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This paper deals with the general optimal control problem for fully coupled forward-backward
stochastic differential equations with random jumps (FBSDEJs). The control domain is not
assumed to be convex, and the control variable appears in both diffusion and jump coefficients
of the forward equation. Necessary conditions of Pontraygin’s type for the optimal controls
are derived by means of spike variation technique and Ekeland variational principle. A linear
quadratic stochastic optimal control problem is discussed as an illustrating example.

1. Introduction
1.1. Basic Notations

Throughout this paper, we denote by R" the space of n-dimensional Euclidean space, by R"4
the space of n x d matrices, and by 3" the space of n x n symmetric matrices. (-,-) and | - |
denote the scalar product and norm in the Euclidean space, respectively. T appearing in the
superscripts denotes the transpose of a matrix.

Let (Q,¥F, (¥t} P) be a complete filtered probability space satisfying the usual
conditions, where the filtration {¥:},, is generated by the following two mutually
independent processes:

(i) a one-dimensional standard Brownian motion {W(t) },¢;

(ii) a Poisson random measure N on E x R, where E C R is a nonempty open set
equipped with its Borel field B(E), with compensator N(dedt) = sr(de)dt, such
that N(A x [0,t]) = (N = N)(A x [0,t])5, is a martingale for all A € B(E) satisfying
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a(A) < co.ar is assumed to be a o-finite measure on (E,B(E)) and is called the
characteristic measure.

Let T > 0 be fixed and U be a nonempty subset of R*. We denote Ml = R"xR™xR™ xR™.
Any generic point in M is denoted by 6 = (x, y, z,¢). Let U [0, T] be the set of all F-predictable
processes u : [0,T] x Q — U such that sup_, Elu(t)| < +oo,for all i = 1,2,.... Any u(-) €
U[0,T] is called an admissible control process. We denote by £2(E, B(E), r; R™) or £? the set
of integrable functions ¢ : E — R™ with norm ||c(e)||iz2 =g lc(e)|?or(de) < oo. We define

L%cT(Q; R™) := {§ : Q — R™ | ¢ is Fr-measurable, E[¢|* < oo},

T
L%c([O,T];Rm) =1¢:[0,T]xQ—R"|gis %—adapted,IEf |<p(t)|2dt < oo},
0

T
Lé,p([O, TER™):=4¢:[0,T]xQ—R"|¢is %‘L—predic’cable,IEJ‘0 |(ﬁ(t)|2dt < oo},

(1.1)
FX([0,T;R™) == {$: [0, T] xQx E— R™ |
T
¢ is Fi-predictable, such that, IEI f |<ﬁ(t,€)|2~7f(d€)dt < OO}-
0 JE
We denote
M2[0,T] := L ([0, T, R") x L ([0, TI;R™) x Lg, ([0, T];R™) x F3([0, T];R™). (1.2)

Clearly, #?[0,T] is a Banach space. Any process in _M*[0,T] is denoted by O(:) =
(x(),y(),z(-),c(-,-)), whose norm is defined by

A2 . 2 2 (7 2 ! 2
1O ey = E| sup [x(®) + sup |y(H)]"+ | [z(t)[ dt +E lc(t, e)[“or(de)dt|.
] ] 0 0 JE

te[0,T te[0,T
(1.3)

1.2. Formulation of the Optimal Control Problem and Basic Assumptions
For any u(-) € #[0,T] and a € R", we consider the following fully coupled forward-backward
stochastic control system:

dx(t) =b(t,x(t), y(t), z(t), c(t,-), u(t))dt + o (t, x(t), y(t), z(t), c(t,-), u(t) ) AW (t)

+f g(t,x(t-),y(t-), z(t), c(t, ), u(t), e) N(dedt),

’ (1.4)

—dy(t) = f(t,x(t),y(t),z(t),c(t,-), u(t))dt — z(H)dW (t) — f c(t, e)N(dedt),
E

x(0)=a,  y(T)=h(x(T)),
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with the cost functional given by
T
J(u() = EUO 1(t, x(8), y (), z(t), c(t, ), u(t))dt + p(x(T)) + Y(y(O))]. (1.5)

Here, O(-) = (x(-), y(-), z(-), c(-,-)) takes value in Ml = R" x R™ x R™ x R and

b,o:[0,T]xMxU— R", g:[0,T]xMxUxE—R",
f:[0,T] xMxU— R", h:R" — R", (1.6)
¢:R" —R, y:R" —R, [:]0,T] xMxU— R.

For any u(-) € #[0,T] and a € R", we refer to O(-) = (x(-), y(-),z(:),c(:,-)) as the state
process corresponding to the admissible control u(-) if FBSDE] (1.4) admits a unique adapted
solution. For controlled FBSDE] (1.4) with cost functional (1.5), we consider the following.
Problem C. Find u(-) € #[0, T], such that

J@()) = inf J(u()). (1.7)

u(-)eu[0,T]

Any u(-) € U[0,T] satisfying (1.7) is called an optimal control process of Problem
C, and the corresponding state process, denoted by o) = (x(-),y(),z(-),c(-,-)), is called
optimal state process. We also refer to (x(-),y(-),z(-),c(:,-),u(:)) as an optimal 5-tuple of
Problem C.

Our main goal in this paper is to derive some necessary conditions for the optimal
control of Problem C, which is called the stochastic maximum principle of Pontraygin’s type.
For this target, we first introduce the following basic assumption throughout this paper.

(HO) For any u(-) € U[0,T] and a € R", FBSDE] (1.4) admits a unique adapted solution
O() = (x(),y(),z(),c(-,-)) € M*[0,T]. Moreover, the following estimate holds:

, (T T
19Osepor = IE[ sup |x(t)|* + sup ly(®)| +I |z(t) [Pt + E'[ J e (t, e)|27r(de)dt:|
] 0 0JE

te[0,T] te[0,T

T 2 T 2
<CE [|a|2 +|h(0) + <f0 |b<t,0,u<t>>|dt> + (fo |f<t,0,u(t>>|dt> (1.8)

T , T R
+f0 lo(t,0,u(t))| ¢7lif+J‘O L |g(t,0,u(t), e)| x(de)dt|.
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Further, if C:)(-) = (X("),y("),2(-),¢(-,)) € M>*[0,T] is the unique adapted solution of (1.4) with

h(-) and u(-) replaced by h : R* — R™ and u(-) € U[0,T], respectively, then the following stability
estimate holds:

(COREO]

= E| sup [x(t) - X(®)]> + sup |y(t) - 7(H)|?
M[0,T] I:tE[O,I:;]l l te[O,I;]ly Y |

T =2 r o~ 2
+f0 |z(t) — z(t)] dt+I[-EJ‘O L lc(t,e) —c(t, e)| .n'(de)dt]
T 2
<CE [Ih(x(T)) ~hET)P + <f0 |, ©1), u(t) ~b(,6(), (1)) |dt>

2
' (f |ft,0w,ut) - £ (1.6, 7)) |dt>
N I 2
+fo |0, (), u(t) o (1,60, a(t)) | at

! ~ 2
+ fo L |g(t,e(t),u(t),e) - g(t,@(t),ﬁ(t),e>| yr(de)dt] ‘

(1.9)

By adopting the ideas from Wu [1], we know that under certain G-monotonicity conditions
for the coefficients, the existence and uniqueness of FBSDE] (1.4) guaranteed which leads to
hypothesis (H0). Our main goal in this paper is to derive some necessary conditions for the
optimal control of Problem C. Hence, we impose the well-posedness of the state equation
(1.4) as an assumption to avoid some technicalities not closely to our main results.

1.3. Developments of Stochastic Optimal Control and Contributions of
the Paper

It is well known that the optimal control problem is one of the central themes of modern
control sciences. Necessary conditions for the optimal control of the (forward) continuous
stochastic control system, that is, the so-called stochastic maximum principle of Pontraygin’s
type, were extensively studied since early 1960s. When Brownian motion is the unique noise
source, Peng [2] (see also Yong and Zhou [3]) obtained the maximum principle for the
general case, that is, the control variable entering the diffusion coefficient and control domain
being not convex.

Forward-backward stochastic control systems where the controlled systems are
described by forward-backward stochastic differential equations (FBSDEs) are widely used in
mathematical economics and mathematical finance, which includes the usual forward SDEs
as a special case. They are encountered in stochastic recursive utility optimization problems
(see [4-8]) and principal-agent problems (see [9, 10]). Peng [11] first obtained the necessary
conditions for optimal control for the partially coupling case when the control domain is
convex. And then Xu [12] studied the nonconvex control domain case and obtained the
corresponding necessary conditions. But he needs to assume that the diffusion coefficient
in the forward control system does not contain the control variable. Ji and Zhou [8] applied
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the Ekeland variational principle to establish a maximum principle for a partially coupled
forward-backward stochastic control system, while the forward state is constrained in a
convex set at the terminal time. Wu [13] recently established a general maximum principle
for optimal control problems derived by forward-backward stochastic systems, where control
domains are nonconvex and forward diffusion coefficients explicitly depend on control
variables. Moreover, some financial optimization problems for large investors (see [14-16])
and some asset pricing problems with forward-backward differential utility (see [7]) directly
lead to fully coupled FBSDEs. Wu [17] first (see also Meng [18]) obtained the necessary
conditions for optimal control of fully coupled forward-backward stochastic control systems
when the control domain is convex. And then Shi and Wu [19] studied the nonconvex control
domain case and obtained the corresponding necessary conditions under some G-monotonic
assumptions. But they also (similar to Xu [12]) need to assume that the control variable
does not appear in the diffusion coefficient of the forward equation. Very recently, Yong [20]
completely solved the problem of finding necessary conditions for optimal control of fully
coupled FBSDEs. He considered an optimal control problem for general coupled FBSDEs
with mixed initial-terminal conditions and derived the necessary conditions for the optimal
controls when the control domain is not assumed to be convex and the control variable
appears in the diffusion coefficient of the forward equation.

However, recently more and more research attentions are drawn towards the optimal
control problem for discontinuous stochastic systems or stochastic systems with random
jumps. The reason is clear for its applicable aspect. For example, there is compelling evidence
that the dynamics of prices of financial instruments exhibit jumps that cannot be adequately
captured solely by diffusion processes (i.e., processes satisfying some Ito-type stochastic
differential equations (SDE for short), see Merton [21] and Cont and Tankov [22]. Several
empirical studies demonstrate the existence of jumps in stock markets, the foreign exchange
market, and bond markets. Jumps constitute also a key feature in the description of credit risk
sensitive instruments. Therefore, models that incorporate jumps have become increasingly
popular in finance and several areas of science and engineering, this leads to paying more
attention to stochastic differential equations with jumps (SDEJs for short). As consequences,
optimal control problems involving systems of SDEJs are widely studied. Situ [23] first
obtained the maximum principle for (forward) stochastic control system with jumps but
the jump coefficient does not contain the control variable. Tang and Li [24] discussed a
more general case, where the control is allowed into both diffusion and jump coefficients,
and the control domain is not necessarily convex; also some general state constraints
are imposed. Maximum principles for forward-backward stochastic control systems with
random jumps are studied in Jksendal and Sulem [25], Shi and Wu [26], where the FBSDE]s
are partially coupled and the control domains are convex. Recently, Shi [27] obtained the
necessary condition of optimal control as well as a sufficient condition of optimality under
the assumption that the diffusion and jump coefficients do not contain the control variable
and the control domain need not be convex. Necessary conditions for fully coupled forward-
backward stochastic control systems with random jumps were studied in Shi and Wu [28]
(see also Meng and Sun [29]) where the control domains are convex.

In this paper, we consider the general optimal control problem for fully coupled
FBSDE] (1.4). Here, by the word “general” we mean the allowance of the control variable
into both diffusion and jump coefficients of the forward equation and the control domain
is not assumed to be convex. It is well worth mentioning that the idea of second-order spike
variation technique, developed by Peng [2], plays an important role in deriving the necessary
conditions of general stochastic optimal control of jump-diffusion process in Tang and Li [24].



6 International Journal of Stochastic Analysis

Following the standard idea of deriving necessary conditions for optimal control processes,
due to the fact the control domain U is not assumed to be convex, one needs to use spike
variation for the control process and then to try obtaining a Taylor-type expansion for the
state process (x(-),y(-),z(-),c(-,-)) and the cost functional (1.5) with respect to the spike
variation of the control process, followed by some suitable duality relations to get a maximum
principle of Pontryagin-type. However, the derivation of Taylor expansion of the state process
(x(-),y(:),z(-),c(-,-)) with respect to the spike variation of the control process is technically
difficult. The main reasons are that both (z(-),c(-,-)) and u(:) appear in the diffusion and
jump coefficients of the forward equation of (1.4) and that the regularity/integrability of the
continuous martingale process z(-) and the discontinuous martingale process c(:,-) (as part
of the state process) seems to be not enough in the case when a second-order expansion is
necessary. Note that in [25-29], due to the special structure of the problems, the second-order
expansion is not necessary when one tries to derive the necessary conditions for optimal
controls.

We overcome the above difficulty by the newly developed reduction method by Wu [13]
and Yong [20] in the continuous case, independently. In fact, some ideas have been proposed
early in Kohlmann and Zhou [30] and Ma and Yong [31]. Let us make it more precise. We
first introduce the controlled initial value problem for a system of SDEJs, where (x(-), y(-)) is
regarded as the state process and (z(:), c(-, -), u(-)) is regarded as the control process. Next, we
regard the original terminal condition y(T) = h(x(T)) as terminal state constraint and then
we translate Problem C into a high-dimensional reduced optimal control problem described
by standard SDE] with state constraint (see Problem C in Section 3). The advantage of this
reduced optimal control problem is that one needs not much regularity/integrability of
processes (z(-), c(:,-)) since it is treated as a control process. We apply the Ekeland variational
principle to deal with this high-dimensional reduced optimal control problem with state
constraint. Finally, necessary conditions for the optimal control of Problem C are derived
by the equivalence of Problems C and C.

The rest of this paper is organized as follows. In Section 2, under some suitable
assumptions, we give the main result of this paper, together with some discussions on special
cases. In Section 3, after we make the reduction of our optimal control problems for FBSDE]s
Problem C, a proof of our main result will be presented. Section 4 is devoted to a linear
quadratic stochastic optimal control problem as an illustrating example. Finally, in Section 5
we give the concluding remarks and compare our theorem with some existing results.

2. The Main Result and Some Special Cases

In this section, under some suitable assumptions, we will state the necessary conditions for
the optimal control of our Problem C. Also, some interesting special cases will be discussed.
Let us introduce the following further assumptions beyond (HO).

(H1) For any (O,u) € M x U, maps t — (b(t,0,u),o(t,0,u),g(t,0,u,e), f(t,0,u)) is
Fi-progressively measurable and there exists a constant L > Osuch that

|b(t,x,y,2,c,u) - b(t,a?,y,z,c,uﬂ2 +|o(t,x,y,z,¢cu) —cr(t,a?,y,z,c,u)|2
+||gt,x,y,z,c,u,e) —g(t,yz,’y“,z,c,u,e)”i2 +|f(t,x,y,z,c,u) —f(t,?c,g,z,c,u)|2

§L<|x—5c“|2+|y—j}|2>, V(t,z,c,u)€[0, T]xR"xR"xU, (x,y), (X, ) eR"xR", a.s.,
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bty z.c0)F + ot 2y, 2 0w)  + g%y, z,cm,0) e + |3y, 2,00

< L<1 +|x + |y|2>, V(t,z,c,u) € [0,T] xR" xR"x U, (x,y) € R" xR™, a.s.
2.1)

(H2) Maps 6 — (b(t,0,u),0(t,0,u),g(t,0,u,e), f(t,6,u)) is twice continuously differential,
with the (partial) derivatives up to the second order being uniformly bounded, Lipschitz
continuous in 0 € M, and continuous in u € U.

(H3) The map h is twice differentiable with the derivatives up to the second order being uniformly
bounded and uniformly Lipschitz continuous; the maps ¢,y are twice differentiable with
the derivatives up to the second order being Lipschitz continuous; the map 6 — I(t,0,u) is
twice differentiable with the derivatives up to the second order being Lipschitz continuous
in @ € M, and continuous in u € U.

Next, to simplify our presentation, we now introduce some abbreviation notations.

First, we make the following convention: for any differentiable map a = (a!,d?,...,a! )T
R" — R/, let

1 1 1
X1 X2 Xn
2 2 2
a a DI a
X X X,
ax=| " 7 i RT— R (2.2)
1l I
a,, a, ax,

In particular, for I =1, ay = (ax,, ax,,...,ax,) € R™" is an n-dimensional row vector. Also, for
any twice differentiable function a : R* — R, the Hessian matrix is given by

Axix; Axix; 70 Qxx,
a.X'le axeZ e axzxn
Ayy = <al> = . . ) . :R" — $§", (2.3)
x : : . :
Ax,x; Ax,x;, 00 Axyx,

hereafter, S stands for the set of all real n x n symmetric matrices. On the other hand, for a
twice differentiable function a : R” x R” — R (denoting (x,y) € R" x R"), we denote

Axyyy Axyy, 0 Axyyy,
vy Axyy 7 Axpyy,
ay=(a)) =| [ R xR — R (2.4)
v : : . :

Axpyn Axayy 7 Axyym
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Now, let (x(-),y(-),z(-),c(-,-),u(:)) be an optimal 5-tuple of Problem C. For a(-) =
b(-),0("), f(-),1(-), we denote

ax(t,) = ax(t,x(t),y(t),z(t),(t, ), u(t)),
ay(t,) = a, (t,x(t), y(t),z(t), c(t, ), ut)),
a-(t,-) = a=(t,x(t), y(t),z(t), c(t,-), u(t)),
ac(t,-) = ac(t,x(t), y(t),z(t),c(t,-), u(t)),

(2.5)

and let

g (te) =g (t,x(t), y(t),z(t),c(t,e),u(t),e),
g, (te) =g (tx(1), y(t),Z(t),c(t, e), u(t),e),
g.(te) = g:(t,x(t), y(t),z(t),c(t, e), u(t) e),
g.(te) =g (t,x(t),y(t),z(t),c(t, e), u(t), e).

B be(t,))  by(t,)
BX(t/') = _ _ ’
—felt) —f, ()

< _ Ex(t/') o (t/') (27)
Zxt) = (57 ),

Yx(te) = (Ex(é'e) §y(éf€)>.

(2.6)

We also introduce

For a(-) = bi(-),0'(-), f1(-),1(:),1<i<m,1<j<m,let

axxc(t,) = ax (t,X(1), Yy (1), Z(1), C(t, ), u(t)),
ayy(t,-) = ay, (tx(1),y(t),Z(),ct,-), ut)),
Tyy(t,-) = ax, (£,X(1), (1), Z(t), (L, ), u(t)),
ayx(t,) = ay (4, x(1), y(t),z(t),c(t, ), u(t)),

(2.8)

and let

St e) = gux (tX(1), Y (1), Z(t), (L, ), u(t), e),
§yy(t’e) = &y (£,X(1), (1), Z(t),C(t,-), u(t),e),
Sy (te) = &y (LX (1), Y (1), Z(t), C(t, ), Uu(t), €),
gt e) = gy« (£, X(1), (1), Z(t), C(t, ), u(t), e).

(2.9)

Our main result in this paper is the following theorem for Problem C.
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Theorem 2.1. Suppose that (H0)-(H3) hold, and let (x(-),y(-),z(-),c(,,-),u(:)) be an optimal
5-tuple of Problem C. Then there exists a unique adapted solution (p(-),q(-),k(-),r(-,-)) €
LZ([0, TI;R") x LZ([0, T];R™) x Lélp([O,T];R”) x F5([0,T];R") to the following FBSDE]:

—dp(t) = [Belt, ) p(8) ~ Folt,)q(8) + Tl ) TR + fE Z.(t,e)r(t, ) (de) - (1, ->] dt

—k(HdW (t) - L r(t, e)N (dedt),

Aq(0) = |By 6, Tp(0 + F, (69700 =3, 1)K - [ 3,067 e)m(@e) 41,0t

+ [ =ba(t, ) p(t) + £, (1) q(t) = 5a(t, ) Tk(t)

—_[ g.(te)r(t e)r(de) + 1(t, -)] AW (t)
E
o] ottt Tunera
E
Gelt,) k(1) ~3,(,0) (¢, €) + (¢, )| N(ded),

p(T) = -p«(X(T)) - h(X(T))'q(T),  q(0) = Ey, (¥,)-
(2.10)

Let (P(),Q(),K(,)) € L2(10,T]; $™™) x L2 ([0, T]; $"™) x F3([0,T]; $™™) be the unique
adapted solution to the following matrix-valued BSDE]:

—dP(t) = {Ex(t, )TP(t) + P(t)Bx(t,) + Zx(t,) ' P()Zx (L) + Zx(t,) Q1) + Q()Ex (t, )
+ L [Yx(t, ) P()Yx(t,€) + Yx(t,e) K(t,e)Yx(t €)
+Yx(te) K(te) + K(te)Yx(t, e)]yr(de) + Hxx(t,") }dt
QM AW (t) - L K(t,e)N(dedt),
P(T) = <—¢xx<f<T>> ~ Iy (R(T)) q(T) 0>,

0 0
(2.11)

where Hxx (t,-) = Hxx(t,X(t),y(t),Z(t), c(t,-), u(t), p(t),q(t), k(t),7(t,-)), and the Hamiltonian
function H : [0,T] x M x U x R" x R” x R" x R" — R is defined as follows:

H(t,x,y,zc(),u,pqkr())
= <p/b(tl X, yr Z/C(')l u)> + <q’ _f(t’ X, y’ Z’C(.)’ u)>
+ <k,0(t,x,y, z, c(~),u)> + J‘ <T(e),g(t,x,y, z,c(e), u, e)}yr(de) - l(t,x,]/, z,c(+), u).
E
(2.12)
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Then,

H (4,30, 7(), 2,8, ), 70, p(b), (1), k() 7(t,))
~H (8%, (0, Z(),6(t, ), u, p(8), q(8), k (1), 7 (¢, )
~ 5 (060, 50, 2(0),2(1,), (1) 0 (670, 7(0),20),2(t,, 1)) Pyt
x (o (1, %(0), 70, 2(0),2(t, ), () - o (LT, 71, Z(0), S, ), 1))
- fE (8(6% (), (1), 2(t),€(t, €), 7(t), €) - g (£, % (), F(1), Z(t), E(t,8), we))
x [P1(t) + Ki(t, €)]

x (g(t,x(t),y(t),z(t),c(t,e), u(t),e) — g(t, x(t), y(t),z(t),c(t, e),u, e))r(de) >0,
YuelU, ae., as.,

(2.13)

. P () Do(- Ki(,) Ka(
with P(") = <le<(<>)T PiE; > and K(-,-) = (Kz](('f))T Kiéi )

Remark 2.2. In fact, the second-order adjoint equation (2.11) can be split into the following

three BSDE]Js if we add that Q(-) = < S o) );

—dPi(t) = {Ex(t, VTPi(t) + Pi(t)bx(t, ) + Ox(t,) Py ()T (t, ")
+Gx(t,) Qi) + Qu(t)Tx(t, ) = f (£, ) Pa(t) = Pa(t) f . (t,)
[ Bt o R0F, 60 + 7.0 K0, 0
E (2.14)
+3.(te) Ki(te) + Ki(te)Z, (t, e)]yz'(de) + Haux(t,) }dt
QiAW (1) - f Ki(t, )N (dedt),
E

Pi(T) = —¢xx (X(T)) — hox (X(T)) 'q(T),

—dDy(t) = {P1 ()by () + ba(t, ) Pa(t) + (b, ) TPy (D)5 (£, )
+ T, )Qa(t) + Qu(t) Ty (E,) = f (8, P3(8) = Pa(t) £, (£, )
+ L 3.t PBZ, (o) +3, (L e) Ki(te)Z, (te)

(2.15)
12, (L 0)Ka(t,€) + Ka(t, 0)F, ()| w(de) + Hoy (1, ) }dt

~ Qo (HdW (t) - f ] K> (t,e)N(dedt),

B(T) =0,
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~dPs(t) = {Eya, ) Pa(t) + Pa(t)by (t,) + By (8, ) PL (DT ()
+Ty () Qo (t) + Q)T (£,-) =, (£,) Pa(t) = Ps(D) f , (£,)

+ f [g,‘fy(t,e)P] (g, (te) +3,(te)Ki(te)g,(te)
£ (2.16)

+§y(t,e)T1<2(t,e) + Kz(t,e)gy(t,e)]yr(de) +Hyy(t,-) }dt

—Qs(HdW(¢t) - L K5(t, e)N(dedt),

P5(T) = 0.

Note that this kind of three second-order adjoint equations appears in Wu [13] whereas
not in Yong [20].

Let us now look at some special cases. It can be seen that our theorem recovers the
known results.
(1) A Classical Stochastic Optimal Control Problem with Random Jumps
Consider a controlled SDEJ:

dx(t) = b(t, x(t), u(t))dt + o(t, x (), u(t)) dW (t) + L g(t, x(t-), u(t), e) N (dedt), o1

x(0) = a,

with the cost functional

T
Ju()) = E[I I(t, x(t), u(t))dt + (i)(x(T))]. (2.18)

0

In this case,

b(t,x,y,z,c(-),u) =b(t,x,u), o(t,x,y,z,c(-),u) = ot x,u),
stx,y,z,c()u-) =gt xu-),  f(txyzc()u) =0, (2.19)
l(t, X, Y,z C(')/u/') = l(t, X, u)/ Y(y) =0.

Hence, we have, by some direct computation/observation,

y()=z()=c(,)=0, q()=0,

(2.20)
Py(-) = Qa(-) = Ka(,1) =0, P5() = Qs5(-) = Ks(-,) = 0.
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Consequently, (2.10) and (2.11) (or equivalently, (2.14)) become

—dp(t) = [Ex(t,-)Tp(t) +0x(t, ) k(t) + L 3. (te)r(t e)m(de) — L (t,-)|dt
—k(H)dW(t) - f r(t, e)N(dedt), (2.21)
E

p(T) = ¢« (x(T)),

~dPy(t) = {Ex(t, )TPy(t) + Py (t)bx(t, ) + Ox(t,) Py (H)5(t, ")
+0x(t,) Q1(t) + Qi(H)T(t, )

+ f [3.(t, &) PL(DZ.(t e) + B, (1) Ki(t, ©)Z. (t €)
E (2.22)
+g.(t,e) K (t,e) + Ki(t,e)g.(t, e)]ﬂ'(de) + Hoo(t,°) }dt
—Qi(HdW (t) - j Ki(t,e)N(dedt),
E

Pl (T) = _(i)xx (E(T)),
where the Hamiltonian function H : [0,T] x R” x U x R” x R" x R" — R is defined as

H(t,x,u,p,k,r() = (p,blt,x,u)) + (k,o(t, x,u))

(2.23)
+ f (r(e), g(t,x,u,e))m(de) - I(t,x,u), as.
E

The maximum condition (2.13) is reduced to the following:

H(t,%(t),u(t), p(t), kt),rt,)) — H(t, %), u,p(t), k(t),r(t,-)

- %(O(t,?(f),ﬁ(t)) —o(t,x(t),w) Py (t)(o(t, X(t),1(t) - o(t, % (), u))
(2.24)

) % f (g(tx®, (), ) - gt,x (M), u, &) [P + Ki(t,e)]

x (g(t,x(t),u(t),e) — g(t,x(t),u,e))m(de) >0, VYuelU, ae., as.

These are the necessary conditions for the stochastic optimal control problem with random
jumps (see (2.37) of Tang and Li [24]). When the jump coefficient g is independent of u(-),
our result is reduced to Situ [23]. Where there are no random jumps, our result recovers the
well-known maximum principle for the classical stochastic optimal control problem of Peng
[2] and Yong and Zhou [3]. And when U is convex, the classical result of Bensoussan [32] is
recovered.
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(2) A Stochastic Optimal Control Problem for BSDE]Js with Random Jumps

Consider a controlled BSDE]J:

—dy(t) = (6 y(8), 2(0), (¢, ), u(t)) dt - 2())AW (1) - L c(t, )N (deds),

(2.25)
y(T) = hr,
with the cost functional
T
J(u(-)) = IE[IO I(t, y(t), z(t), c(t,-), u(t))dt + Y(y(O))]. (2.26)

In this case,

b(t,x,y,zc(),u)=0(t,xy,zc()u) =gt xyzcl),u-)=0,

ftx,y,z,c(),u) = f(ty, z,c()u), (txyz.c()u) =gty zc()u-), ¢x) =0
(2.27)

Hence, we have

x()=0,  p()=k()=r() =0,

(2.28)
Pi()=Qi() =Ki(,-) =0, Py() = Qa(1) = Ka(+,+) = 0.

Consequently, (2.10) and (2.11) (or equivalently, (2.16)) become

dq(t) = [F, ()7 +1y ()| de = [F.()a) + LGt )| aw )
—f [76(1‘, e)'q(t) +1c(t, e)]N' (dedt),
E
q(0) = Eyy (¥,);

i) = { -7, )P0 - BT 0,
(2.29)
[ 5,6 0n 05,607 +5, 60K 10F, (0 + 3,0 Kl

+Ka(t )3, (t €)|w(de) = q(t) F ., (t) = Tyy (£,°) }dt - Qs(hdW (b)
- f K;5(t,e) N (dedt),
E
P3(T) =0.
The maximum condition (2.13) is reduced to the following:

(q(t), f (LG ®),Z(t),ct, ), u(t)) - f (£ Y1), Z(t),C(t,-),u))

o _ o (2.30)
+1(t,y(t),z(t), c(t, ), ut) - 1(t, yt),z(t),ct,),u) <0, Vuel, ae., as.
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As we know, this new result has not been published elsewhere. When there are no random
jumps, our result partially recovers that of Dokuchaev and Zhou [33].

(3) A Stochastic Optimal Control Problem for FBSDE]s with Random Jumps

Consider a controlled FBSDE]:

dx(t) = b(t, x(t),u(t))dt + o(t, x(t), u(t))dW (t) +I g(t,x(t—),u(t),e)ﬁ(dedt),
E

—dy(t) = f(t,x(b), y(t), z(t), (t, ), u(t))dt — z() AW (¢) - L c(t,e)N(dedt), (231)

x(0)=a,  y(T)=h(x(T)),

with the cost functional
T
J(u()) = EUO I(t, x(t), y(t), z(t), c(t,-), u(t))dt + ¢(x(T)) + Y(y(O))]- (2.32)

In this case, we have

b(t,x,y,z,¢c(:),u) =b(t,x,u),  o(t,x,yz.c(),u)=o(txu), (233)
g(t,x/y,Z/C(’)/ul’) :g(t/x/u/‘)- .

Consequently, (2.10) becomes

~Ap(t) = [Ba(t, )P0 = £t )Ta) + (6 ) kO + | 30600 r(E e)mde) 1ot )|
— k(H)dW (t) - L r(t, e)N(dedt),
dq(t) = [£, () a(t) +1,t9)]de = [£.t, ) q) + Lt )| aw @)
- L 7.t () +1c(t,e)| N(deat),

p(T) = ¢« (X(T)) + h(X(T))'q(T),  q(0) = Eyy (¥,),
(2.34)
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and (2.14), (2.15), (2.16) become

~dPi(t) = {bx(t, ) P1(8) + Pu(Bbx(t, ) + Tult, ) P (DT ()
+0x(,) QU + QuBT(E ) = o (t) Pat) = Pa(D) f (1)
[ o Pz 6o+ 3,00 K6 eF, (o)
3.t e) Kt e) + Ki(t e)F, (t,€)|w(de) + Hae(t, ) |t
- Qi(tydW (t) - L Ki(t,e)N(dedt),

Pi(T) = ~§xx (X(T)) = hax(X(T)) '(T),
=dPs(t) = {Bat, Y Pa(t) +Tx(t, )Qa(8) = F () Ps(H) = () f  (8,)

[ BP0z, 6o s g G K eF, e
E

13, (L e)Ks(te) + Ki(t, )3, (t )| r(de) + Hoy(t,-) |t

(2.35)

- Qu(tydW (t) - L K (t,e)N (dedt),
P (T) =0,
—aPs(t) = {=F, () Ps(t) = Py()F , (t,) = (D) F ., () =Ly (1)
—Qs(H)dW (t) - J'E Ks(t,e)N (dedt),

P(T) =0,

where the Hamiltonian function H : [0,T] x M x U x R” x R” x R” x R” — R is defined as
follows:

ﬁ(t, x,¥,z,¢(:),u,p,q9,k 1) = (p,blt,x,u)) +{(q,—f(t,x,y,z,¢c(-),u)) + (k,o(t,x,u))

+ J‘ (r(e), g(t,x,u,e))m(de) - 1(t,x,y,z,c(-),u).
’ (2.36)

The maximum condition (2.13) remains the same. When U is convex, we essentially recover
the results in Shi and Wu [26] and Oksendal and Sulem [25] (partial information case), and
when ¢, ¢ are independent of u(-) and U is not assumed to be convex, our result is reduced
to that of Shi [27]. Note that in both of these cases, our second adjoint equations are new.

When there are no random jumps, our result partially recovers that of Wu [13]. Note
that in (3.27) of [13], some additional parameters have to be involved and to be determined.
And when U is convex, our result is reduced to that of Peng [11] and Wang and Wu [34]
(partial observation case). Result of Xu [12] is recovered when ¢ is independent of u(-) and
U is not assumed to be convex.
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(4) A Stochastic Optimal Control Problem for Fully Coupled FBSDE]s with Random Jumps

Consider the controlled fully coupled FBSDE] (1.4) with the cost functional (1.5). When U
is convex, we essentially recover the results in Shi and Wu [28] and Meng and Sun [29]
(partial information case). When there are no random jumps, our result becomes a special
case of Yong [20], because in [20] the author considered the mixed initial-terminal conditions,
and some additional necessary conditions for the optimal control are derived. When o is
independent of u(:), our result recovers those of Shi and Wu [19, 35] (partial observation
case). And when U is convex, our result is reduced to that of Wu [17].

3. Problem Reduction and the Proof of the Main Theorem

This section is devoted to the proof of our main theorem. The proof is lengthy and technical.
Therefore, we divide it into several steps to make the idea clear.

Step 1 (problem reduction). Consider the following initial value problem for a control system
of SDE]s:

dx(t) =b(t, x(t), y(t), z(t), c(t,-), u(t))dt + o (t, x(t), y(t), z(t), c(t,-), u(t) ) AW (t)

+I g(t,x(t-),y(t-), z(t), c(t, ), u(t), e) N (dedt),

’ (3.1)

dy(t) = —f(t,x(8), y(b), z(t), c(t, ), u(t))dt + z()dW (t) + f c(t,e)N(dedt),
E

x(0)=a,  y(0)=uyo,

where (x(-), y()) is regarded as the state process and (z(:), c(:,-), u(-)) as the control process.
It is standard that (see [36]), for any (z(-),c(-,-),u(-)) € Lé,p([o, T;R™) x F5([0,T];
R™) x U[0,T] and yy € R™, there exists a unique strong solution

(x()ry()) = (x(',yo/z(‘):c('/')ru('))/ y('/yolz(')f C(','), u())) € Lé([O, T]ar)

< L3([0, TLR"™) G2

to (3.1), depending on the 4-tuple (yo, z(-), c(-,-), u(-)). Next, we regard the original terminal
condition as the terminal state constraint:

y(T) = h(x(T)). (3.3)

Let o be the set of all 4-tuples (yo,z(-),c(-,-),u(-)) € R™ x Lé/p([O,T];Rm) x Fg
([0,T]; R™) x U[0, T] such that the unique corresponding state process (x(-), y(-)) satisfies the
constraint (3.3). Note that hypothesis (HO) implies that, for any u(-) € %[0, T], there exists a
unique 4-tuple (yo, z(*), c(,-)) € R™ x Lé/p([O, T];R™) x F5([0, T]; R™) such that state equation
(3.1) admits a unique state process (x(:), y(:)) € Lé([O, T]; R™) x Lé([O, T];R™) satisfying the
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state constraint (3.3). Hence, (HO0) and (H1) imply « # 0. We rewrite the cost functional (1.5)
as follows:

T
J(yo,2(), c(,),u()) = ]EUO I(t, x(t), y(b), z(), c(t, ), u(t))dt + p(x(T)) + Y(yo)]- (3.4)

Now, we can pose the following.
Problem C. Find (,,Z(-),€(-, ), u(")) € o, such that

](?0,2()15(/)/ﬂ()) = ](]/OIZ(‘)/C('H)/u('))‘ (35)

inf
(Y0,2(),c(-) ul) €A

We, respectively, refer to (z(),c(-, ), u(-)) as an optimal control process, to (x(-), y(-))
as the corresponding optimal state process, and to (y,, z(-), c(-,-), u(-)) as an optimal 4-tuple
of Problem C.

It is clear that Problems C and C are equivalent. The advantage of Problem C is that
one does not need much regularity/integrability on (z(:), c(:,-)) since it is treated as part of a
control process; the disadvantage is that one has to treat terminal constraint (3.3).

Step 2 (applying Ekeland’s variational principle). For convenience, let us cite Ekeland’s varia-
tional principle, whose proof can be found in Ekeland [37] or Yong and Zhou [3].

Lemma 3.1. Let (V,d(-,-)) be a complete metric space, and let f(-) : V. — R be lower-semicontinu-
ous, bounded below. If for all p > O there exists u € V satisfying

f(u) < inf f(v) +p, (3.6)

then there exists u, € V, satisfying the following:

(i) f(up) < f(u),
(i) d(u,u,) < \/p,
(iii) for all v € V, f(v) + . /pd(v,u,) > f(u,).

Let (y,,z(-),c(-,-),u(-)) be an optimal 4-tuple of Problem C, with the corresponding
optimal state process (x(:), y(+)). For any 6 > 0, we define

]6 (yO/z(')r C('r )/u())
= {200, ),u0) = T (Fy 200,26, ),0)) + 62 + Ely (D)~ h(x@)P}  (37)
V(yo,2(),e(, ), u()) € R" x L3 ([0, T];R™) x Fy([0,T]; R™) x 1[0, T].

If we define the Ekeland’s distance on %[0, T] by

de(u(),u()) = Igl{f €[0,T], u(t)#u(t)}|dP,  Vu(),u() € U[0,T], (3.8)
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with |A| being the Lebesgue measure of set A C [0, T], then Lé’p([O, T]; R™) x PFZ,([O, T];R™) x
U[0, T] is a complete metric space under the following metric:

~ 2 ~ 2 - ) 1/2
[120) = 2O + e, ) = 8, + d (), #()°]
V(Z(')/C('/')ru('))r ('ZV(),E(,),ﬂ()) € Lé,p([OIT]/Rm) X F;([O/ T];Rm) X M[O,T],

(3.9)

where [z0)[* = E [y [z@)Fdt, llc(, )5 = Efg [ le(t, ) Pr(de)dt, and (yo,2(), e(, ), u() =
]5(y0, z(), c(+,+),u(-)) is continuous. Also it is clear that

]6(]/0/ Z(')/C('/')/ u())
>0, Y(yo,z("),c(;,),u()) € R™ x Lélp([O,T];Rm) x F>([0, TI;R™) x ©[0,T],
J° (Yo, Z(), 2, ), u())

=6 < inf ]6(yO/Z(')/C('/’)/u(')) +0.
(yo,z(~),c(-,-),u(-))ER”’xLé,p([O,T];R"‘)xFﬁ([O,T];R'")xM[O,T]

(3.10)

Hence, by Lemma 3.1, there exists a 4-tuple (yg,zﬁ(-),c‘s(-, Y),u°(-)) € R™ x Lé/p([O, T]; R™) x
E3([0,T];R™) x U[0, T] such that
(@) 19 (45, 2°0), O, 40 () < J°(Fy, ZC),EC, ), () = 6,
(i) |20 - 20 + .0 2| + e (w00, 70)" <5,
(i) = V5| =20+ ] -2+ de (0| " 311

< I (yo,2(), e, ) u()) = T (95, 2° (), (), (),
¥(yo,2(), (), u()) € R™ x L ([0, TL;R™) x F;([0, T R™) x [0, T].

Thus, (yg,z‘s(-),cé(-,-),ué(-)) is a global minimum point of the following penalized cost
functional

1/2

0,206, 0) + VB |26 20|+ e -6

|jr +dg <u5(-),ﬂ(-)>2]
(3.12)

In other words, if we pose a penalized optimal control problem with the state constraint (3.3)
and the cost functional (3.12), then (yg, z%(-),c%(-,+),u®(:)) is an optimal 4-tuple of the
problem. Note that this problem does not have state constraints, and the optimal 4-tuple
(yg,zﬁ(-),cﬁ(-,'),u‘s(-)) approaches (y,,z(-),c(-,-),u(-)) as6 — 0.
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Step 3 (nontriviality of the multiplier). Note that the state process (x°(-), y°(-)) corresponding
to the 4-tuple (yg, z%(-),c%(-,+),u® (")) satisfies the following SDE]:

dx®(t) = b(t, xO(t), Yo (t), 20 (), (¢, ~),u5(t)>dt
+ 0 (x5, y° (), 2°(8), ¢ (¢, ), u° (1) ) AW (£)
+ J'E g(t,x0(t-), y° (1), 2° (), (), u° (1), € ) N (dedtt), (3.13)
dyd(t) =-f (t, xX5(1), y0 (1), 25(t), 5 (t, ), uﬁ(t))dt + 25 (AW (t) + L S (t,e)N(dedt),
X0 =a,  ¥°0) =y,

with

5 _ 6 2
E[y*(T) - h(x*(D))] (3.14)

<J°(v5, z6<-),c6<-,->,u5<->)2 < J5(7,,2(),2(, ), 1()* = 62 — 0, as 6 — 0.

We now regard ©°() = (x°(-),¥°("),z°("),c%(-,-)) as the unique solution to the
following FBSDE]:

dxS(t) = b(t, x5(1), y0 (1), 25(¢), 5 (¢, ~),u5(t)>dt
+ o(t, x5(1), vO (1), 25(t), 5 (¢, ), u6(t)>dW(t)
,6—,6—,6,5,',6,~dd,
[ (020570020, ¢5,,0 0, ) Nt (3.15)
—-dy°(t) = f(t, xO(t), Yo (t), 20 (), o (t, ), uﬁ(t))dt - 20(HdW (¢t) - f A(t,e)N(dedt),
E
O =a,  y(T)=h(y (D) +h,

with

he = y5(T) - h<x6(T)). (3.16)
Next, for any 7y € LéT (Q;R™), with

Elgr|” <1, (3.17)
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by (HO0), the following FBSDE]

dx® (1) = b(t,x7% (1), y (1), 20 (1), 7 (1, ), u° (1) ) dt
40 (x5 (5, Y% (1), 2% (8), € (8, ), u° (1) ) AW (£)
+ f g (1% (1), ¥ (=), 2°° (1), O (), u° (), € ) N (dedt),
E
—dy (1) = f (£ (0,7 (0, 2°4(0), (), u (1)) dt

— 225 () dW () - J % (t,e)N (dedt),
E

(3.18)

X2(0) =a,  yO=(T) = h(yP5(T)) + b +erpr,

admits a unique adapted solution ©%(.) = (xéfs(-),yéfs(-), z5¢(.),c%(-,-)). Note that FBSDEJ
(3.18) is nothing but FBSDEJ (3.15) with only h? replaced by h? + enr, and u®(-) remains
unchanged. Thus, by (1.9), we have

||@5€( ) — 5. )| <Ke?, ase—0, (3.19)

M2[0,T]

which implies

lim <|y6’5 (0) - ¥5(0) |2 +E IOT |z‘5'5(t) —25() (zdt +E fOT L |c6'€(t, e) - co(t e) |2Jr(de)dt> = 0.
(3.20)

Hence, with y0¢ = y%¢(0), by taking (yo, 2(-), c(,-), u(-)) = (y0,2%¢(-),c%(,-),u’(-)) in the
last relation in (3.11), we have

_K\/gg < ]6 <]/06'£, 26,5(‘), 66’5('/ ')r uﬁ(')> - ]6 <]/g, 26 ()/ Cﬁ('/ ')1 uﬁ(')>

(0,5, 0) - (20,0100
o <yg,sl Z0£(2), cO%(-, ), u5(')) +Jo (yg, Z5(-),c5(-,), ué(-)>

(85,2500, 2,180 0)) = (B0 200,20, ), 70)) + 6]

75 (w55 255(), e84, ), ub () + T3 (Y8, 20 (), €8, ), uo () )
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0.0 00) - T@ 20,56, 50) + 5]
T (yg,e/ z6(.), cbe(., .)/uﬁ(.)> +J6 <yg,z‘5(-),c5(~, '),u‘s(')>

E[|y5(T) - h(x5(D)) " - |y*(T) - h(x5(T)) ']
n
6 <yg,£, 262 (-), cb(-,), uﬁ(,)) +J6 <yg, Z0(-),c0(-, "), uﬁ(-)>

= @5 [1(v5 2% (), (0,40 ()) = T (45, 2°(), (), 40 ()]
+E(@Y, Y% (T) = h(x%*(T)) - K. )

= (0F+0(0)) [1 (w57, 2%4(), €%, ), 15 ()) = T (98, 2°(), €5, ), 10 ()]

+ 5E[<CD? +0o(1),nr >],
(3.21)
where 0(1) stands for certain scalars or vectors that goto 0 as e — 0,
(I)(i,s - 2
0 76 (yg,s/ 20 (.), (-, ), u5(~)> +J6 <yg/ 25(),c8(,), u5(~)>
1
x {fo [BU (w5, 2% (), (), 7)) = T (G0, 200, 8, ), 6()))
(3.22)
+(1=B) (T8, 2 (), 7,0, u0()) = T (@ 20,2, ), () ) | dp + 5},
o = Y% (T) = h(x>(T)) + y°(T) - h(x*(T))
T ’
T8 (957, 205(), €02 (), w8 () + I (8, 20(), €2, ), w8 ())
(82,6, 0)) = T (Fo ), ), () + 6
cDO = s 5 6 s 5 € [0/1]/
7o (8, 200), €0, ), 1)) -

y°(T) ~ h(x*(T))
G <yg, 25(-),¢5(-,-), ub (.))

@5 = €L (Q;R™).

We point out that (®f, ®9) is independent of #r, and

@f >0, |<1>g|2 +E|¢>§|2 - 1. (3.24)
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Then there is a subsequence of (@2, (Dg), still denoted by ((I)g, (I)?), such that
lim (cpg,cI)?) = (Do, Dy), with |[D|? + E|Or = 1. (3.25)
We claim that
@y #0. (3.26)
To show this, let us observe that by (3.19), one has

(@5 +0) (w5 222, €™ (0, () = 1 (W8, 2°(), €%, ),u()) | < K (0 + 0(1) )

(3.27)
Hence, dividing by ¢ in (3.21) and then letting ¢ — 0 yields
~KV6 < K|®f| + E(0f, 77 ), (3.28)
with the constant K independent of 7. Now, if @y = 0, then the above leads to
- <E(0f,nr), Vnr €L} (QR™),  Elpr[*<1, (3.29)
with7® — 0,as 8§ — 0, uniformly in ]E|11T|2 < 1. Then,
o\ 172
<E'(I)?| > = sup ]E<(D?,71T> < |r6' —0, as b6 —0. (3.30)
Elnr<1
Thus, for 6 > 0 small enough, we must have
2 2
1= |cpg| +E|c1>§| <1. (3.31)

It is a contradiction which proves (3.26).

We refer to (@, @r) as the Lagrange multiplier of the corresponding optimal 4-tuple
(Yo, 2(:),c(-,),u(-)). Equation (3.26) shows the nontriviality of the Lagrange multiplier
((DO/ CDT) .
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Step 4 (spike variations). For notational simplicity, we now denote

G o-(D) %-Q) - (R)

_ [ b(tx,y,z,c(),u)
B(t,X,v()) = <_f(t,x,y, z,C(~)/u)>'

(X, 0()) = ("(ff x Y, zw(-»u))l

z

Y(t,X,0()) = (g (txy. ?)cc),u,-)),

[(Xo, Xr) = ¢(xr) +y(v0), (X0, Xr) = (W —(;l(xT)>,
R'=R"xR", 0[0,T] =L, ([0,T;R™) x F;([0, T];R™) x %[0, T],

(3.32)

L=Rx1Z (UR) =R x A}, Ho=R"xL} (QR")=R"x L,

Consequently,

](y0/ Z('),C(‘, )/u()) = ](yOrU(’r ))/

6 . oo . = 6 .. (3.33)
] (yOIZ( ),C( ’ )/u( )) = ] (yOIU( ’ ))

Note that # and ¥, are Hilbert spaces. We identify #* = H and Hj = H. Also, from
the above,

I':H# —R, IT: H — Hy. (3.34)

We denote the gradient DI" and the Hessian DT of T as follows:

DF(XOI XT) = (rXo (XOI XT)/FXT (XOI XT)) € .E(JZ, R) =H" = °1€r

I'xoxo (X0, X1)  Txoxr (Xo, X71)
I xo (X0, X1) Txpxr (Xo, X1)

(3.35)

D?I'(Xo, X1) = ( > € Ly(H; H),

where £(H1; H,) is the set of all linear bounded operators from #; to H», and Ly(H; H) is
the set of all linear bounded self-adjoint operators from & to itself. Clearly,

FX() (XO/ Xr) = (0’ Yy (yo))T € Rl’

I—‘XT (XO/ XT) = ((i)x(xT)/O)T € —%121
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I'x,x, (X0, XT) = e ™,

0 0 )

0 Yyy(yo)

00 2.l
0 0>€£<X'R>'
00

00

I'x;x,(Xo, X1) =

(
Ixoxr (Xo, X1) = (
(
Iy x (Xo, Xr) = (¢xx<xT) 8) € ﬂ JCZ;XIZ>-

Also, by the Fréchet differentiability, for IT: # — H,, we have

DIT(Xo, X7) = (Ix, (X0, X1), I1x; (X0, X1)) € L(H; H0),

IMx,x, (X0, X1) xox; (Xo, XT)

D*TI(Xy, X7) = (
(Xo, Xr) Ix, x, (X0, X1) Ilx;x; (Xo, X1)

To make the above more precise, let us take any D= (&)0, &)T) € Hy. Then,

H(Xo,XT),C/I\) = yT—h(xT),(f)T .
(0.0 = )

Thus,
[prica, x| = p|(nex, x0), @)
:< 100 X0, @) (1%, %7, @ >
= (rio <(X:, XT:&), 12: <><<o, ;TZ@ )eﬁ?je; R),
with

T, (Xo, Xr)® = <H<XO,XT>,&>> - (0,0),
Xo

HXT(XQ,XT)&) = <H(X0,XT), ®> = (—hx(xT)T(i)T,(i)T>;

Xr

[DZH(XO,XT)cB] = D? [<H(XO,XT),&>>]

> € L(; 2(; o)),

(3.36)

(3.37)

(3.38)

(3.39)
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) <H(X0,XT),&)>XOXO <H(X0/XT)I&)>

<H(X0,XT),&’>XTXO <H(XO/XT)/&)

_ HXOXO(XO,XT)@ HXOXT(XO/XT)§)
Ix, x, (Xo, X7)® Ilx,x; (Xo, X7)D

XoXr

XXt

with

Ix,x, (Xo, X7)® = <H Xo, X1), D

>
4
&
1]
X\

]'_IXTXO (XO, XT)&) = < Xo, XT &)>
Ix,x, (Xo, X7)® = < (Xo, X1), >

- - —IMxx &)
Ix, x; (Xo, X1)@ = <H(XO/XT)/(I)> = (o) ®r O .
XrXr 0

Next, for fixed X, € R, v(-) € U[0,T] and any € € (0,1), let

56 - 6 0
X" = Xo+ <\/5y0>'

v(‘i,s(t ) _ Uﬁ(t/')r te [01 T] \551
' o(t,"), te€S.,

for some measurable set S, C [0, T] with |S,| = €T. It is clear that v%¢(-,-) € V[0, T].

> € Ly(H; H),

25

(3.40)

(3.41)

(3.42)

(3.43)

Let X%(-) be the state process of (3.1) corresponding to (Xg’g,vﬁ'g(-,-)). Further, let

Xf’g(-) and XZ'S’E(-) be, respectively, the solutions to the following SDEJs:

AX(0) = B4 )X (0 + [ + 4351, Ts, (0| aw ()

+ L [Y;i(t, e)X€(t-) + AY‘S(t,e)Isi(t)]ﬁ(dedt),

. 0
X? )= <\/§y0>;
dxPe(t) =

BS(t,)X24 () + ABO(t, ) Is, (t) + lBgs(X(t, ~)Xf’£(t)2] dt

[zgi(t VXYL () + AZG (1, )X (D)s, (t) + = Z5X(t )XV (1)? ]dW(t)

(3.44)
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+ i Y5 (1, €)X2€ (t-) + AYS (1, e) XPF (t-) I, (t) + %Yix(t,e)Xf’s(t—f N (dedt),

X%€(0) =0, (3.45)
where Is, (-) denotes the indicator function of the set S,, and for any X € R/,

B (t,7) = Bx (£ X(1), 0°(t,)),
=t = =x (6. X0, 90, ),
Y5 (t,) = Yx (£, X0, 0°(t, ),
ABO(t,) = B(,X°(), 0(t,)) - B(t, X°(1),0°(t,)),
AZO(t,) = 2(5 X500, 0(t)) - (1 X0 (), 0°(t, ),
AYO(t) = Y (£ X, o(t,)) - Y (5 X0, 0, ),

AZ% () = Zx (X0, 0(t,) - Zx (1 X0, 0°(, ),

N——

AYS () = Yx (£ X0 (), () = Yx (£ X(0), 0" (1,)),

BiS (t,-) = Biy <t, X5(t),v5(t,-)>, 1<i<l,

Y (t) = Yiey (t,Xﬁ(t),vﬁ(t,-)), 1<i<l.

{ )
( )
{ )
{ )
50 (X2 = <Z§é§<(fi )X, X > ) S8 () = iy (t, xﬁ(t),vﬁ(t,-)), 1<i<l,
{ )
( )
( )
{ )

(3.46)
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We point out that everything is reduced to the classical optimal control problems for
SDE]Js. Then by Lemma 2.1 of Tang and Li [24], the following estimates hold for any integers
k>1:

supE'Xf’g(t)rk + supE'X‘S’E(t) — X9(t) |2k < Cek,

0<t<T 0<t<T

6, 2k b, 6 6, 2k 2k
supIE|X2 (t)| +supE'X’(t)—X (t) - X? (t)| < Ce¥, (3.47)
0<t<T 0<t<T

2k
sup E| X% (t) - X°(5) = X7°(6) - X5 ()| = o(e¥).
0<t<T

Now, from the last relation in (3.11), noting (3.19), we obtain

~V6[Veyo + (T + K)]
<J(y5 0% () = 7 (W6, C,)
(o) - 1 ()
Jo (v 09 ) ) + 78 (8,95, ))
o) - T @B + 6] = [ (4.°C) - T o BC,0) + 6]
15 (y5 09, )) + 15 (5,99, )
E [H(XS'E,X‘S"?(T)>2 - H<X3,X5(T)>2] (3.48)
15 (uy 05, )) + 15 (8, 0%, )
= o [J (v, 0% ) - T (45, 9°C, )]

+ E< <q%£>,n<xg'€,x6f€ (T)> - H(Xg,xﬁ(T))>
= (@5 +0(0) |1 (w5 0% (,)) = T (¥5,0°C. )]

5 (ag 2o MK XD) 1185 X))

where (®f, ®0) is defined in (3.25) and ((D‘S’E,(D?’E) is defined similarly to (3.22), with Xg’E =
<y‘§’€ ) replaced by (3.42). We have shown that along a sequence,

lim (cpg,qng) = (D, Dr), with Dy 0. (3.49)
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Note that

T(ve, 0% ) = J (5, 2%, ) = EjOT [1(t, X% (0), 0% (1, ) = 1(1, X° (1), 0° 8, ) | at

+ E[r(xg'f,xﬁfE(T)) - r(xg,x5(T))] =+ D

(3.50)

We first deal with term I;. We have

L =FE LT [z<t, X0 (1), 0O (¢, -)) - l<t, XO () + X0 (1) + XO%(8), 0 (¢, -))]dt
+E foT [1(t, X0 0) + X< (0) + X5# (1), 0% (1, ) )
1, XO(E) + X740 + X54(1), 001, ) ) | at
+E foT [1(8 X0 + XP2(t) + X5 (0,0, )) = 1(£, X0 (1), 078, ) )|t
-E f: [ (£, X50) + X0 + X37(8), 0% (8, )), XO# (1) = XO(t) = X< (t) - X5° (1) ) |t
+ 5B fOT (ox (8 X0 + X750+ X5°(0), 01, ))
x (X% (8) = X (1) = XP<(5) = X24(0)), XO5 (1) = XO(H) = XP(8) = X3°(1) )t
+E foT (DAHOM2 (X0 (1) - XO(t) - XP* (5) - X3°(1)),
X (k) = XO(8) = XP¥ () = X3°(t) )t
+E fOT [1(t, x5, 0% () = 1(, X0 (1), 008, ) )|t
+E foT (b (8, X0, 0°%(t,)) = L (£, X0 (1), 9° (1)), X7 (6) + X3 (1) )t
+oE fOT< [ (8. X0, 0%(1,)) — e (1, X009, 078, )) |
x(XPE(0) + X)), XP4(0) + XO<(1) )t

T
+E f <D215'€ (Xf’g(t) + Xf'g(t)>, X% (t) + XO% (8) >dt
0

+E LT <1X <t, X5(t), 0 (¢, -)), X5 (#) + X5 (1) >dt

+ %E JOT (bex (£, XO(8), 00 (1)) (XPE(8) + X390)), X7 (1) + X3°(¢) )it

+EJ‘Z<D216<Xf’E(t) +X§’E(t)>,Xf’5(t) +X§’E(t)>dt,
(3.51)
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with
D | : Bl (1B (X5(t) + X05(0) + X2°(1)) + (1 H)XT(0), 091, ) )
“lex (X0 + XP(1) + X390, 0°(1,)) | dp,
D2 = j Blixx (£ BX° () + (1= ) (X°(1) + X () + X5“ (), 0°(t,))
~Lxx (B X0 (1) + (1= B) (XO(8) + XP°(0) + X5° (D), 0°(t,) )
“lex (B, X0 (1), 0%(2,)) + Ixx (1, X0, 0° (1)) | dp,
D1 = [ i (18X + (1- P (X0 + X040+ XE(0), 080,

L (1, X°(),0°(t,)) | .
(3.52)

Next we deal with term I,. Similarly, we have
66 6
L =E{DI® 6X0 Xg
Xo4(T) - X*(T)
6, 6,
+1 D¢ Xog_Xg Xog_Xg
2 X%(T) - X%(T) )" \ X% (T) - X°(T)

216,¢ X6,E - X6 ng - X6
+<D r <X5'5(3") - X%(T)>' <X5'5 T) - X%(T)> > }

= E{Fio (Xg,e _ Xg) + FBS(T <X5,S(T) _ Xﬁ(T)> (3.53)

5 (T, (X0 = X8), X7 - x5

+ % <r§TXT (X‘S'E(T) - X5(T)>, X5 (T) - X6(T)>

+{ D?T%¢ Xglg - Xg Xglg - Xg
X(T) - X¥(T) )" \X>(T) - X*(T) ’
with

DI = (14,14, = (e (4, X0) i, (36,2°(0)

D2F6 = <r§(0XU 0 > — FXOXO (Xg/ X6 (T)> 0
0 T, 0 T, x; (Xg,Xﬁ(T)) ’ (3.54)

prse = | (DT (EXE ¢ (- pXE KR+ (- p)XE) - DX X))
0
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Also, we have

< <®55> T1(Xge, X9(T)) - 11( X5, X° <T>)>
<<®%g>,n o X0 ( T) <O,X5(T)>>
T
(0x

- {<HXT (T))<CD55>,X5'S(T)—X5<T)> (3.5)

+ %<HXTXT (0,x°(1)) < q)%g> (X9(T) - XO(T) ), XO%(T) - X° (T)>

Do <®%,g> (X95(T) - X°(T)), X%(T) - X° (T>> }

T

with
D211 = f 01 B[, (0, BX°(T) + (1= B)X°4(T)) = Ty, (0,X°(D)) | dp. (3.56)

Under assumptions (H2), (H3), we have

'q)g,e D2 15,8,1,2

< K|X‘5'5(t) — X5 (t) - XO%(t) - X3*

6,6 4216,
(R

+|@fepe| < k|xP<0 + X34,

0
+ D2H5'5< 5 >
D

Hence, by (3.47), we have

(3.57)

6,€ 216,
| @) D2roe

< K(]Xg'f - Xg| + 'X5'€(T) - X5(T)|).

E{ | <¢)3’5D215’5'L2 (X@f(t) — XO(t) - XO4(t) - X§f€(t)),
X% () = X (t) - X< (0) - X34 )|
+ [( @ D207 (XP(1) + X37(1)), XP4 () + X5 (1) )|

+ | <<I)§'£D215 (Xf’g(t) + Xf’g(t)>,X‘f’5(t) + X5 (p) >|

X% — X8 X% - X8
(1)6,5 D2r6,£ 0 0 0 0
1% < X04(T) = X5(T) )" \ X5%(T) - X°(T)
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<D2H‘5'5 ( q)%g> (Xo(T) = X(T) ), XO(T) - X6(T)> ‘ }

+
T

< KIE<|X5'5(t) - XO(t) - X2 (t) - X3*(8) |3

+'X‘f’5 (t) + X2 (8)

y |xg'€ —Xg|3 + |X5'£(T) —X5(T)|3>

< K£3/2.

(3.58)
Consequently, combining (3.50) with (3.55), from (3.48), we can derive that

- V6 [Veyo +&(T +K)]

< O [1(y57, 05, )) - T (8,0,
N IE< <(D%,E>,n(o, xo<(1)) ~11(0, Xﬁ(T))>
= (Dg’E{E LT [l(t,xé(t),v&f(t,-)) ~1(,X°(0),0°(t,))
(I (6 X010, 0°(,)), XP7 () + X(1) )
5 (1o (800, 25,9 X750, X9 )t
+E [rxo (x5, x5(D) (X5° - x)

» 3 {r (3 X0m) (x5 ), - x4)

+Tx, (xg, X0 (T)) <X5'€ (T) - X5 (T)>

+% (Txoxe (X5, XOT) ) (X°%(T) = XO(T) ), XP#(T) = X°(T) >] }

5 0 Se(y _ v
+E{<HXT (0,x9(1)) <(D?,€>,X (T) - X (T)>
+% <1‘[XTXT (0,x%(1)) ( q)%,£> (X9(T) - X°(T)), XO(T) - X6(T)> } +0(e2)

T
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T
= [ o i x0 0,05 0) - 16 X0 0,2, )
IREAT )~ )
+ @ <1X (t, X5(1), 00 (¢, -)>,X16’6(t) + X54(t) >
1 5, 6,6 b,
5 <ZXX<t,X5(t),v5(t,~)>X1 1), X (t)>}dt

N \/g<cpg'frx0 (x5 x°m), <;0)>

2o (g em)(2). (2))

+ <q>g'frxr (X§,X°(T)) + T, (0,X°(T)) < (D%,g> ,X5(T) + X‘25’5(T)>
T

+% < [(Dg'srXTXT <Xg/ X6 (T)> + HXTXT <0/ }('5 (T)) <®%,g> ] Xf’E(T), X;S,g (T)> }
T
+ O<53/2>,

(3.59)
Step 5 (duality). Let (®%¢(-), ¥9¢(.),Z0%(-,-)) be the adapted solution to the following BSDE]:

—d®%(t) = [Bg(t, )T (t) + 28 (8, ) WO (t) + L Y5, (t,e) E% (¢, e)r (de) — DYIE(, )| dt
— WO (AW (t) — I Z0¢(t,e) N (dedt),
E

d®%(T) = - [‘DS’EFXT (35,%°()) + T (0,X°(T) <<DO?>]
(3.60)

where I(t,-) = Ix(t, X°(t),0%(t,-)). Then, as (¢,6) — (0,0), (B% (), W0<(-),E%(-,-)) goes to
((i)(), 1I’(), é(, -)), which is the adapted solution to the following BSDE]J:
—dd(t) = [Ex(t,-)%(t) +3x(t ) (@) +j Yx(t, ) E(t, e)ar(de) — Dylx(t,-)| dt
E
~B(HAW(t) - f Z(t,e)N(dedt), (3.61)
E

4B(T) = - @, (%o, X(D) + 11, (0.X) ()]
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where

Bx(t,) = Bx(6X(1),3(t)),  Ex(t,) = =x(t,X(1), (),

Yx(t,-) = By (t,?(t),a(t, .)), Ix(t, ) = Ix (t,i(t),a(t, -)),

(Do, Dr) is determined by (3.25).

Applying It6’s formula to (®%(-), Xf’e(-) + XS’E(-) ), we can get

- IE<<I)§’EFXT (X5, x5(T)) + T, (0,X5(T)) <¢%g>,Xf’E(T) + X?’E(T)>
= ]E<(f>5'5 (T), X24(T) + Xf’E(T)>
~ s 0
) E<®d © (ﬁyo>>
+E f(j{ < — BS(t, )T @% (1) — =5 (t,-) "W (t)

- f YO (t,€) 2% (1, e)r (de) + DI (t, ), XD (F) + Xg’s(t)>
E

33

(3.62)

+ <d‘>5f€<t>,Bi<t, (X0 0) 4 X34() + AB(E, s, () + 5 B ->Xf'5<t>2>

o+ (9900, 250,97 (X°(0) + X250
#(AZE0,9XE7W) + AT (1)) 6.0 + 3 E0x 1 OXP ()

+ j <'§6’6 (t/ 6’), Y?{ (t/ e)T <X(15£(t) + ng(t)>
E

+<AY§((t,e)Xf’£(t) + AY‘S(t,e)>ISE () + %Yix(t,e)Xf’E(t)2>Jr(de) }dt

B E<&)6'6(0)’ (\/gy0>>

(g 1
- I 0 { <®6'6(t)' AB(t, )]s, (1) + 5 By (, ~)Xf’£(t)2>

+ (DI, ), X7 (0 + X3°(8) )
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+ <‘I’6'€(t), AZO(t, s, (F) + %zg’;x(t, -)Xf'f(t)2>
- 1
+J <E5'5(t,e), AYO(t,e)Is, (t) + §Y§(X(t, e)Xf’E(t)2>yr(de) }dt
E

+ O<£3/2>.

(3.63)
Then by (3.59), we have
- \/5[\/53/0 +&(T + K)]

<E f:{mg,e [l<t, XO(t), v (t, .)> - l(t, X0(t), 0% (¢, )>]

£ £ £ ]‘ £ £ £
400 (I (t,), X790+ X57(1) ) + 505 (I (6, )XT“(0), X7 ) }dt

- E<&)&g(0)’ (\/gyo>>

-E I OT{ <(f)6'g(t), ABO(t, )5, (t) + %B‘;’}X(t, ~)Xf’€(t)2>
(@I, XD () + X551 )
+ <li'5f€(t), AZO(t, ) s, () + %ng(t, -)Xf’g(t)2>
s f <éﬁ'5(t, e), AYS(t, e)Is, (b) + %Yixw e>X‘f'€<t>2>ff<d€> }df
E
+ E{\@<(Dg’51"xo <Xg, X® (T)>/ <y00> >
& (ot () (), (2))
+ %< I:(Dg’EFXTXT (XS, X® (T)>
+Hlxx, (0,X°(T)) <®%,5>]Xf’£ (T)/Xf’E(T)> } +0(e?)

T

T
) Efo {q’g'g (e X° 0, 0%, )) - 1(8 X5, 08, )|
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1

500 (I (6, )XT5 (0, X35 ) } dt

T
o : 1 VX0
_EL {<cp5 (t), ABO(t,-)Is,(t) + 2B§X(t, )X (t)2>
« (9400, 0270, 15,0 + 3 X5 1 )X (02
+ J‘E<§6'5(t, e), AY(t,e)Is, () + %Ygx(t, e)Xf’g(t)2>Jr(de) }dt

+ E{ \/E<fbg’grxo <Xg, X° (T)> -9 ), <y00> >

+ §<(I)g’grxoxo (ngxa(T)> <]§)0>/ <3§)0>>

1
+3 < [(Dg'ngTXT (x5, x°(1))

+l,x, (0, X°(T)) ((D%,g> ] XP(T), xfff<T>> } +0(e*?).
T

(3.64)

Note that Y%4(-) = X‘l‘s"g(-)X‘f'g(-)T satisfies

dAY% (1)
o RS (R OO (U
+ [AZ5(t, DAS (1) + 25 (¢, X5 (£) AZO (1, )T + AZE(E, )X (S ¢, -)T] Is. ()
+ f {Yg(t,e)yﬁff(t)Yg(t,e)T

E

+ [Y‘;((t, e) X% (1) AYS (£, e)"

+AYO (1, e) X ()YS (t e)" + AYO(t,e) AYO(t, -)T] Is, (t) }Jr(de) }dt

LYo 0+ Y

H[XPEHAZO(t )T+ AZO (1 )X L, (1) faW ()
+ f {Yi(t,e)Yﬁ’g(t—) + YO (t-)YS (te) + Y5, (1, e) YO£ (1) Y, (t,e) T
E

+ [Xf’g(t—)AYﬁ(t,e)T + AYO(1,e) X (t-) T + Y5 (1, e) XOF (=) AYO (2, €)
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36
+AYO(t,e)XOF () Y5, (t e) T + AYO(t, e)AY‘S(t,e)T]ISE(t) }T\r'(dedt),

e (00
o= (0 syoy8>'
(3.65)

Now, let (P%¢(-), Q%¢(-), K%¢(-,-)) be the adapted solution to the following BSDEJ:

~dP(t) = {Bi(t, )TPOE() + PO(DBY(t) + T3 (1) PO (DX (L)

IR () TQU() + QU (ZR(E, )
+ J [Y5(t, ) PO (Y (1 €) + Y5 (t, ) KO (1, e) Y (1 )
E
FY5 (&) KO (1 e) + K (t, ) Y5, 0) | (de) + HE (1) }dt

— Q% (1AW (t) — f K5 (t, )N (dedt),
E

dPo(T) = —[@?rxrxr (X3, X°(T)) +x,x, (0,X°(T)) <®5>]
T

(3.66)
where
Hf(';’mg'g (t,") = Hxx <t, @2, X0 (t), 00 (t, ), DO (t), WO (t), 04 (1, .)>, (3.67)
with Hxx (¢, A, X, v(+), (i), 1FI}, é(-)) being the Hessian of the following
H<t,A,X,v(-),&),‘f’,§(~)> = <&>,B(t,x,v(-))> + <Iif,2(t,x,v(-))>
(3.68)

+ J‘ (E(e), Y(t, X, v(e)) yr(de) - AL(t, X, v()).
E
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Applying 1t6’s formula to [P%(-)Y54(-)], we have

0
- E{ < [CDS'EFXTXT (X5, XT)) + Iy, (0,X°(T)) <CD6,E>] XP(T), Xf’f(T>>

o)

= ]E{ tr [P‘S'E(T)Y‘S'E(T)] —tr [PG'E (O)Y‘S'E(O)] }
=E IT tr{ PO (1) [Azﬁ(t, VA ()T + 25 (4 )X (HAZE (1)
0

+AZ5(t, )X ()8 (¢, -)T]Igg(t)

+ QP [XO (ATt )T + 557 )X (1) s (1)~ HEg™ (6,975 ()

+ J {P‘S’S(t) [Yg(t,e)xffs(t)mﬁ(t,ef
E

+AYO (1€)X () Y5 (t e)| + AYO(t,e) AYO(t, e)T] Is, (t)
+ K5(t,e) [Xf'f(t—)Mﬁ(t, e)" + AYS(t,e) X5 (=)

+ Y5 ()X (=) AYO (te)" + AYO(t,e) X4 ()Y (¢, e)

+AYS(t,e) AYS (¢, e)T] Is. () }ﬂ(de) }dt

T
= ]EJ‘ tr{Pﬁrf(t) [Azﬁ(t, NAZe ()T + f AYS(t,e)AY?(t,e) r(de)| s, (t)
0 E
+f K% (t,e)AYS(t,e)AYO(t,e)  Is.(t)r(de)
E
_H;S(,;,d)g,e (t, .)Y6,e (t) }dt +0 <g3/2)
T
=E f tr{ AZO(t,-) PO () AZO(t, ) I, (t)

0

+ f AYC(te)' [P‘S'E(t) + K‘S'E(t,e)] AY(t,e)Is, (t)r(de)
E

6,6,00¢ e e
—<HXX " (X2 (1), X5 (t)>}dt + 0(53/2).

(3.69)
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Consequently, from (3.64), we have
- V6[Veyo +e(T + K)]
<E ﬂ{q)gf [z(t, X5(t), 0%, -)) - l<t, X5(t), 00 (¢, ))]
- <&)5'€(t), AB® (t,-)> - <1?5'f(t), Azé(t,-)>
- L <§6'€(t, e), AYS(t, e) >Jr(de)

- %Azﬁ(t, VPO () AZO(t, )

1
2

+ E{\/g<(1)gr€I‘X0 (Xg,X6 (T)) — oe ), ( 0 > >
Yo
+§ < (q)g'SI’XUXU <Xg,X5 (T)> - p6,s(0)> <y00>, <y00> > } ¥ O<£3/2>_

(3.70)

f AYS(t,e)T [P'S'E(t) + KOt e)] AYS(t, ) (de) }155 (t)dt
E

Step 6 (variational inequality). In (3.70), dividing /¢ and then sending ¢ — 0 followed by
sending 6 — 0, we get

0< 1E<‘Dofxo (Xo, X(T)) = B(0), (yoo>>

- (o (Yy o)) =20 (w)) vwer”

(3.71)

which implies

. 0
©0) =Dy <Ery(yo)>' (3.72)

Using a standard argument of Tang and Li [24] in (3.70), we have the following
variational inequality:

@y [l<t,§(t),v(t,-)) - z(t,i(t),a(t,.))] - <&>(t),B(t,X(t>,v(t,-)) - B(t,i(t),a(t,-)»

- <1If(t),z<t,i(t),v(t,-)) - z<t,§(t),6(t,.))>
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- L<§(t,e),Y(t,§(t),v(t,e)) ~Y(£X(1),3(te)) >7r(de)
- % [z(t,i(t),v(t,-)) —z(t,i(t),z—)(t,.))]TP(t) [z(t,i(t),v(t,-)) - z(t,i(t),z—)(t,.))]

-3 | (X, 00,0) (X0 50,0)] 1)+ Kt 0]

x [Y(t,i(t),v(t, e)) —Y(t,i(t),a(t, e))]yr(de) >0, VYo(), ae., as.

(3.73)

Step 7 (finalizing the proof). Since @y #0, by rescaling, we let @y = 1. Then the first-order
adjoint equation (3.61) reduces to

—dd(t) = [Ex(t,-)T&)(t) +3x(t, ) () + L Yx(t, e) E(t, e)r(de) — Ix(t,-)| dt

— W)W (t) - L Z(t, e)N (dedt), (3.74)

B(T) = - |1, (R0, XD) +113, (0XD) ()|

Let (6,¢) — 0in (3.66), then (P*¢(-),Q%(),K%(,-)) — (P(-),Q(),K(,")) which is the
adapted solution to the following second-order adjoint equation:

-dP(t) = {Ex(t, )'P(t) + P()Bx(t, ) + Ex(t,-) ' P()Zx (L) + Zx(t,-) Q1) + Q1) =x (¢, )
+ L [Yx(t,e) P(t)Yx(t€) + Yx(t,e) K(t,e)Yx(t,€)
+Yx(te) K(te) + Kt e)Yx(t e)]yr(de) + Hxx(t,-) }dt
—QHdAW (t) - L K(t,e)N(dedt),
PT) = - [P (%o, X(D) + Mo, (0XD) (o, )|

(3.75)

where

Hxx(t,) = Hxx (£ X(1),5(,), ®0), (1), 2, ), (3.76)
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with Hxx (t, X, v(-), D7, é()) being the Hessian of the following
H(LX,00),®,%,5()) = (®,B(t,X,0()) ) + <€',Z(t,x,v(-))>
(3.77)

+f <é(e),Y(t,X,v(e))>ﬂ'(de) —I(t, X, ().
E

Also, from (3.72), we have
B(0) = < 0 ) (3.78)
Eyy (o) /" .

Note that

Tx, (%X(T)) - (‘i’x(?(f)(T)))’ 0). (3.79)

Iy (Xo, X(T)) = (¢xx<§<:r>> 0

On the other hand, since

<H<O,X(T)), ( £T>> = (y(T) - h(X(T)))an, (3.80)

we have
11, (0.X(0) (o, ) - <—hx<zé)TT)>Td>T>,
o (3.81)
Hx, x; <0,§(T)) <£T> - <_hxx(X(()T)) dr 8>
Let
®() = <Z8> F() = <§8> 50, = (;E;) 682)

Then it follows from (3.74), (3.78), and (3.82) that

<ZE8§> ) (Ery(zyo)) <Zg;) - <_¢X(E(T))j£; (E(T))T(DT) (3.83)

By (3.82), we can rewrite the equations in (3.74) as
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and the variational inequality (3.73) now takes the form:

1(t%(1), (1), z,¢(-), u) = 1(t, (1), (1), Z(b), €(t, ), u(t))
= (p(t),b(t,x(t), Y (t), z,c(),u) - b(t,X(1), (1), Z(),€(t, ), u(t)))
+{q(t), f(£,x(t),Y(t),z,c(-),u) - f(t,x(t), Y1), z(t),c(t,-),u(t))
= (k(t), o (t,x(H), y(t), z,c(),u) — o (t,X(1), (1), Z(t), (¢, ), u(t)))

- L(r(t, e),g(t,x(t),y(t),z cle),u) - g(t,x(t), y(t),z(t),c(t, e), u(t)) ) (de)
- <1§(t), z-Z(t) > - L(F(t,e),c(e) —C(t, e))r(de)

1 O-(tfy(t)fy(t)/ Z,C('),u) - U(t,f(t),y(t),i(t),E(t,-),ﬁ(t)) !
_§< Z-Z() ) P()

<o(t X(), Y (), z,¢(),u) —o(t,X(1), ¥ (1), Z(t), (¢, ), u(t)))
z—2z(t)

1 f (g(f/?(t),?(t),z,C(e),ule) —g(fff(t),?(t),f(t),ﬁ(t,e),ﬁ(t),ff)>T
2 J; c(e) —c(te)

x [P(t) + K(t,e)]

g(t,x(t),y(t), z,cle),u,e) — g(t,x(t), y(t),z(t),c(t e), u(t), e)
( c(e) -t e) i)

>0, Vzc(-),u, ae., as.

(3.85)

Thus, taking u = u(-), z = z(t) + €zp and c(-) = c(t, ) + €co(-), then dividing by ¢ and sending
e — 0, we get

0 < (I(t,x(t), y(t),z(t),c(t,-), u(t)), zo) — (p(t), b= (t,x(t), y(t), z(t),c(t,-), u(t)) zo)
+ <q(t) fz(t x(t) y(t)lz(t)rc(t )/ t))ZO> <k(t)/0z(f,§(t)r?(f)fz(f)15(tr')fﬁ(f))zo>
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[ r e 0,70, 20,20, 70)z0) - (Ro), )

+ <lc (t/ E(t)/y(t)rz(t)rz(t/ ')rﬁ(t))r CO(’)) - <P(t), bc (trf(t)/y(t)rz(t)ra(t/ )rﬁ(t))CO()>
+{q(t), fe(t, (1), y(t), 2(t), €(t, ), u(t) )co () — (k(t), oc (8, (), y(t), Z(F), €(t, ), u(t) )co ("))

- L(T(t/ e), 8 (1 X(1), y(t),Z(t),c(t, e),u(t))co(e))
—f (7(t,e),cole))m(de), Vzo €R™, co(-) € L*(E,B(E),o;R™).
E

(3.86)

Hence,
k(t) = L(t%(1), (1), Z(t), E(t, ), w(t)) - ba (8, X(E), (1), Z(t), (L, -), u(t)) ' p(t)
+ fz (t’ f(t)/y(t)rz(t)f(t, )rﬁ(t))Tq(t) — 0z (t’ E(t)/ y(t)/z(t)/z(t/ )/ﬁ(t))Tk(t)
- L = (LX(1), 7(), Z(t), C(t, e), u()) 'r(t, e)w(de),
F(t, ) = L(6X(), (0, Z(1), B, ), 1) = be(t,X(E), T (1), Z(),E(t, ), (E)) "p(t)
+ fC (t’ E(t)l y(t)fz(t)ra(tl )rﬁ(t))Tq(t) - GC(t’ E(t)/ y(t)rz(t)f(t/ )/ﬂ(t))Tk(t)

- L g (6, X(t), (1), Z(t), €t e), u(t)) 'r(t, e)r(de).

(3.87)
Combining (3.83), (3.84) with (3.87), we arrive at (2.10).
Next, we have
P(T) =- [FXTXT <§0/§(T)> + I x, (QX(T)) <(I())T>]
_ (—qux(x(T)) +Ohxx<i<T>>chT 8> .

_ <—¢xx<f<T)> — e (X(T)) 'q(T) 0>_
0 0

Then (2.11) follows from (3.75).
Further, by taking z = z(-), c(-) = ¢(:, ) in the variational inequality (3.85), we obtain
1% (1), y(6),Z(8), (t,),u) = 1(E,X(8), y (1), Z(8), (), u(D))
= (p(),b(t,X(), y(1), Z(t), €(t, ), u) = b(t,X(1), ¥ (1), Z(t), (¢, ), u(t)))
+{q(®), f(£X(®, Y1), Z(1), 2, ), u) - £(,X(1), 7 (1), Z(t),€(t, ), u(h)))
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- <k(t)/ U(t/ E(t)/ y(t)lz(t)lz(t/ ')/ u) - G(tr E(i’)/ y(t)/ E(t)/E(t/ ')/ ﬁ(t)) >

- fE(r(t,e),g(t,f(t),y(t),i(t),ﬁ(t,e),u,e) -g(t,x(t),y(t),Z(t),c(t, e),u(t), e))r(de)

1 /o(tx(t),y(t),z(t),c(t,),u) — ot x(t),y(t),z(t),c(t,-), u(t)) !
5 ( : ) Pw

y <o(t,§(t),y(t),z(t),6(t,-),u) - o(t,}(t),y(t),z(t),z(t,-),ﬂ(t)))
0

_ lj <g(t,5(t),?(t),5(t),5(t,-),u,e) —g(t,Y(f),?(t),f(t)f(t,e),ﬁ(f),6)>T
2 e 0

x [P(t) + K(t, e)]

x <g(t’§(t)ry(t)/z(t)la(tr ')/ u, 6) - g(t’ E(t)ry(t)/z(t)/z(tr e)rﬁ(t)/ e)>ﬁ(d€)
0

>0, Yuel, ae., as,,

(3.89)

which gives (2.13). This completes the proof of our main result—Theorem 2.1.

4. A Linear Quadratic Example

In this section, we briefly discuss a linear quadratic case, which serves as an illustrating
example of our main result. Consider the following linear controlled FBSDE]J:

dx(t) = [bix(t) + bay(t) + bsz(t) + bac(t, ) + bsu(t)] dt
+ [o1x(t) + ooy (F) + 032(t) + ouc(t,-) + osu(t) | dW (t)
+ L [g1x(t-) + @y (t-) + g32(t) + gac(t, e) + gsu(t)| N (dedt),
—dy(t) = [fix(t) + fay(t) + fsz(t) + fac(t,”) + fsu(t)]dt
—z(HdW (t) - L c(t,e)N(dedt),

(4.1)

x(0) = a, y(T) = mx(T),
with the quadratic cost functional given by
1 T2 2 2 2 2 2 2
Ju() = FEL | [12) +hy? () + B2 () + 1 (1) + I (1) dt + 12 (T) +11y2(0) .
0
(4.2)

In the above, b;, 0, g, fi,li, i = 1,...,5 and hy, ¢1, 11 are all real constants of R. The control
domain U C R could be very arbitrary; in particular, U does not have to be a convex set. We let
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U[0, T] be the set of all F-predictable processes u : [0, T]xQ — U such that sup_, . E[u(t) [ <
+oo, Vi=1,2,....
For any u(-) € #[0,T], we denote

<x> <—f1x - f2y - f3z - fac() - f5u>
==\v ) A, Z,c(),u) = bix+by+bsz+bsc(-) +bsu |, (4.3)

z 01X + 0ol + 032 + 04¢(+) + Os51
and assume that (H4.1)

(A E, (), u)— A=, (),u),Z2-2')
+ L(gl (x=x)+&(y-y)+g(z-2) +gs(cle) - (), cle) - c'(e)) (de)

S—ﬂ1|x—X’|2—ﬁz<|y—y’|2+ |z—z’|2+f |c<e>—c'<e>|%r<de>),
E
hi > p1 >0,

(4.4)

where f1, f>, and p; are given constants with f; > 0, 1 > 0, f > 0. Then by Wu [1], there
exists a unique adapted solution (x(-), y(:), z(:),c(,-)) to (4.1).

Now, suppose that the corresponding stochastic control problem admits an optimal
5-tuple (x(-),y(:),z(:),c(-,-),u(-)). Now let us look at Theorem 2.1. The first-order adjoint

equation (2.10) reads
—dp(t) = [blp(t) - fiq(t) + o1k(t) + J’E qir(t,e)or(de) — lﬁ(t)] dt
—k(t)dW(t) - f r(t, e)ﬁ(dedt),
E

dq(t) =

—bap(t) + f2q(t) — o2k(t) - L Qr(t,e)r(de) + lzy(t)] dt ws)

+

—bsp(t) + f3q(t) — o3k(t) - ’[E or(t,e)or(de) + l3E(t)] dw (t)

+ L [~bap(t-) + faq(t=) — osk(t) — gar(t, e) + lsc(t, e)]ﬁ(dedt),
p(T) = -g1x(T) —hq(T),  4(0) = 1Y,

Similarly, we denote

q -bip+ fig—-onk—gir(-) + hx
d=1{p ), B, S, r() = -bp+ fog— ook - Qr(:)+hLy ). (4.6)
k —bzp + f3q - O'3k - g31"(') + 132
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Since controlled FBSDE] satisfies (H4.1), we can easily check that the above FBSDE] (4.4)
satisfies the following condition (H4.2):

(B, 8, r(-),u)-B(tY,r'(-),u),8-8)
[ oulp=p)+ fla=q) ~ouk=K)

—gu(r(e) —71'(e)) + lsc(e), r(e) — ' (e) ) (de) 4.7)
>pilg-q|’ +ﬁz<|p—q’I2 k=K’ +f |r(e) —r'(e)lzzr(de)),
E
- <-m,

where f, >, and p; are the same as in (H4.1). Then by Wu [38], FBSDE] (4.4) admits a unique
adapted solution (q(-), p(-), k(:),7(-,-)).
The 2 x 2 matrix-valued second-order adjoint equation (2.11) becomes

—dP(t) = {BTP(t) +PHB+X"PHZ+ZQ(H) +Q(HZ+Y'P(H)Y

+f [YTK(t, &)Y +YTK(t e) + K(t, e)Y]yr(de) - L}dt

: (4.8)

- QAW (t) - f K(t,e)N(dedt),
E

ry = ("9 0).
where
(5 =G @D =) e
As before, (4.5) can be split into the following three scalar BSDE]s:

—dP,(t) = { 2byPy(t) + 02Py (1) + 20101 (1) - 21 Pa(t) + £2P1 (1)

¥ L [s2K1(t 0) + 281K (1 €)] w(de) - 1y }dt
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—QuBAW(H) - f Kt e)Ndeds)

P(T) = =g,
(4.10)
—dP,(t) = {b2P1 () + b1 Py(t) + 0102 Py (1) + 1 Qa(t) + 02Q1 (1) — fiP3(E) — f2Pa(t)
+q1pDPi(t) + L [s19:Ki(t e) + s1Ka(t e) + K (t, e)]yr(de)}dt
~ Qo (HdW (t) - L K> (t,e)N(dedt),
B(T) =0,
(4.11)
—dPs(t) = {szPz(t) +02Py(t) +200Qa(t) — 2f2P5(t) + 2 Pi(t)
+ L [s2Ki(t€) +2g:Ka L, €) | (de) - I }dt w12

~ Qs(HdW (t) - f Ks(t,e)N(dedt),
E
P5(T) = 0.

Note that since all the coefficients in (4.5) are constants and the terminal condition is
deterministic, we must have

Q()=0, K(,’)=0, (4.13)

and P(-) is deterministic. Consequently,

P(t) =-[BTP(t) + P()B+STP()S+YTP()Y - L],  P(T) = <‘g’1 8). (4.14)

And at the same time (4.7)—(4.10) reduce to
Pi(t) = —<2b1 +02+ glz)Pl(t) +26D() +1,  P(T) =—¢y,
Py(t) = —(by+ 0100 — 192) Pi(t) + (b1 — f2) Pa(t) — f1P5(t),  Po(T) =0, (4.15)

P3(t) = —(O'% + gzz)P1(t) - 0'22P2(t) + 2f2P3(t) - lz, P3(T) =0,

and Q;(-) = 0, Ki(-,-) = 0, i = 1,2,3. Clearly, linear ODE (4.11) admits a unique explicit
solution and then ODEs (4.12) do.
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Since the Hamiltonian function (2.12) reads
H(xl y/ z, C(')/ u, P/ q/ k/ r())

= (bix + byy + b3z + byc(:) + bsu)p — (fix + foy + faz + fac(:) + fsu)q
+ (01x + 0oy + 03z + 04 () + OsU) k
(4.16)
+I (q1x + oy + g3z + guc(e) + gsu)r(e)r(de)
E

1
-3 <11x2 +hy? + 1322 + 142 () + l5u2>,
the maximum condition (2.13) now takes the form (noting that K;(-,-) = 0)

[b5p(t) - fsq(t) + osk(t) + f g5r(t,e)ﬂ'(de)] [u(t) — u]
. . E (4.17)
-5k [ﬁz(t) | -5 [052 + gg] [@(t) — u]®Pi(t) >0, VYueU, te[0,T].

This implies that

bsp(t) — fsq(t) + osk(t) + L gs7(t, e)or(de)

> L +ul+ 1[o§ + | - ulPi(H), YueU, u>uc), te[0,T;
2 2 (4.18)
bsp(t) — fsq(t) + osk(t) + L g7 (t, e)r(de)

< %k[ﬂ(t) +ul + %[052 + gg] [w(t) — u] Pi(t), YueU, u<u(t), te[o,T].

Now, let us look at an interesting special case. Noting that some related problems
without random jumps were discussed by Shi and Wu [39] by a purely completion-of-squares
technique.

Suppose that

fl>0/ bZSOr 0-3501 84S0/

(4.19)
b1 = fo, o1 = f3, g1 = fa, 0y = b3, g = —by, g3 = —04.

It is very easy to check that the assumptions (H4.1) and (H4.2) hold. Now the first-order
adjoint equation (4.4) reads

—dp(t) = [b1p(t) - fiq(t) + o1k(t) + L qir(t, e)or(de) — Lix(t)|dt

—k(t) AW () - L r(t,e)N(dedt),
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dq(t) =

—-byp(t) + big(t) — o2k(t) - L Qr(t,e)r(de) + lzy(t)] dt

+

oop(t) + 019(t) — o3k (t) + f osr(t, e)or(de) + l3E(t)] AW (t)
E

+ L [$2p(t-) + &1q(t-) — oak(t) — gar (¢, €) + LiT(t, €)| N (dedt),
p(T) = -g1x(T) —hq(T),  4(0) =1y,
(4.20)

and the second-order adjoint ODEs (4.12) reduce to

P1 (i’) = —(2b1 + 012 + glz)Pl (t) + Zblpz(t) + 11, P (T) = —(i)l,
Dy(t) = =(by + 0102 — 19) Pi(t) — f1D5(t), P(T) =0, (4.21)
Pg(t) = —(0'22 + gg)Pl(t) - G%Pz(t) + 2b1P3(t) - lz, Pg(T) =0.

If, in addition, b; = 0, = 0 (noting that this does not mean that the state equation (4.1)
is decoupled), then (4.21) further reduce to

Pi(t) = —(of +g)Pi(t) +1i,  Pi(T) = ~¢n, (4.22)
D(t) =—(by—q192)Pi(t) - f1P5(D), P, (T) =0, (4.23)
Ps(t) = -g3P(t) -,  P5(T) =0. (4.24)

We can first solve P; (-) explicitly from (4.22):
T
PL(t) = e [ f e T 4g 4 4,1], (4.25)
t

and then solve P;(-) explicitly from (4.24). Finally, explicit P, () can be obtained from (4.23).
The maximum condition (4.18) remains the same.

However, we cannot obtain the explicit optimal control from the maximum condition
(4.18) in general, since this depends heavily on the adjoint processes (p(-),q(-), k(-),r(,-)).
The explicit, adapted solution to fully coupled FBSDE]J such as (4.20) is an interesting and
challenging open problem. And the explicit optimal control in its state feedback form is rather
difficult to obtain even in some very simple cases when there are no random jumps. We will
consider some relevant issues in the future work.

5. Concluding Remarks

In this paper, we have discussed a general optimal control problem for fully coupled forward-
backward stochastic differential equations with random jumps (FBSDE]s). The control
domain is not assumed to be convex, and the control variable appears in both diffusion and
jump coefficients of the forward equation. Enlightened by Tang and Li [24], Wu [13], Yong
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[20], necessary conditions of Pontraygin’s type for the optimal controls are derived by means
of spike variation technique and Ekeland variational principle. And the general maximum
principle for forward stochastic control systems with random jumps [24] and the maximum
principles for forward-backward stochastic control systems with random jumps [25, 26] are
recovered in this paper. A linear quadratic stochastic optimal control problem is discussed as
an illustrating example.
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