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We consider PM
λ,τ

policy of a dam inwhich thewater input is an increasing Lévy process. The release
rate of the water is changed from 0 toM and fromM to 0 (M > 0) at the moments when the water
level upcrosses level λ and downcrosses level τ (τ < λ), respectively. We determine the potential
of the dam content and compute the total discounted as well as the long-run average cost. We also
find the stationary distribution of the dam content. Our results extend the results in the literature
when the water input is assumed to be a Poisson process.

1. Introduction and Summary

Lam and Lou [1] consider the control of a finite dam where the water input is a Wiener
process, using PMλ,τ policies. In these policies, the water release rate is assumed to be zero
until the water reaches level λ > 0, as soon as this happens the water is released at rate
M > 0 until the water content reaches level τ > 0, λ > τ. Abdel-Hameed and Nakhi [2]
discuss the optimal control of a finite dam using PMλ,τ policies, using the total discounted as
well as the long-run average costs. They consider the cases where the water input is a Wiener
process and a geometric Brownian motion process. Lee and Ahn [3] consider the long-run
average cost case when the water input is a compound Poisson process. Abdel-Hameed [4]
treats the case where the water input is a compound Poisson process with a positive drift. He
obtains the total discounted cost as well as the long-run average cost. Bae et al. [5] consider
the PMλ,0 policy in assessing theworkload of anM/G/1 queuing system. Bae et al. [6] consider
the log-run average cost for PMλ,τ policy in a finite dam, when the input process is a compound
Poisson process. In this paper, we consider the PM

λ,τ
policy for the more general case where
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the water input is assumed to be an increasing Lévy process. At any time, the release rate
can be increased from 0 to M with a starting cost K1M or decreased from M to zero with
a closing cost K2M. Moreover, for each unit of output, a reward R is received. Furthermore,
there is a penalty cost which accrues at a rate f , where f is a bounded measurable function
on the state space of the content process.

We will use the term “increasing” to mean “nondecreasing” throughout this paper.
In Section 2, we discuss the potentials of the processes of interest as well as the other

results that are needed to compute the total discounted and long-run average costs. In
Section 3, we obtain formulas for the cost functionals using the total discounted as well as
the long-run average cost cases. In Section 4, we discuss the special cases where the water
input is an increasing compound Poisson process as well as inverse Gaussian process.

2. Basic Results

The content process is best described by the bivariate processB = (Z,R), whereZ = {Zt, t ≥ 0}
and R = {Rt, t ≥ 0} describe the dam content and the release rate, respectively. We define the
following sequence of stopping times:

̂T0 = inf{t ≥ 0 : Zt ≥ λ},
∗
T0= inf

{

t ≥ ̂T0 : Zt ≤ τ
}

,

̂Tn = inf
{

t ≥ ̂Tn−1 : Zt ≥ λ
}

,
∗
Tn= inf

{

t ≥ ̂Tn : Zt ≤ τ
}

, n = 1, 2, . . . .

(2.1)

The process B has as its state space the pair of line segments

S = [[0, λ) × {0}] ∪ [(τ,∞) × {M}]. (2.2)

Let I = {It, t ≥ 0} be an increasing Lévy process with drift a ≥ 0. For each t ≥ 0, we let
I∗t = It −Mt. From the definition of the PMλ,τ policy, it follows that, for each t ∈ [0, ̂T0), Zt = It,

Zt =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

It, t ∈
∞
⋃

n=0

{[ ∗
Tn, ̂Tn+1

)}

,

I∗t , t ∈
∞
⋃

n=0

{[

̂Tn,
∗
Tn

)}

.

(2.3)

Furthermore, I∗
̂Tn
= I

̂Tn
, n = 0, 1, . . .. It follows that the content process Z is a delayed regen-

erative process with the regeneration points being the
∗
Tn, n = 1, 2, . . . . The penalty cost rate

function is defined as follows:

f(z, r) =

⎧

⎨

⎩

g(z) (z, r) ∈ [0, λ) × {0},
g∗(z) (z, r) ∈ (τ,∞) × {M},

(2.4)

where g : [0, λ) → R+ and g∗ : (τ,∞) :→ R+ are bounded measurable functions.
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For any process Y = {Yt, t ≥ 0} with state space E, any Borel set A ⊂ E and any
functional f , Ey(f) denotes the expectation of f conditional on Y0 = y, Py(A) denotes
the corresponding probability measure, and IA( ) is the indicator function of the set A.
Throughout, we let R = (−∞,∞), R+ = [0,∞), N = {1, 2, . . .}, and N+ = {0, 1, . . .}. For
x, y ∈ R, we define x ∨ y = xmaxy and x ∧ y = xminy. Throughout, we define Wλ =
inf{t ≥ 0 : It ≥ λ} and W∗

τ = inf{t ≥ 0 : I∗t ≤ τ}. For any x < λ and y > τ , let
Cα
g(0, x, λ) and Cα

g∗(M,y, τ) be the expected discounted penalty costs, during the intervals
(0,Wλ) and (0,W∗

τ ), respectively. Furthermore, let Cg(0, x, λ) and Cg∗(M,y, τ) be the
expected nondiscounted penalty costs during the same intervals. It follows that

Cα
g(0, x, λ) = Ex

∫Wλ

0
e−αtg(It)dt, Cα

g∗
(

M,y, τ
)

= Ey

∫W∗
τ

0
e−αtg∗(I∗t )dt,

Cg(0, x, λ) = Ex

∫Wλ

0
g(It)dt, Cg∗

(

M,y, τ
)

= Ey

∫W∗
τ

0
g∗(I∗t )dt.

(2.5)

The functionals above, which we aim to evaluate, are basic ingredients in computing the
total discounted and long-run average costs associated with the PM

λ,τ
policy as discussed in

Section 3.
Let a ≥ 0 and ν be the drift term and the Lévymeasure of input process I, respectively,

then, for all t ≥ 0, x ≥ 0, and α ≥ 0 the Laplace transform of It is of the form,

Ex
[

e−αIt
]

= e−t[x+φ(α)]. (2.6)

The function φ(α) is known as the Lévy component and is given by

φ(α) = αa +
∫∞

0

(

1 − e−αx)ν(dx), (2.7)

where ν is a measure on [0,∞) satisfying

∫∞

0
(x ∧ 1)ν(dx) <∞, ν({0}) = 0. (2.8)

Increasing Lévy processes include increasing compound Poisson processes, inverse Gaussian
processes, gamma processes, and stable processes.

We assume that the expected value of I1 is finite throughout this paper.
To evaluate the cost functionals and other parameters of the content process, we define

the Lévy process killed atWλ as follows:

X = {It, t < Wλ}. (2.9)

From Theorem 3.3.12 of Blumenthal and Getoor [7], it follows that the process X is a strong
Markov process.
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Definition 2.1. Let Y be a Markov process with a state space E. For each α ≥ 0, the α-potential
of Y (denoted byUα

Y ) is defined for any bounded measurable function on E and every x ∈ E
via ((1.8.9), p.41 of [8])

Uα
Yf(x)

def=
∫

E

f(z)Uα
Y (x, dz) = Ex

∫∞

0
e−αtf(Yt)dt. (2.10)

Remark 2.2. Throughout, we denote the α-potential of the process I by Uα. Since the process
I has stationary independent increments, it follows that Uα(x, dy) = Uα(0, dy − x), for each
x and y in the state space of the process I satisfying y ≥ x. We denoteUα(0, dy) byUα(dy),
throughout.

Since the process I is increasing and has stationary independent increments, it follows
that

Cα
g(0, x, λ) = U

αg(x) =
∫λ

x

g
(

y
)

Uα(x, dy
)

=
∫λ−x

0
g
(

x + y
)

Uα(dy
)

, (2.11)

Cg(0, x, λ) = U0g(x) =
∫λ

x

g
(

y
)

U0(x, dy
)

=
∫λ−x

0
g
(

x + y
)

U0(dy
)

. (2.12)

The following lemma follows by taking g(x) = 1 for all x ∈ [0, λ) in (2.11) and (2.12),
respectively.

Lemma 2.3. For x ≤ λ one has

Ex
(

exp(−αWλ)
)

= 1 − αUαI[0,λ−x)(0) = αUαI[λ−x,∞)(0), (2.13)

Ex(Wλ) = U0I[0,λ−x)(0). (2.14)

The following Lemma gives the Laplace transform of IWλ as well as the expected value
of IWλ .

Lemma 2.4. (a) For x < λ and α ≥ 0,

Ex
[

exp(−αIWλ)
]

= exp(−αx)
[

1 − φ(α)
∫

[0,λ−x)
exp(−αz)U0(dz)

]

. (2.15)

(b) For x < λ,

Ex(IWλ) = x + E0(I1)E0(Wλ−x). (2.16)
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Proof of (a). For x < λ and α ≥ 0, since the process I has stationary independent increments,
we have

Ex
[

exp(−αIWλ)
]

= E0
[

exp(−α(x + IWλ−x))
]

= exp(−αx)
[

φ(α)
∫

[λ−x,∞)
exp(−αz) U0(dz)

]

= exp(−αx)
[

φ(α)

{

∫

[0,∞)
exp(−αz)U0(dz) −

∫

[0,λ−x)
exp(−αz)U0(dz)

}]

= exp(−αx)
[

φ(α)

{

1
φ(α)

−
∫

[0,λ−x)
exp(−αz) U0(dz)

}]

= exp(−αx)
[

1 − φ(α)
∫

[0,λ−x)
exp(−αz)U0(dz)

]

,

(2.17)

where the second equation follows from (8) of Alili and Kyprianou [9], and the fourth
equation follows from the definition of φ(α) andU0.

Proof of (b). For x < λ,

Ex(IWλ) = x + E0(IWλ−x)

= x + lim
α→ 0

[

1 − E0
[

exp(−αIWλ−x)
]

α

]

= x + lim
α→ 0

[

φ(α)
α

∫

[0,λ−x)
exp(−αz)U0(dz)

]

= x + φ′(0)U0I[0,λ−x)(0)

= x + E0(I1)U0I[0,λ−x)(0)

= x + E0(I1)E0(Wλ−x),

(2.18)

where the first equation follows since the process I is a Lévy process, the third equation
follows from (2.15), the fourth equation follows because φ(0) = 0, the fifth equation follows
since φ′(0) = E0(I1), and the last equation follows from (2.14).

To derive Cα
g∗(M,y, τ), Cg∗(M,y, τ), Ey(exp(−αW∗

τ )), and Ey(W∗
τ ), we define

X∗ =
{ ∗
It, t < W∗

τ

}

. (2.19)

Clearly, the state space of the process X∗ is (τ,∞). From Theorem 3.3.12 of Blumenthal and
Getoor [7], it follows that the process X∗ is a strong Markov process.
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Throughout, we assume that M ≥ a. Using Doob’s optional sampling theorem, the
following is easy to see.

Lemma 2.5. For x ≥ τ ,

Ex
[

exp(−αW∗
τ )
]

= exp
(−(x − τ)η(α)), (2.20)

where η(α) is the solution of the integral equation

Mη(α) = α + φ
(

η(α)
)

. (2.21)

The following Lemma gives, among other things, a formula for computing
Ex(W∗

τ ) and condition under which this expectation is finite.

Lemma 2.6. (a) η(0+) = 0 if and only ifM − E0(I1) > 0.
(b) The function η(α) is a concave increasing function on R+.
(c) For x ≥ τ ,

Ex(W∗
τ ) =

x − τ
M − E0(I1)

if M − E0(I1) > 0,

= ∞ otherwise.

(2.22)

Proof of (a). From (2.20), it follows that η(α) is an increasing function on R+ and
limα→∞η(α) = ∞. Let f(x) = η−1(x), using (2.21) it follows that f(x) = Mx − φ(x). Fur-
thermore, η(0+) is the largest root of f , and 0 is indeed a root of f and, since η(α) is an
increasing function, f is an increasing function on the domain [η(0+),∞). It follows that the
only root of the function f above is zero if and only if f ′(0) > 0. Observe that

f ′(x) =M − φ′(x)

=M − a −
∫∞

0
ye−xyν

(

dy
)

,

(2.23)

where the interchange of the differentiation and integration in the second equation is
permissible using the Lebesgue dominated convergence theorem, since for each x ≥ 0, y ≥
0, ye−xy < y and

∫∞
0 yν(dy) = E0(I1) − a < ∞. The rest of the proof follows since f ′(0) =

M − E0(I1).

Proof of (b). To prove part (b), first we observe that f ′(x) is an increasing function in its
argument, and hence f(x) is a convex function in its argument. Since f(x) = η−1(x), it follows
that η(α) is a concave function.

Proof of (c). If the proof of part (c) follows since, from (2.20),W∗
τ < ∞ almost everywhere if

and only if η(0+) = 0, in this case, Ex(W∗
τ ) = (x − τ)η′(0+) = (x − τ)/f ′(0) = (x − τ)/(M −

E0(I1)).
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Remark 2.7. The equation given in part (c) of Lemma 2.6 is consistent with the well-known
fact about the expected busy period of the M/G/1 queue.

Let
∗
Uα be the potential of the process X∗. To find

∗
Uα, we first need to introduce the

following definition.

Definition 2.8. A Lévy process is said to be spectrally positive (negative) if it has no negative
(positive) jumps.

Clearly, a Lévy process L is spectrally positive if and only if the process −L is spec-

trally negative. Furthermore, the process
∗
I is spectrally positive with bounded variation.

For θ, t ∈ R+, we have

E

[

e−θ
∗
It

]

= etψ(θ), (2.24)

where

ψ(θ) =Mθ − φ(θ). (2.25)

We note that the function η is the right-hand inverse of the function ψ.
We now define the α-scale function, which plays a major role in the applications of

spectrally positive (negative) Lévy processes. This function is closely connected to the two-
sided exit problem of such processes (cf. Bertion [10]).

Definition 2.9. For α ≥ 0, the α-scale function (of the process
∗
It)W (α) : R → R+ is the unique

function whose restriction to R+ is continuous and has Laplace transform
∫∞

0
e−θxW (α)(x)dx =

1
ψ(θ) − α, θ > η(α), (2.26)

and is defined to be identically zero on the interval (−∞, 0).

Letting α = 0, we get the 0-scale function, which is referred to as the “scale function”
in the literature. We denote this function by W (instead of W (0)) throughout. We note that
ψ(θ) = Mθ − φ(θ) = (Mθ − aθ) − ∫∞0 (1 − e−αx)ν(dx) = Nθ − θ ∫∞0 e−αxν[x,∞)dx, whereN =
M − a > 0. Let μ =

∫∞
0 xν(dx) =

∫∞
0 ν[x,∞)dx. For every x ∈ R+, let F(x) =

∫x

0 ν[y,∞)dy/μ
be the equilibrium distribution function corresponding to ν. Let ρ = μ/N and assume that
ρ < 1. It follows that

W(x) =
1
N

∞
∑

k=0

ρkF(k)(x), (2.27)

where F(k) is the kth convolution of F. Furthermore, we note that for α, x ∈ R+,

W (α)(x) =
∞
∑

k=0

αkW (k+1)(x), (2.28)

whereW (k) is the kth convolution ofW .
We are now in a position to state and prove a lemma that characterizes

∗
Uα.
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Lemma 2.10.
∗
Uα is absolutely continuous with respect to the Lebesgue measure on [τ,∞), and its

density is given as follows:

∗
Uα (x, y

)

= e−η(α)(x−τ)W (α)(y − τ) −W (α)(x − y), x, y ∈ [τ,∞). (2.29)

Proof. Define the process
∧
I to be equal to − ∗

I; it follows that
∧
I is a spectrally negative Lévy

process. For a, b ∈ R, we let

T+
b = inf

{

t ≥ 0 :
∧
It ≥ b

}

,

T−
a = inf

{

t ≥ 0 :
∧
It ≤ a

}

.

(2.30)

Supurn [11] proved that (for b > 0) the α-potential of the process obtained by killing

the process
∧
I at T+

b ∧ T−
0 is absolutely continuous with respect to the Lebesgue measure on

[0, b], and its density is equal to

W (α)(x)W (α)(b − y)

W (α)(b)
−W (α)(x − y), x, y ∈ [0, b]. (2.31)

It follows that, for a, b ∈ R, a < b, the α-potential of the process obtained by killing the process
∧
I at T+

b ∧ T−
a is absolutely continuous with respect to the Lebesgue measure on [a, b], and its

density is equal to

W (α)(x − a)W (α)(b − y)

W (α)(b − a) −W (α)(x − y), x, y ∈ [a, b]. (2.32)

From Lemma 4 of Pistorious [12], we haveW (α)(x) = O(eη(α)x) as x → ∞. Letting a → −∞
in the last density above, then the the α potential of the process obtained by killing the process
∧
I at T+

b
is absolutely continuous with respect to the Lebesgue measure on (−∞, b), and its

density (denoted by uαb(x, y)) is as follows:

uαb
(

x, y
)

= e−
η(α )(b−x)

W (α)(b − y) −W (α)(x − y), x, y ∈ (−∞, b]. (2.33)

Observe that for any A ⊂ (τ,∞) and x ∈ (τ,∞),

Px{X∗
t ∈ A} = P

{ ∗
It∈ A, t < W∗

τ |
∗
I0= x

}

= P
{

̂It ∈ −A, t < T+
−τ | ̂I0 = −x

}

.

(2.34)
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Thus,

∗
uα
(

x, y
)

= uα−τ
(−x,−y)

= e−
η(α)(x−τ)

W (α)(y − τ) −W (α)(y − x), x, y ∈ [τ,∞).
(2.35)

It is seen that, for x ≥ τ ,

Cα
g∗(M,x, τ) =

∗
Uα

∗
g (x) =

∫∞

τ

g∗(y
)

∗
Uα (x, dy

)

,

C0
g∗(M,x, τ) =

∗
U0 ∗

g (x) =
∫∞

τ

g∗(y
)

∗
U0 (x, dy

)

.

(2.36)

Theorem 2.11. For any α ≥ 0 and x ≥ 0,

(a) for x ≤ λ,

Ex

[

exp
(

−α ∗
T0

)]

=Mη(α) exp
(−η(α)(x − τ))

∫

[λ−x,∞)
exp
(−zη(α))Uα(dz), (2.37)

(b) for x > λ,

Ex

[

exp
(

−α ∗
T0

)]

= exp
(−η(α)(x − τ)). (2.38)

Proof of (a). Let � be the sigma algebra generated by (Wλ, IWλ), then we have

Ex

[

exp
(

−α ∗
T0

)]

= Ex
[

exp
(

−α
(

Wλ +
( ∗
T0 −Wλ

)))]

= Ex
[

Ex

[

exp
(

−α
(

Wλ +
( ∗
T0 −Wλ

)))

| �

]]

= Ex
[

exp(−αWλ)EIWλ
exp(−αW∗

τ )
]

= Ex
[

exp(−αWλ) exp
(−η(α)(IWλ − τ)

)]

= E0
[

exp(−αWλ−x) exp
(−η(α)(IWλ−x + x − τ))]

= exp
(−η(α)(x − τ))E0

[

exp(−αWλ−x) exp
(−η(α)(IWλ−x)

)]

=
(

α + φ
(

η(α)
))

exp
(−η(α)(x − τ))

∫

[λ−x,∞)
exp
(−zη(α))Uα(dz)

=Mη(α) exp
(−η(α)(x − τ))

∫

[λ−x,∞)
exp
(−zη(α))Uα(dz),

(2.39)
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where the third equation follows from the second equation, since given �,
∗
T0 − Wλ =

W∗
τ almost everywhere, the fourth equation follows from (2.20) above, the seventh equation

follows from (8)Alili and Kyprianou [9], and the last equation follows from (2.21) above.

Proof of (b). The proof of the part (b) of the theorem follows from (2.20), since for x > λ,Wλ =

0 and
∗
T0 =W∗

τ almost everywhere.

3. The Total Discounted, Long-Run Average Costs and the Stationary
Distribution of the Dam Content

We now discuss the computations of the cost functionals using the total discounted cost as
well as the long-run average cost criteria. Let W be the length of the first cycle, that is, W =
∗
T1 −

∗
T0, and let Cα(x) be the expected cost during the interval [0,

∗
T0), when Z0 = x. Since

the content process Z is a delayed regenerative process with regeneration points
∗
T0,

∗
T1, . . .,

using the delayed regeneration property, it follows that the total discounted cost associated
with an PM

λ,τ
policy is given by

Cα(λ, τ) = Cα(x) +
Ex

(

exp
(

−α ∗
T0

)

EτCα(1)
)

1 − Eτ
(

exp(−αW)
) ,

(3.1)

where Cα(1) is the total discounted cost during the interval (0,W). From the definitions of
Cα(x), it follows that, for x > λ,

Cα(x) =M

{

K1 − REx
∫W∗

τ

0
e−αtdt

}

+ Cα
g∗(M,x, τ). (3.2)

To compute Cα(x) for x ≤ λ, we let � be the sigma algebra generated by (Wλ, IWλ) and
proceed as follows:

Cα(x) =M

⎧

⎨

⎩

K2 +K1Ex
(

e−αWλ

)

− REx
∫

∗
T0

Wλ

e−αtdt

⎫

⎬

⎭

+ Ex

∫Wλ

0
e−αtg(Zt)dt + Ex

∫

∗
T0

Wλ

e−αtg∗(Zt)dt

=M
{

K2 +K1Ex
(

e−αWλ

)

− R

α

[

Ex
(

e−αWλ

)

− Ex
(

e−α
∗
T0

)]}

+ Ex

∫Wλ

0
e−αtg(It)dt + Ex

∫

∗
T0

Wλ

e−αtg∗(Zt)dt
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=M
{

K2 +K1Ex
(

e−αWλ

)

− R

α

[

Ex
(

e−αWλ

)

− Ex
(

e−α
∗
T0

)]}

+ Cα
g(0, τ, λ) + ExEx

⎛

⎝

∫

∗
T0

Wλ

e−αtg∗(Zt)dt | �

⎞

⎠

=M
{

K2 +K1Ex
(

e−αWλ

)

− R

α

[

Ex
(

e−αWλ

)

− Ex
(

e−α
∗
T0

)]}

+ Cα
g(0, τ, λ) + Ex

⎡

⎣e−αWλEIWλ

⎛

⎝

∫

∗
Wτ

0
e−αtg∗(I∗t )dt

⎞

⎠

⎤

⎦

=M
{

K2 +K1Ex
(

e−αWλ

)

− R

α

[

Ex
(

e−αWλ

)

− Ex
(

e−α
∗
T0

)]}

+ Cα
g(0, τ, λ) + Ex

[

e−αWλCα
g∗(M, IWλ, λ)

]

,

(3.3)

where the second equation follows from the definition of the process Z, the third equation
follows from the definition of Cα

g(0, τ, λ), the fourth equation follows from the definition of

the content process Z and since, given �,
∗
T0 − Wλ = W∗

τ almost everywhere, and the last
equation follows from the definition of Cα

g∗(M,x, λ).
We note that

EτCα(1) = Cα(τ). (3.4)

The following lemma shows how Eτ(exp(−αW)) (given in (3.1)) can be computed
and also gives a formula for computing the expected value ofW , which we will need later on
to compute the long-run average cost.

Lemma 3.1. LetW be the length of the first cycle as defined above, then
(a)

Eτ
(

e−αW
)

= 1 −Mη(α)
∫λ−τ

0
exp
(−zη(α))Uα(dz), (3.5)

(b)

Eτ(W) =
ME0(Wλ−τ)
M − E0(I1)

if E0(I1) < M,

= ∞ otherwise.

(3.6)
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Proof of (a). We note that, given Z0 = τ , T ∗
0 =W almost everywhere. Thus, for each α ≥ 0,

Eτ
(

e−αW
)

= Eτ
(

e−αT
∗
0

)

=Mη(α)
∫

[λ−τ,∞)
exp
(−zη(α))Uα(dz)

=Mη(α)

[

∫∞

0
exp
(−zη(α))Uα(dz) −

∫λ−τ

0
exp
(−zη(α))Uα(dz)

]

=Mη(α)

[

1
Mη(α)

−
∫λ−τ

0
exp
(−zη(α))Uα(dz)

]

= 1 −Mη(α)
∫λ−τ

0
exp
(−zη(α))Uα(dz),

(3.7)

where the second equation follows (2.37) upon substituting τ for x, the third equation follows
from the definition of theUα and (2.21).

Proof of (b). From (3.5), it is evident that, starting at τ , W is finite almost everywhere if and
only if η′(0+) = 0. From part (a) of Lemma 2.6, it follows thatW is finite almost everywhere
if and only if E0(I1) < M. From (2.14) and (3.5), we have

Eτ(W) =Mη′(0)E0(Wλ−τ)if E0(I1) < M,

= ∞ otherwise.
(3.8)

The proof of (b) is complete, since as shown in the proof of part (c) of Lemma 2.6

η′(0) =
1

M − E0(I1)
if E0(I1) < M. (3.9)

Now, we turn our attention to computing the long-run average cost per a unit of time.
Let M − E0(I1) = M∗ and assume that M∗ > 0. From (3.1), (3.3), and (3.4), it follows, by
a Tauberian theorem, that the long-run average cost per unit of time, denoted by C(λ, τ), is
given by

C(λ, τ) =
M[K + (RE0(Wλ−τ))] + Cg(0, λ, τ) + Eτ

(

Cg∗(M, IWλ, τ)
)

Eτ(W)
− RM

=
KM∗ + (M∗/M)

[

Cg(0, λ, τ) + Eτ
(

Cg∗(M, IWλ, τ)
)]

E0(Wλ−τ)
− RE0(I1),

(3.10)

where K = K1 +K2, and the second equation follows from (3.6) and the first equation.
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Remark 3.2. Assume that both penalty functions g and g∗ are identically zero on their
domains, andM∗ defined above is greater than zero. The following follows from (3.10) above:

C(λ, τ) =
KM∗

E0(Wλ−τ)
− RE0(I1). (3.11)

Letting R = 0, K = 0 and g(x) = I[τ,z](x), x ∈ [0, λ) and g∗(x) = I[τ,z](x), x ∈ [τ,∞) in
(3.10), we get the following proposition which generalizes the results obtained by Lee and
Ahn [3], where they assumed that the input process is a compound Poisson process and
τ = 0.

Proposition 3.3. Assume that M > E0(I1). Let Z = limt→∞Zt, and, H(z) be the distribution
function of the process Z, then, for z ∈ [τ,∞),

H(z) =
(

M∗

M

)

E0
(

W(λ∧z)−τ
)

E0(Wλ−τ)
+
(

M∗

M

)Eτ

[ ∗
U

0

I[τ,z] (IWλ)
]

E0(Wλ−τ)
.

(3.12)

4. Special Cases

In this section, we give the basic identities needed to compute the cost functionals when the
input process is an inverse Gaussian process and a compound Poisson process, respectively.

Case 1. Assume that I is an inverse Gaussian process with transition function defined for
x ≥ 0, y ≥ 0, μ > 0, and σ2 > 0, by

p
(

t, x, y
)

=
t

σ
√

2π
(

y − x)3
exp

[

−
(

μ
(

y − x) − t)2
2
(

y − x)σ2

]

, y ≥ x.

= 0 y < x.

(4.1)

It follows that the process I is an increasing Lévy process with state space R+, Lévy measure

ν
(

dy
)

=
1

σ
√

2πy3
e−(yμ

2/2σ2), (4.2)

and Lévy component

φ(α) =

√

2ασ2 + μ2 − μ
σ2

. (4.3)

Furthermore, E0(I1) = 1/μ.
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Substituting this Lévy component above in (2.21), it is seen that the solution of this
equation is as follows (we omit the proof):

η(α) =
α

M
+

(

1 −Mμ
)

+
√

2αMσ2 +
(

1 −Mμ
)2

M2σ2
. (4.4)

To find the α-potential of the process I, for each x ≥ 0 and β ≥ 0, we define fβ(x) =
exp(−βx), and it is easily seen that

Uαfβ(0) =
σ2

ασ2 +
{√

2βσ2 + μ2 − μ
}
. (4.5)

Throughout we let ϕZ(·) be as the standard normal density function and let erf( ) and
erf c( ) be the well-known error and complimentary error functions, respectively. Inverting
the above function with respect to β, we have

Uα(dy
)

=
σ√
y
ϕZ

(√
yμ

σ

)

dy +

(

μ − ασ2

2

)

eαy((ασ
2/2)−μ) erf c

{

√

y
ασ2 − μ√

2σ2

}

dy

= uα
(

y
)

dy,

(4.6)

where

uα
(

y
)

=
σ√
y
ϕZ

(√
yμ

σ

)

+

(

μ − ασ2

2

)

eαy((ασ
2/2)−μ) erf c

{

√

y
ασ2 − μ√

2σ2

}

. (4.7)

From (2.13), it follows that, for x ≤ λ,

Ex
(

exp(−αWλ)
)

= αUαI[λ−x,∞)(0)

=
ασ2 − μ
ασ2 − 2μ

eα(λ−x)((ασ
2/2)−μ) erf c

(

√

λ − xασ
2 − μ√
2σ2

)

− μ

ασ2 − 2μ
erf c

(√
λ − xμ√
2σ2

)

,

(4.8)

where the last equation follows by integratingUα(dy) over the interval [λ − x,∞).
Inverting the right hand side of (4.8)with respect to α, it follows that, given I0 = x ≤ λ,

the distribution function ofWλ (denoted by FWλ( )) is given by

FWλ(t) =
1
2
erf c
{

(λ − x)μ − t√
2σ2

}

− 1
2
e2μt/σ

2
erf c
{

(λ − x)μ + t√
2σ2

}

, t ≥ 0. (4.9)
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Furthermore, for x ≤ λ,

Ex(Wλ) = U0I[0,λ)(x)

= σ
∫λ−x

0

1√
y
ϕZ

(

√

y
μ

σ

)

dy +
μ

2

∫λ−x

0
erf c

(

−
√

y

2
μ

σ

)

dy

=
(λ − x)μ

2
+ σ
√

λ − x ϕZ

(

√

λ − xμ
σ

)

+
(λ − x)μ2 + σ2

2μ
erf

⎛

⎝

√

λ − x
2

μ

σ

⎞

⎠,

(4.10)

where the third equation follows from the second equation upon tedious calculations which
we omit.

We now turn our attention to computing the distribution function of IWλ (denoted
by FIWλ

(x)). We first need the following identity which expresses the Lévy component φ(α)
given in (4.3) in a form suitable for computing FIWλ

. The proof of this identity follows from
(4.3) after some simple algebraic manipulations which we omit:

φ(α) =

√

2ασ2 + μ2 − μ
σ2

=
2
σ2

[

α

φ(α)
− μ
]

.

(4.11)

For each β ∈ R+, we write

∫∞

λ

e−βxFIWλ
(x)dx =

φ
(

β
)

β

∫∞

λ

e−αxu0(x)dx

=
2
σ2

[

1
φ
(

β
)

∫∞

λ

e−βxu0(x)dx − μ

β

∫∞

λ

e−βxu0(x)dx

]

=
2
σ2

[∫∞

0
e−βxu0(x)dx

∫∞

λ

e−βxu0(x)dx − μ

β

∫∞

λ

e−βxu0(x)dx
]

=
2
σ2

[∫∞

λ

e−βx
{∫x

λ

(

u0
(

x − y) − μ
)

u0
(

y
)

dy

}

dx

]

,

(4.12)

where the first equation follows from the second equation given the proof of part (a) of
Lemma 2.4 by letting x = 0, the second equation follows from (4.11), the third equation
follows from (4.5) upon letting α = 0, and the fourth equation follows from the third equation
through integration by parts.

From (4.12), it follows that, for each x ≥ λ,

FIWλ
(x) =

2
σ2

[∫x

λ

{

u0
(

x − y) − μ
}

u0
(

y
)

dy

]

. (4.13)
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Case 2. Assume that I is an increasing compound Poison process with intensity u and F as
the distribution function of the size of each jump. This model is treated in details in references
[3, 4, 6]. Here, we give the basic entities involved when the drift terms a = 0. For the proof
of these entities and more in depth analysis of this case, the reader is referred to the above-
mentioned references.

It is obvious that

φ(α) = u
∫∞

0

(

1 − e−αx)F(dx), (4.14)

E0(I1) = uμ, where μ is the expected jump size of the compound Poisson process.
Define, for any α ≥ 0 and y ≥ 0, Fα(y) = (u/u+α)F(y). For n ∈ N+, we let F(n)

α (y) be
the nth convolution of Fα(y), where F(0)

α (y) = 1 for all y ≥ 0. For each y ≥ 0, we define
Rα(y) =

∑∞
n=0 F

(n)
α (y) to be the renewal function corresponding to Fα(y). It follows that

Uα(dy
)

=
1

u + α
Rα

(

dy
)

. (4.15)

Furthermore, for x ≤ λ,

Ex
(

exp(−αWλ)
)

= 1 − αUαI[0,λ−x)(0)

= 1 − α

u + α
Rα(λ − x),

Ex(Wλ) = U0I[0,λ−x)(0)

=
1
u
R0(λ − x).

(4.16)

Also,

E0

(

e−αIWλ

)

= φ(α)
∫∞

λ

e−αxU0(dx)

=
∫∞

λ

e−αxR0(dx) −
∫∞

0
e−αxF(dx)

∫∞

λ

e−αxR0(dx)

=
∫∞

λ

e−αxR0(dx) −
∫∞

λ

e−αx
∫x

λ

F
(

dx − y)R0
(

dy
)

,

(4.17)

where the first equation follows from the second equation in the proof of part (a) of
Lemma 2.4, by letting x = 0. Furthermore, the second equation follows from (4.14) and (4.15).
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Inverting (4.17) with respect to α, the distribution function of IWλ , denoted by G, is
given through

G(dx) =
[

R0(dx) −
∫x

λ

[

F
(

dx − y)R0
(

dy
)]

]

I[λ,∞)(x)

=
[

F(dx) +
∫x

λ

F
(

dx − y)R0
(

dy
)

]

I[λ,∞)(x).

(4.18)
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