
aij(u)I{X(u−)=ei}du, (4.7)
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is a (G,Qθ†,η)-martingale. In other words, (1 + ηij(t))aij(t)I{X(t−)=ei} is the intensity at time t of
the point process Nij under Q

θ†,η.
For each i, j = 1, 2, . . . ,N with i /= j and each t ∈ T, let

a
η

ij(t) :=
(
1 + ηij(t)

)
aij(t). (4.8)

We then take

a
η

ii(t) := −
N∑

j=1,j /= i

a
η

ij(t), (4.9)

so that

N∑

j=1

a
η

ij(t) = 0. (4.10)

Note that η(t) > −1, P-a.s., for each t ∈ T, so a
η

ij(t) ≥ 0, i /= j, and aii(t) ≤ 0.

We now define a family of matrices, Aη(t) := [aη

ij(t)]i,j=1,2,...,N , t ∈ T. Then under Q
θ†,η,

the chain X has the family of matrices Aη(t) := [aη

ij(t)]i,j=1,2,...,N , t ∈ T. Consequently, under

Q
θ†,η, the dynamics of the chain X become

X(t) = X(0) +
∫ t

0
Aη(u)X(u−)du +Mθ†,η(t). (4.11)

Here Mθ†,η := {Mθ†,η(t) | t ∈ T} is an RN-valued, (G,Qθ†,η)-martingale such that

M
θ†,η

ij (t) =
∫ t

0
〈X(u−), ei〉

〈
ej , dMθ†,η(u)

〉
. (4.12)

To determine η, we adopt the MEMM approach. The relative entropy between Q
θ†,η

and P is defined by

R
(
Q

θ†,η,P
)
:= E

[(
dQ

θ†,η

dP

)
ln

(
dQ

θ†,η

dP

)]
. (4.13)

Our object is to determine η so as to minimize R(Qθ†,η,P). That is, to solve the following
optimization problem:

min
η

R
(
Q

θ†,η,P
)
. (4.14)
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By a version of the Bayes’ rule and the definition of dQ
θ†,η/dP, we have the following:

R
(
Q

θ†,η,P
)
= Eθ†,η

[
ln

(
dQ

θ†,η

dP

)]

= Eθ†,η

⎡

⎣
∫T

0
θ†(t)dW(t) − 1

2

∫T

0

(
θ†(t)

)2
dt +

N∑

i,j=1, i /= j

∫T

0
ln
(
1 + ηij(t)

)
dMij(t)

+
N∑

i,j=1, i /= j

∫T

0

[
ln
(
1 + ηij(t)

)
− ηij(t)

]
aij(t)I{X(t−)=ei}dt

⎤

⎦

= Eθ†,η

⎡

⎣
∫T

0
θ†(t)dWθ†,η(t) +

1
2

∫T

0

(
θ†(t)

)2
dt +

N∑

i,j=1, i /= j

∫T

0
ln
(
1 + ηij(t)

)
dMθ†,η(t)

+
N∑

i,j=1, i /= j

∫T

0

[(
1 + ηij(t)

)
ln
(
1 + ηij(t)

)
− ηij(t)

]
aij(t)I{X(t−)=ei}dt

⎤

⎦

= Eθ†,η

⎡

⎣
N∑

i,j=1, i /= j

∫T

0

[(
1 + ηij(t)

)
ln
(
1 + ηij(t)

)
− ηij(t)

]
aij(t)I{X(t−)=ei}dt

+
1
2

∫T

0

(
θ†(t)

)2
dt

]
.

(4.15)

Here Eθ†,η is an expectation under Q
θ†,η. The last equality follows from the fact that bothWθ†,η

and Mθ†,η are (G,Qθ†,η)-martingales.
For each (t, ω) ∈ T ×Ω, let

K(t, ω) :=
N∑

i,j=1, i /= j

((
1 + ηij(t, ω)

)
ln
(
1 + ηij(t, ω)

)
− ηij(t, ω)

)
. (4.16)

If we can find an η† := {η†
ij | i, j = 1, 2, . . . ,N, i /= j} such that for each (t, ω) ∈ T ×Ω,

η†(t, ω) := arg−min
η

K(t, ω), (4.17)

then η† minimizes the relative entropy R(Qθ†,η,P) over η.
For each i, j = 1, 2, . . . ,N with i /= j and each (t, ω) ∈ T×Ω, differentiatingK(t, ω)with

respect to ηij(t, ω) and setting the derivative equal to zero give the following:

ln
(
1 + ηij(t, ω)

)
= 0, (t, ω) ∈ T ×Ω . (4.18)

This then implies that for each (t, ω) ∈ T ×Ω,

ηij(t, ω) = 0. (4.19)
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Consequently,

Λθ†,η†
(t) = exp

(∫ t

0

(
r(u) − μ(u)

σ(u)

)
dW(u) − 1

2

∫ t

0

(
r(u) − μ(u)

σ(u)

)2

du

)
. (4.20)

In this case, Aη†
(t) = A(t), t ∈ T. In other words, the probability laws of the chain X remains

unchanged when changing the measures from P to Q
θ†,η†

. Therefore, if we wish to select
an equivalent martingale measure from the canonical space Me(G(T),P) using the minimal
relative entropy as the criterion, it is optimal that we do not price the regime-switching risk.
Indeed this also justifies the version of the Esscher transform adopted in Elliott et al. [10] for
option valuation in a Markovian regime-switching market.

5. Conclusion

Using the concept of relative entropy, we have addressed the question about whether regime-
switching risk should be priced. We first applied a martingale representation theorem for
a double martingale to identify the canonical space of equivalent martingale measures in
the Markovian, regime-switching, Black-Scholes-Merton market. This canonical space may
be viewed as the largest space of equivalent martingale measures in the regime-switching
market. We then selected an optimal equivalent martingale measure from this canonical space
by minimizing the “distance” between an equivalent martingale measure and the real-world
probability measure, where the “distance” is described by their relative entropy. It turned
out that the optimal equivalent martingale measure does not price the regime-switching risk
which further justifies the Esscher transform used in Elliott et al. [10] for option valuation in
a Markovian regime-switching market.
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