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We present a stochastic methodology to study the decay phase of an epidemic. It is based on
a general stochastic epidemic process with memory, suitable to model the spread in a large
open population with births of any rare transmissible disease with a random incubation period
and a Reed-Frost type infection. This model, which belongs to the class of multitype branching
processes in discrete time, enables us to predict the incidences of cases and to derive the probability
distributions of the extinction time and of the future epidemic size. We also study the epidemic
evolution in the worst-case scenario of a very late extinction time, making use of the Q-process.
We provide in addition an estimator of the key parameter of the epidemic model quantifying
the infection and finally illustrate this methodology with the study of the Bovine Spongiform
Encephalopathy epidemic in Great Britain after the 1988 feed ban law.

1. Introduction

Outbreaks of infectious diseases of animals or humans are subject, when possible, to control
measures aiming at curbing their spread. Effective measures should force the epidemic to
enter its decay phase and to reach extinction. The decay phase can then be simply detected
by a decrease of the number of cases, when this decrease is obvious. However this is not
always the case, and this rough qualitative information might not be sufficient to evaluate
accurately the effectiveness of the proposed measures to reduce the final size and duration of
the outbreak. The goal of this paper is to present a stochastic methodology in discrete time
to study more accurately the decay phase of an epidemic. Our framework is the spread, in a
large open population, of a rare transmissible disease such that the infection process may be
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assumed to follow a Reed-Frost type model, with a probability for a susceptible to become
infected by a given dose of pathogens inversely proportional to the total population size.
Moreover the latent period (during which an individual is infected but not yet infectious)
may be random and long compared to the generation time. Questions about the decay phase
include the following: which quantitative criteria can ensure that the disease has entered an
extinction phase? What is the probability distribution of the epidemic extinction time, of the
epidemic final size, and of the incidence of infected individuals? Finally, what would be the
evolution of the epidemic in the event of a very late extinction of the disease?

From a practical point of view, it is generally impossible to observe all infections.
Susceptible and infected but not yet infectious individuals are most often not distinguishable,
being both apparently healthy. This leads to the fact that the only available observations
correspond to the incidence of individuals with clinical symptoms. One way to deal with
this lack of information was proposed in [1] by Panaretos, who used a model taking into
account two types of infected individuals, the observed and the unobserved. In order to
answer the previous questions, we choose here a different approach, considering a stochastic
model depending on the sole incidences {Xn}n of infectives at each time. We assume that an
infective can transmit the disease during one given time unit at most. Therefore the incidence
of infectives corresponds to the incidence of cases. The process then describes in a recursive
way how one single infective can indirectly generate new infectives (so-called “secondary
cases”) k time units later, where 1 � k � d. We assume that this number of secondary cases
follows a Poisson probability distribution with parameter Ψk > 0. The recursive formula
defining {Xn}n is then the following:

Xn =
d∑

k=1

Xn−k∑

i=1

Yn−k,n,i, (1.1)

where the variable Yn−k,n,i is the incidence of secondary cases produced at time n with a
delay k (latent period) by individual i infectious at time n − k. The {Yn−k,n,i}i,k are assumed
independent givenFn−1 := σ({Xn−k}k�1), and the {Yn−k,n,i}i are assumed i.i.d. (identically and
independently distributed) given Fn−1, with a common Poisson distribution with parameter
Ψk. This model is therefore time homogeneous and is in this sense less general than the one
introduced in [2], which describes the spread of infectious animal diseases in a varying
environment. However since we focus on the extinction phase only, the assumption of a
constant environment with no new control measure is well founded and enables us to
describe more accurately the decay phase. This process is the generalization of the well-
known single-type BGW (Bienaymé-Galton-Watson) branching process, which is the limit,
as the total population size tends to infinity, of the process describing the spread in a closed
population of an infectious disease with a negligible latent period and a probability to become
infected following a Reed-Frost model (see, e.g., [3, 4] and citations therein).

The core of the paper lies in Section 2, where the whole methodology is presented. We
first formulate the epidemic model {Xn}n as a multitype branching process with Poissonian
transitions, the types representing the memory of the process. This formulation provides
useful analytical results such as the extinction criteria, and the distributions of the extinction
time and of the epidemic size (Sections 2.1–2.3). Then, in order to investigate the worst-case
scenario of an extreme late extinction of the epidemic, we introduce in Section 2.4 the Q-
process {X∗

n}n, obtained by conditioning {Xn}n on a very late extinction. Using this process,
we focus the study on the early behavior of the decay phase in the worst-case scenario, rather
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than on its long range behavior, which would have little meaning in our setting. Motivated
by practical applications to real epidemics, for which we want to predict the processes {Xn}n
and {X∗

n}n, as well as the derived distributions above, we need to know the values of the
parameters {Ψk}k. We may write Ψk =

∑am−k
a=1 θaPinc,a(k)Page(a + k), where θa is the mean

number of individuals infected at age a by an infective by direct or indirect transmission, am

is the largest survival age, Pinc,a(k) is the probability for the individual aged a at infection to
have a latent period equal to k (given his survival), and Page(a+k) is the probability to be aged
a + k at the end of the latent period. Parameters {θa}a are the key quantities for the spread
of the disease and can be subject to changes due to control measures during the epidemic.
We assume here that θa = θ0 + pa, where pa is constant over time, while θ0 may change with
control measures. A typical example is when θ0 is the mean number of individuals infected
by an infective by horizontal route at age a, assumed independent of a � 2, and p1 represents
the maternal transmission probability pmat. In this case

Ψk = θ0

am∑

a=k+1

Pinc,a−k(k)Page(a) + pmatPinc,1(k)Page(k + 1). (1.2)

So we assume here that, except for θ0, the other parameters of the {Ψk}k are constant over
time and are known (generally estimated) from previous experiences or from the study of the
whole epidemic evolution, in particular its growth phase. We moreover assume that each Ψk

depends affinely on θ0 (see Section 3.1). In Sections 2.5 and 2.6, we provide optimal WCLSE
(Weighted Conditional Least Squares Estimators) of θ0 in the decay phase, in the frame of
{Xn}n as well as in the frame of the associated conditioned process {X∗

n}n, and prove the
strong consistency and the asymptotic normality of these estimators.

The final Section 3 is devoted to the application of this method to real epidemics. We
first present in Section 3.1 some general conditions under which the spread of a SEIR disease
(susceptible, exposed (latent), infectious, removed) can be approximated by our epidemic
process defined by (1.1) and give an explicit derivation of the parameters {Ψk}k. We then
illustrate the methodology in Section 3.2 with the decay phase of the BSE (Bovine Spongiform
Encephalopathy) epidemic in Great Britain. According to the available data [5], the epidemic
is obviously fading out. We assume that the {Ψk}k satisfy (1.2). Then thanks to the stochastic
tools developed here, we provide in addition to this rough information, short- and long-term
predictions about the future spread of the disease as well as an estimation of a potentially
remaining horizontal infection route after the 1988 feed ban law.

2. Methodology for the Study of an Epidemic Decay Phase

In this section we present a general methodology to study the decay phase of a SEIR disease
in a large population, modeled by the process (1.1) defined in Section 1. Our main goal is to
provide analytical tools to evaluate the efficiency of the last control measures taken prior to
the considered time period. Most of our results are derived from the fact that this epidemic
model can be seen as a multitype branching process. Indeed, {Xn}n defined by (1.1) is a
Markovian process of order d. Consequently, the d-dimensional process {Xn}n defined by

Xn := (Xn,Xn−1, . . . , Xn−d+1) (2.1)
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is Markovian of order 1, and it stems directly from (1.1) that {Xn}n is a multitype Bienaymé-
Galton-Watson (BGW) process with d types (see, e.g., [6]). Note that the d types in this
branching process do not correspond to any attribute of the individuals in the population,
which is usually the case in mathematical biology (see, e.g., [7]), but simply correspond to
thememory of the process {Xn}n. The information provided by the d-dimensionalMarkovian
process {Xn}n is therefore the same as the one given by the 1-dimensional d-Markovian
process {Xn}n, but the multitype branching process setting gives us powerful mathematical
tools and results stemming from the branching processes theory [6]. The first basic tool is the
generating function of the offspring distribution of {Xn}n, f := (f1, . . . , fd), defined on [0, 1]d

by fi(r) := E[rX1 | X0 = ei], where ei := (0, . . . , 1, . . . , 0) denotes the ith basis vector of N
d and

uv :=
∏d

i=1u
vi

i for u,v ∈ N
d. For all r ∈ [0, 1]d, we have here

fi(r) := e−(1−r1)Ψi ri+1, i = 1 · · ·d − 1,

fd(r) := e−(1−r1)Ψd .
(2.2)

The second basic tool is the mean matrix M defined by E(Xn | Fn−1) = Xn−1M, which is here

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ψ1 1 0 · · · 0
Ψ2 0 1 · · · 0
...

...
. . .

...
Ψd−1 0 · · · · · · 1
Ψd 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.3)

Let us notice that, sinceΨk > 0 for each k = 1 · · ·d, then {Xn}n is nonsingular, positive regular
(see [6]) and satisfies the X logX condition,

E[‖X1‖ ln‖X1‖ | X0 = ei] < ∞, i = 1, . . . , d, (2.4)

where ‖ · ‖ denotes the sup norm in R
d.

2.1. Extinction of the Epidemic

2.1.1. Almost Sure Extinction

Since the single-type process {Xn}n has a memory of size d, it becomes extinct when it is null
at d successive times, or equivalently as soon as the d-dimensional process {Xn}n reaches
the d-dimensional null vector 0. According to the theory of multitype positive regular and
nonsingular BGW processes [6], the extinction of the process {Xn}n occurs almost surely
(a.s.), if and only if ρ � 1, where ρ is the dominant eigenvalue (also called the Perron’s
root) of the mean matrix M. Thus ρ is solution of

∑d
k=1 Ψkρ

−k = 1. In general for d > 1, ρ
has no explicit expression. However,

∑d
k=1 Ψkρ

−k = 1 leads directly to the following explicit
threshold criteria.

Proposition 2.1. The epidemic becomes extinct almost surely if and only if R0 � 1, where R0 :=∑d
k=1 Ψk is the total mean number of secondary cases generated by one infective in a SEIR disease.

We call R0 the basic reproduction number.
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Moreover, when ρ � 1, then R0 � ρ with equality if and only if either ρ = 1 or d = 1, and
when ρ > 1, then R0 � ρ with equality if and only if d = 1.

Note that when d > 1,R0 only provides information about the threshold level, whereas
ρ provides an additional information about the speed of extinction of the process, as shown
in the next two paragraphs.

2.1.2. Speed of Extinction

Thanks to well-known results in the literature about multitype branching processes andmore
particularly to the Perron-Frobenius theorem (see, e.g., [6]), we can deduce the expected
incidence of infectives in the population at time n, for n large. Denoting by u and v the right
and left eigenvectors ofM associated to the Perron’s root ρ; that is,MuT = ρuT and vM = ρv,
with the normalization convention u · 1 = u · v = 1, where u · v stands for the usual scalar
product in R

d and where the superscript T denotes the transposition, then E(Xn | X0) =
X0Mn ∼

n→∞
ρnX0uTv. The first coordinate in the latter formula becomes for the epidemic

process ρn
∑d

i=1 X−i+1uiv1. Computing explicitly u and v, we obtain that for all i = 1 · · ·d,

ui =
∑d

k=i Ψkρ
−k+i

∑d
j=1
∑d

k=j Ψkρ−k+j
, vi = ρ−i

∑d
j=1
∑d

k=j Ψkρ
−k+j

∑d
j=1
∑d

k=j Ψkρ−k
, (2.5)

which leads to the following asymptotic result:

E(Xn | X0) ∼
n→∞

ρn
d∑

i=1

X−i+1

∑d
k=i Ψkρ

−k+i−1
∑d

j=1
∑d

k=j Ψkρ−k
. (2.6)

Hence if ρ < 1, the mean number of infectives decreases exponentially at the rate ρ. In the
following section, we provide a much finer result on the estimation of the disease extinction
time in the population.

2.1.3. Extinction Time of the Epidemic

The extinction time distribution can be derived as a function of the offspring generating
function. As usual in stochastic processes, this quantity is calculated conditionally on the
initial value X0 = (X0, X−1, . . . , X−d+1), but for the sake of simplicity we do not let it appear
in the notations. Note that since we are building tools for the prediction of the spread
of the disease, the time origin 0 corresponds here to the time of the last available data
(generally the current date). Let T := inf{n � 1,Xn = 0} denote the extinction time of the
process {Xn}n, and let fn := f ◦ fn−1 be the nth iterate of the generating function f given
by (2.2). We denote fn := (fn,1, . . . , fn,d). Then, by the branching property of the process
([6]), the probability of extinction of the epidemic before time n is immediately given by
P(T � n) = P(Xn = 0) = fn(0)

X0 , that is to say,

P(T � n) =
(
fn,1(0)

)X0
(
fn,2(0)

)X−1 · · · (fn,d(0)
)X−d+1 . (2.7)
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It can be immediately deduced from convergence results for fn(0) as n → ∞ [8], that if ρ = 1,
P(T � n) ∼ 1 − (nη)−1X0 · u, while if ρ < 1, P(T � n) ∼ 1 − ρnγX0 · u, for some constants
η, γ > 0. As a consequence, the closer ρ is to unity, the longer the time to extinction will be in
most realizations. More specifically, (2.7) enables the exact computation (resp., estimation) of
P(T � n) for any n by the iterative computation of fn, X0 being given, when the parameters
Ψk of (1.1) are known (resp., estimated). Moreover, since for ρ � 1 the epidemic becomes
extinct in an a.s. finite time and P(T � n)↗n→∞1, then for any given probability p ∈ [0, 1[
there exists n ∈ N such that P(T � n) � p. So in practice, for any p ∈ [0, 1[, (2.7) enables us to
compute the p-quantile nT

p of the extinction time,

nT
p := min

{
n � 1 : P(T � n) � p

}
. (2.8)

2.2. Total Size of the Epidemic

Under the assumption ρ � 1 and the independence of the {Yn−l,n,i}i,l,n (we previously
assumed the independence of the {Yn−l,n,i}i,l, for each n), we derive the distribution of the
future total size N :=

∑T
n=1 Xn of the epidemic until its extinction, that is, the future total

number of infectives until the extinction of the disease. It can be shown [9] that, given the
initial value X0, the time origin being the same as in Section 2.1, the probability distribution
ofN is

N
D=

d∑

k=1

X−k+1∑

i=1

⎛

⎝
Yk,i∑

j=1

Nk,i,j

⎞

⎠, Yk,i :=
d∑

l=k

Y−k+1,−k+1+l,i, (2.9)

where D= denotes the equality in distribution, an empty sum is by convention 0, the {Yk,i}k,i
are independent, and the {Yk,i}i and the {Nk,i,j}k,i,j are i.i.d. with

Yk,i
D= Poiss

(
d∑

l=k

Ψl

)
, Nk,i,j

D= Borel − Tanner

(
d∑

l=1

Ψl, 1

)
, (2.10)

that is, for each n � 1, P(Nk,i,j = n) = e−n
∑d

l=1 Ψl(n
∑d

l=1 Ψl)
n−1(n!)−1. Consequently, under the

convention that an empty product is 1, the probability distribution of N is, for any n ∈ N,

P(N = n) =
∑

{0�yk,i�n,{1�nk,i,j�n}j }i,k :
∑d

k=1
∑X−k+1

i=1
∑yk,i

j=1 nk,i,j=n

d∏

k=1

X−k+1∏

i=1

e−
∑d

l=k Ψl

(∑d
l=k Ψl

)yk,i

yk,i!

×
yk,i∏

j=1

e−nk,i,j
∑d

l=1 Ψl

(
nk,i,j

∑d
l=1 Ψl

)nk,i,j−1

nk,i,j !
,

(2.11)
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which may be calculated (resp., estimated), replacing the Ψk by their values (resp.,
estimations). In practice, for any p ∈ [0, 1[, (2.11) enables to compute the p-quantile nN

p of
the total epidemic size,

nN
p := min

{
n � 1 : P(N � n) � p

}
. (2.12)

We obtain moreover an explicit formula for the mean value and variance of the size of the
epidemic,

E(N) =
∑d

k=1 X−k+1
∑d

l=k Ψl

1 −∑d
l=1 Ψl

, Var(N) =
∑d

k=1 X−k+1
∑d

l=k Ψl
(
1 −∑d

l=1 Ψl

)3 . (2.13)

2.3. Exposed Population

Depending on the disease, it might also be crucial to study and predict the evolution of
the incidence of exposed individuals in the population, which is generally unobservable.
We assume that this information is given by the process {Zn}n defined by the conditional

distribution Zn | Xn
D= Poiss(Ψ0Xn), where Ψ0 is the mean number of individuals infected

at time n by an infective of this time (see Section 3.1). This property enables on the one
hand to reconstruct the whole past epidemic (i.e., the incidence of infectives as well as of
exposed individuals) thanks to the observable data. On the other hand, it allows to simulate
the evolution of the incidence of exposed individuals in the future, based on predictions of
the evolution of the epidemic process {Xn}n.

2.4. Worst-Case Scenario: Very Late Extinction of the Epidemic

Even in the case when the epidemic dies out almost surely (ρ � 1), and although one can
provide the p-quantile nT

p of the extinction time with the probability p as large as wanted (see
(2.8)), the epidemic might become extinct after this time with a small but nonnull probability
of order 1− p. This raises the following question: how would the incidences of infectious and
exposed individuals evolve in the (unlikely) case of a very late extinction? In terms of risk
analysis, this issue appears to be crucial to evaluate the risks associated with this worst-case
scenario. The tools developed in the previous subsections allow to evaluate the probability
of all possible outcomes. But since the worst ones, typically a very late extinction, have a
negligible probability, these tools do not bring any information in these worst cases and in
particular do not inform on the evolution at each time step of the spread of the disease (would
it decrease extremely slowly, stay at a constant rate for a very long time, present several
peaks in its evolution, etc.?). In order to study the propagation of the epidemic in the decay
phase, assuming that extinction occurs very late, we are interested in the distribution of the
process {Xn}n conditionally on the event that the epidemic has not become extinct at time
k, where k is very large. We therefore consider for any n1, n2, . . . ∈ N and any i0, i1, i2, . . . ∈
N

d the conditioned probability Pi0(Xn1 = i1, . . . ,Xnr = ir | Xk /= 0), where the subscript i0
denotes the initial value. If k is finite this distribution cannot be easily handled due to its time
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inhomogeneity. However, when ρ � 1, it is known ([10]) that this conditioned distribution
converges, as k → ∞, to the distribution of a d-dimensional Markov process {X∗

n}n:

lim
k→∞

Pi0(Xn1 = i1, . . . ,Xnr = ir | Xk /= 0) = Pi0
(
X∗
n1

= i1, . . . ,X∗
nr

= ir
)
. (2.14)

We will further discuss in Proposition 2.5 the relevancy of approximating the conditioned
probability for k fixed by the limiting object (2.14). The conditioned process {X∗

n}n defined
by (2.14) is known in the literature as the Q-process associated with {Xn}n, also described
as the process conditioned on “not being extinct in the distant future.” It has the following
transition probability [10]: for every n � 1, i, j ∈ N

d, i/= 0,

P
(
X∗
n = j | X∗

n−1 = i
)
=

1
ρ

j · u
i · uP(Xn = j | Xn−1 = i), (2.15)

where u is the normalized right eigenvector of M associated to the Perron’s root ρ as
introduced in Section 2.1, and computed explicitly in (2.5). In the same way as for the
process {Xn}n, we define the 1-dimensional process X∗

n := X∗
n,1. By construction we then have

X∗
n,i = X∗

n−i+1, for each n and each i = 1 · · ·d.

Proposition 2.2. The stochastic process {X∗
n}n is, conditionally on its past, distributed as the sum of

two independent Poisson and Bernoulli random variables:

X∗
n | X∗

n−1
D= Poiss

(
X∗
n−1 ·Ψ

) ∗ B(p(X∗
n−1
))
, (2.16)

whereΨ := (Ψ1, . . . ,Ψd), ∗ is the convolution product symbol, and

p
(
X∗
n−1
)
:=

u1X∗
n−1 ·Ψ

u1X∗
n−1 ·Ψ +

∑d
k=2 X

∗
n−k+1uk

. (2.17)

Proof. Applying (1.1) and (2.15), we obtain that for all j ∈ N,

P
(
X∗

n = j | X∗
n−1
)

= P

(
X∗
n =
(
j, X∗

n−1, . . . , X
∗
n−(d−1)

)
| X∗

n−1
)

=
ju1 +

∑d
k=2 X

∗
n−k+1uk

ρX∗
n−1 · u

P

(
Xn =

(
j, X∗

n−1, . . . , X
∗
n−(d−1)

)
| Xn−1 = X∗

n−1
)

=
ju1 +

∑d
k=2 X

∗
n−k+1uk

ρX∗
n−1 · u

(
X∗
n−1 ·Ψ

)j

j!
e−X

∗
n−1·Ψ

=
u1X∗

n−1 ·Ψ
ρX∗

n−1 · u

(
X∗
n−1 ·Ψ

)j−1
(
j − 1
)
!

e−X
∗
n−1·Ψ +

∑d
k=2 X

∗
n−k+1uk

ρX∗
n−1 · u

(
X∗
n−1 ·Ψ

)j

j!
e−X

∗
n−1·Ψ.

(2.18)
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The equality MuT = ρuT implies that for all k = 1 · · ·d − 1, ρuk = Ψku1 + uk+1, and that
ρud = Ψdu1. Consequently, ρX∗

n−1 · u = u1X∗
n−1 ·Ψ +

∑d
k=2 X

∗
n−k+1uk, and thus

P
(
X∗

n = j | X∗
n−1
)

=
u1X∗

n−1 ·Ψ
u1X∗

n−1 ·Ψ +
∑d

k=2 X
∗
n−k+1uk

(
X∗
n−1 ·Ψ

)j−1
(
j − 1
)
!

e−X
∗
n−1·Ψ

+

(
1 − u1X∗

n−1 ·Ψ
u1X∗

n−1 ·Ψ +
∑d

k=2 X
∗
n−k+1uk

)(
X∗
n−1 ·Ψ

)j

j!
e−X

∗
n−1·Ψ

=

[
Poiss

(
X∗
n−1 ·Ψ

) ∗ B
(

u1X∗
n−1 ·Ψ

u1X∗
n−1 ·Ψ +

∑d
k=2 X

∗
n−k+1uk

)]
(
j
)
.

(2.19)

Remark 2.3. Note that if one compares (2.16) with the transition probability of the

unconditioned process Xn | Xn−1
D= Poiss(Xn−1 · Ψ), it appears that {X∗

n}n behaves at each
time step like {Xn}n, according to a Poisson distribution, except that it has the possibility at
each time step to add one unit or not, according to a Bernoulli random variable. Moreover, if
X∗

n−1 = · · · = X∗
n−(d−1) = 0, then according to (2.17), p(X∗

n−1) = 1, which implies that at time n,
the probability to add one unit is equal to one, thus preventing the extinction of the process.

Proposition 2.4. The process {X∗
n}n admits a stationary probability measure π with finite first- and

second-order moments.

Proof. Since the multitype branching process {Xn}n satisfies property (2.4), it is known [10]
that the Q-process {X∗

n}n is positive recurrent with a stationary probability measure π given
by

π(i) :=
i · u ν(i)∑

k∈Nd k · u ν(k)
, i ∈ N

d, (2.20)

where ν is the Yaglom distribution of the process {Xn}n, uniquely defined by the following
property: for all i, j ∈ N

d \ {0}, limn→∞P(Xn = i | X0 = j,Xn /= 0) = ν(i). In the literature, this
stationary measure for the conditioned process {X∗

n}n is also referred to as the doubly limiting
conditional probability. Moreover, by Proposition 2.2,

E(X∗
n) = E

[
E
(
X∗

n | X∗
n−1
)]

= E
[
X∗
n−1 ·Ψ + p

(
X∗
n−1
)]

�
d∑

k=1

E
(
X∗

n−k
)
Ψk + 1, (2.21)

which implies that limn→∞E(X∗
n) � (1 −∑d

k=1 Ψk)
−1 < ∞. We consequently obtain by means

of Fatou’s lemma that, for every i = 1 · · ·d,

∑

j∈Nd

jiπ(j) = E

(
lim
n→∞

X∗
n,i

)
= E

(
lim
n→∞

X∗
n−i+1

)
= E

(
lim
n→∞

X∗
n

)
� lim

n→∞
E(X∗

n) < ∞. (2.22)
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We similarly prove that π has finite second-order moments by writing

Var
(
X∗

n | X∗
n−1
)
= X∗

n−1 ·Ψ +
u1X∗

n−1 ·Ψ
∑d

k=2 X
∗
n−k+1uk

(
u1X∗

n−1 ·Ψ +
∑d

k=2 X
∗
n−k+1uk

)2 � X∗
n−1 ·Ψ +

1
4
. (2.23)

Let us discuss the relevancy of approximating the epidemic process {Xn}n conditioned
on nonextinction at some finite time k, for k large, by theQ-process {X∗

n}n obtained by letting
k → ∞. When considering the case of late extinction, one works under an hypothetical
assumption based on the unknown future, hence in practice one does not focus on a specific
value k for the survival of the disease in the population. We therefore might consider that k
is chosen large enough such that the approximation of the process {Xn}n conditioned on the
event {Xk /= 0} by the process {X∗

n}n is valid. Of course, the order of magnitude of such k will
depend on the rate of convergence of the conditioned process to {X∗

n}n.

Proposition 2.5. Let n1 � · · · � nr � k and i0, . . . , ir ∈ N
d \ {0}. Then the difference

|Pi0(Xn1 = i1, . . . ,Xnr = ir | Xk /= 0) − Pi0(X
∗
n1

= i1, . . . ,X∗
nr

= ir)| decreases, as k → ∞, with
max{ks−1(|λ|ρ−1)k/2, ρk/2}, where λ is an eigenvalue of M such that ρ > |λ| � |λ3| � |λ4| � · · · ,
with the λi being the other eigenvalues ofM. In case |λ| = |λ3| we stipulate that the multiplicity s of λ
is at least as great as the multiplicity of λ3.

Proof. Thanks to (2.15) and to the Markov property together with the fact that Pi(Xn = 0) =
fn(0)

i, we have

∣∣Pi0(Xn1 = i1, . . . ,Xnr = ir | Xk /= 0) − Pi0
(
X∗
n1

= i1, . . . ,X∗
nr

= ir
)∣∣

=

∣∣∣∣∣
1 − fk−nr (0)

ir

1 − fk(0)i0
− 1
ρnr

ir · u
i0 · u

∣∣∣∣∣Pi0(Xn1 = i1, . . . ,Xnr = ir).
(2.24)

The right term of (2.24) is known to converge to 0, as k → ∞, thanks to the property that
limkak = γu, for some γ > 0, where ak := ρ−k(1 − fk(0)) (see [8]). This stems from two
convergences, namely, limkbk = γ , where bk := ρ−k(v · (1 − fk(0))), and limkakb−1k = u. Let us
write ak = γu + εk, where limkεk = 0. Since bk = v · ak and u · v = 1, it comes

akb−1k =
γu + εk
γ + v · εk ∼k→∞u + γ−1[εk − (v · εk)u]. (2.25)

It thus appears that the rate of convergence of ak to γu is of the same order of magnitude
as the one of akb−1k to u. Let us determine this rate in an accurate way. We use the following
inequality produced by Joffe and Spitzer in [8]: for each k � n � 1,

∥∥∥akb−1k − u
∥∥∥ =
∥∥∥∥

1 − fk(0)
v · (1 − fk(0))

− u
∥∥∥∥ �

2δn +
∑k

j=k−n+1 αj

1 − δn −
∑k

j=k−n+1 αj

, (2.26)
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where we are going to replace δn and αn by some explicit formulae function of ρ and n.
For this purpose, we use a detailed asymptotic behavior of Mk, as k → ∞, presented for
instance in [11]; we have Mk = ρkR +O(ks−1|λ|k), where R = uTv. For the sake of clarity the
symbolO(·)will denote either a scalar or a matrix with all the entries satisfying the associated
property. This implies the existence of some constant a > 0 such that, for all k ∈ N, (1−δk)R �
ρ−kMk � (1 + δk)R, where δk := aks−1(ρ−1|λ|)k. Moreover, following [8], let us write, for all
r ∈ [0, 1]d, 1 − f(r) = (M − E(r))(1 − r), where 0 � E(r) � M, and E(r) = O(‖1 − r‖) as
r → 1. Then ρ−1E(fk−1(0)) = ρ−1O(‖1 − fk−1(0)‖) = O(ρk−2), which implies the existence of
some constant b > 0 such that, for all k ∈ N, 0 � ρ−1E(fk−1(0)) � αkR, with αk := bρk−2. We
thus have provided an explicit formula for the sequences (δk)k and (αk)k introduced by Joffe
and Spitzer in [8]. Finally let us apply (2.26) to n = 
k/2� and replace in this inequality δn
and αn by their explicit expressions that we got. We obtain that, for all k ∈ N,

∥∥∥∥
1 − fk(0)

v · (1 − fk(0))
− u
∥∥∥∥ �

22−saks−1(|λ|/ρ)k/2 + (b/ρ(1 − ρ
))
ρk/2

1 − 21−saks−1(|λ|/ρ)k/2 − (b/ρ(1 − ρ
))
ρk/2

. (2.27)

Consequently, the right member of (2.24) will decrease with max{ks−1(|λ|ρ−1)k/2, b(ρ(1 −
ρ))−1ρk/2}, as k → ∞.

Hence the concept of the Q-process will have most practical relevance to approximate
the very late extinction case if ρ is near to zero and if |λ| is small compared with ρ. Note
however that the very late extinction scenario is more likely to happen if ρ is near to unity
because the time to extinction in most realizations will then be long (see Section 2.1).

2.5. Estimation of the Infection Parameter

We assume for this subsection that the parameters Ψk of the epidemic model (1.1)–(2.1) are
not entirely known. More precisely, we assume that the Ψk are of the form, for all k = 1 · · ·d,

Ψk(θ0) = akθ0 + bk, (2.28)

where ak > 0 and bk � 0 are constants, and θ0 is an unknown real parameter. We will write in
what follows Ψ(θ0) = aθ0 + b, where Ψ(θ0) := (Ψ1(θ0), . . . ,Ψd(θ0)) and so forth. This general
assumption corresponds in particular to the case where the Ψk are of the form (1.2).

We estimate θ0 by the following WCLSE in model (1.1)–(2.1). This estimator
generalizes the well-known Harris estimator [12] in a BGW process. Let Θ :=]θ1, θ2[, θ2 >
θ1 > 0, such that θ0 ∈ Θ. The WCLSE is based on the normalized process Yn := Xn/

√
a · Xn−1

and is defined by

θ̂|X0| := argmin
θ∈Θ

n∑

k=1

(Yk − Eθ(Yk | Xk−1))
2 = argmin

θ∈Θ

n∑

k=1

(Xk −Ψ(θ) · Xk−1)
2

a · Xk−1
. (2.29)

We easily derive the following explicit form:

θ̂|X0| =
∑n

k=1(Xk − b · Xk−1)∑n
k=1 a · Xk−1

. (2.30)
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The normalization of the process Xn by
√
a · Xn−1 appears to be the most natural and suitable

for the following reasons. First, this normalization generalizes the normalizationXn/
√
aXn−1

in the monotype case, which is the one leading to the Harris estimator m̂ ofm0 = aθ0 +b since
we have, for d = 1, aθ̂X0 + b = m̂. It also corresponds, in the linear case b = 0, to the maximum
likelihood estimator of θ0. In addition, defining for any vector x, x := minixi and x := maxixi,
we have

θ0 +
b
a

� Eθ0

(
(Yk − Eθ0(Yk | Xk−1))

2 | Xk−1
)
= θ0 +

b · Xk−1
a · Xk−1

� θ0 +
b
a
, (2.31)

hence the conditional variance of the error term Yk−Eθ0(Yk | Xk−1) in the stochastic regression
equation Yk = Eθ0(Yk | Xk−1)+Yk−Eθ0(Yk | Xk−1) is invariant under multiplication of the whole
process, and bounded respectively to {Xn}n, leading to the quasi-optimality of θ̂|X0| at finite
|X0| and n, in the sense of [13].

Let us provide asymptotic results for the estimator θ̂|X0| defined by (2.30), as the initial
population size |X0| = X0 +X−1 + · · · +X−d+1 tends to infinity. We denote bym

(k)
ij (θ) the (i, j)th

entry in the kth power of the matrix M(θ) given by (2.3).

Theorem 2.6. Let us assume that, for each i = 1 · · ·d, there exists some αi ∈ [0, 1] such that
lim|X0|→∞X0,i|X0|−1 = αi. Then θ̂|X0| is strongly consistent, that is, lim|X0|→∞θ̂|X0|

a.s.= θ0, and is
asymptotically normally distributed:

lim
|X0|→∞

√√√√
∑n

k=1 a · Xk−1

σ2
(
θ̂|X0|
)
(
θ̂|X0| − θ0

) D= N(0, 1), (2.32)

where

σ2(θ) := θ +

∑n
k=1
∑d

j=1
∑d

i=1 αjbim
(k−1)
ji (θ)

∑n
k=1
∑d

j=1
∑d

i=1 αjbim
(k−1)
ji (θ)

. (2.33)

Proof. Let us first prove that, for each k = 1 · · ·n and each i = 1 · · ·d,

lim
|X0|→∞

Xk,i

|X0|
a.s.=

d∑

j=1

αjm
(k)
ji (θ0). (2.34)

Using the branching property of the process {Xn}n ([6])we write

Xk,i =
X0,1∑

j=1

X
(1)
k,i,j + · · · +

X0,d∑

j=1

X
(d)
k,i,j , (2.35)

where, for all l = 1 · · ·d and j = 1 · · ·X0,l, X
(l)
k,i,j is the ith coordinate of a d-type branching

process at time k initialized by a single particle of type l. For k, i, and l fixed the random
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variables {X(l)
k,i,j}j are i.i.d. with mean value m

(k)
li (θ0). According to the strong law of large

numbers and under the theorem assumption, we have, for every l = 1 · · ·d such that X0,l /= 0,

lim
|X0 | →∞

∑X0,l

j=1 X
(l)
k,i,j

X0,l

a.s.= m
(k)
li (θ0), (2.36)

which together with the theorem assumption leads to (2.34).
To prove the consistency of θ̂|X0| we apply (2.34) to (2.30), using the fact that Xk = Xk,1

and Xk−i = Xk−1,i, and obtain

lim
|X0|→∞

θ̂|X0|
a.s.=

∑n
k=1
∑d

j=1 αj

(
m

(k)
j1 (θ0) −

∑d
i=1 bim

(k−1)
ji (θ0)

)

∑n
k=1
∑d

i=1
∑d

j=1 aiαjm
(k−1)
ji (θ0)

. (2.37)

By definition,

m
(k)
j1 (θ0) =

d∑

i=1

m
(k−1)
ji (θ0)mi1(θ0) =

d∑

i=1

m
(k−1)
ji (θ0)(aiθ0 + bi), (2.38)

hence (2.37) immediately leads to the strong consistency.
We are now interested in the asymptotic distribution of θ̂|X0| −θ0. We derive from (2.30)

that

√√√√
n∑

k=1

a · Xk−1
(
θ̂|X0| − θ0

)
=
∑n

k=1(Xk −Ψ(θ0) · Xk−1)√∑n
k=1 a · Xk−1

. (2.39)

By (1.1),

Xk −Ψ(θ0) · Xk−1 =
d∑

i=1

Xk−i∑

j=1

(
Yk−i,k,j −Ψi(θ0)

)
=:

d∑

i=1

Xk−i∑

j=1

◦
Yk−i,k,j , (2.40)

where the {Yk−i,k,j}j are i.i.d. given Fk−1, following a Poisson distribution with parameter

Ψi(θ0), and the {Yk−i,k,j}i,j are independent given Fk−1. Renumbering the
◦
Yk−i,k,j we then

obtain

n∑

k=1

(Xk −Ψ(θ0) · Xk−1) =
d∑

i=1

∑n
k=1 Xk−i∑

j=1

◦
Yk−i,k,j . (2.41)
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Applying a central limit theorem for the sum of a random number of independent random
variables (see, e.g., [14]), we obtain that, for all i = 1 · · ·d,

lim
|X0|→∞

∑∑n
k=1 Xk−i

j=1

◦
Yk−i,k,j

√∑n
k=1 Xk−i

D= N(0, aiθ0 + bi). (2.42)

We have used the fact that |X0| is a real positive sequence growing to infinity, and
∑n

k=1 Xk−i
is a sequence of integer-valued random variables such that

∑n
k=1 Xk−i/|X0| converges in

probability to a finite random variable. In our case the limit is actually deterministic, since
we have shown in (2.34) that

lim
|X0|→∞

∑n
k=1 Xk−i
|X0|

a.s.=
n∑

k=1

d∑

j=1

αjm
(k−1)
ji (θ0). (2.43)

Using (2.41) in (2.39), we write

√√√√
n∑

k=1

a · Xk−1
(
θ̂|X0| − θ0

)
=

d∑

i=1

∑∑n
k=1 Xk−i

j=1

◦
ζk−i,k,j

√∑n
k=1 Xk−i

√∑n
k=1 Xk−i

√∑n
k=1 a · Xk−1

. (2.44)

Using again (2.34),

lim
|X0|→∞

√∑n
k=1 a · Xk−i

√∑n
k=1 a · Xk−1

a.s.=

√√√√√
∑n

k=1
∑d

j=1 αjm
(k−1)
ji (θ0)

∑n
k=1
∑d

j=1
∑d

l=1 αjalm
(k−1)
jl (θ0)

, (2.45)

which, combined to (2.42) and (2.44), implies by Slutsky’s theorem that

lim
|X0|→∞

√√√√
n∑

k=1

a · Xk−1
(
θ̂|X0| − θ0

) D= N
(
0, σ2(θ0)

)
. (2.46)

By (2.33) and the strong consistency, lim|X0|
√
σ2(θ0)/

√
σ2(θ̂|X0|)

a.s.= 1, from which we finally
deduce (2.32).

2.6. Estimation of the Infection Parameter in the Worst-Case Scenario

In order to make predictions of the evolution of the epidemic in case of a very late
extinction, that is, in order to make predictions of the behavior of the conditioned process
{X∗

n}n introduced in Section 2.4, we need to estimate the parameter θ0 in the setting of this
conditioned process. We point out that θ0 does not play the same role in the conditioned
process {X∗

n}n and in the unconditioned process {Xn}n, since, as shown in Proposition 2.2,
this parameter interferes not only in the Poisson random variable but also in the Bernoulli
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one. It would thus be irrelevant to estimate θ0 with an estimator aimed for the unconditioned
process, such as θ̂|X0|. Let us notice that, according to (2.16), the process {X∗

n}n could be
written as a multitype branching process with state dependent immigration. Because of this
state-dependence, and since the parameter θ0 acts in a nonlinear way in the immigration,
the methods developed in estimation theory for branching processes with immigration (see,
e.g., [15]) cannot be directly applied here. Similarly as in Section 2.5 we consider the WCLSE
based on the process Y ∗

n := X∗
n/
√
a · X∗

n−1, namely,

θ̂∗
n := argmin

θ∈Θ
Sn(θ), Sn(θ) :=

n∑

k=1

(
Y ∗
k − f

(
θ,X∗

k−1
))2

, (2.47)

where Θ is defined in Section 2.5, and where

f
(
θ0,X∗

k−1
)
:= Eθ0

(
Y ∗
k | X∗

k−1
)
=

X∗
k−1 ·Ψ(θ0) + p

(
θ0,X∗

k−1
)

√
a · X∗

k−1
. (2.48)

Let ε∗k := Y ∗
k −f(θ0,X∗

k−1) be the error term between the normalized process and its conditional
expectation. We obtain that

g
(
θ0,X∗

k−1
)
:= Eθ0

((
ε∗k
)2 | X∗

k−1
)
=

X∗
k−1 ·Ψ(θ0) + p

(
θ0,X∗

k−1
)(
1 − p

(
θ0,X∗

k−1
))

a · X∗
k−1

, (2.49)

which implies

θ0 +
b
a

� Eθ0

((
ε∗k
)2 | X∗

k−1
)

� θ0 +
b + 1
a

. (2.50)

In what follows, we denote by f ′ the derivative of f with respect to θ, and similarly for the
other quantities depending on θ.

Theorem 2.7. The estimator θ̂∗
n is strongly consistent, that is, limn→∞θ̂∗

n
a.s.= θ0, and has the

following asymptotic distribution:

lim
n→∞

∑n
k=0 f

′
(
θ̂∗
n,X

∗
k

)2

√
∑n

k=0 f
′
(
θ̂∗
n,X∗

k

)2
g
(
θ̂∗
n,X∗

k

)
(
θ̂∗
n − θ0

) D= N(0, 1). (2.51)

Remark 2.8. Note that (2.51) involves the function f ′ and thus requires the knowledge of the
derivative of the function uj given in (2.5), which is not an explicit function of θ since ρ is not
either. However, ρ′ satisfies ρ′ =

∑d
k=1 akρ

−k[
∑d

k=1 k(akθ + bk)ρ−k−1]
−1; hence u′

j is known as
soon as ρ can be computed. Consequently, denoting ρ by ρ(θ)when θ is the parameter of the
model, (2.51) can be used as soon as ρ(θ̂∗obs

n ) is known; for this purpose one can for instance
numerically approximate the largest solution ρ of

∑d
k=1 Ψk(θ̂∗obs

n )ρ−k = 1.
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Proof. The proof heavily relies on a strong law of large numbers for homogeneous irreducible
positive recurrent Markov chains applied to the conditioned process {X∗

n}n and its stationary
distribution πθ0 (given by Proposition 2.4), which states [16]: for every πθ0 -integrable
function h : N

d \ {0} → R,

lim
n→∞

1
n

n−1∑

k=0

h
(
X∗
k

) a.s.=
∑

j∈Nd

h(j)πθ0(j). (2.52)

Note that the Perron’s root ρ(θ) ofM(θ) and the associated right normalized eigenvector u(θ)
are C∞-functions of θ.

In order to prove the strong consistency of θ̂∗
n as n → ∞, since f ′′(·,X∗

k−1) is not linear,
we cannot use the general standard method based on the first-order expansion of S′

n(θ̂
∗
n)

at θ0, and on the strong law of large numbers for martingales applied to S′
n(θ0) correctly

normalized. We consequently use the following conditions given in [17]:

(i) f(.,X∗
k−1) is Lipschitz on Θ; that is, there exists a nonnegative F∗

k−1-measurable
function Ak (where F∗

k−1 := σ(X∗
0, . . . ,X

∗
k−1)), satisfying, for all δ1, δ2 ∈ Θ,

|f(δ1,X∗
k−1) − f(δ2,X∗

k−1)| � Ak|δ1 − δ2| a.s.,

(ii) limk→∞Eθ0((ε
∗
k)

2 | X∗
k−1)

a.s.
< ∞,

(iii) limn→∞inf θ∈Θ
|θ−θ0|�δ

∑n
k=1 (f(θ0,X

∗
k−1) − f(θ,X∗

k−1))
2 a.s.= ∞.

Let us note that, in the frame of a general model f , since Θ is compact, (i) is satisfied as soon
as f(θ,X∗

k−1) has a first derivative in θ with supθ∈Θf
′(θ,X∗

k−1) < ∞, (ii) is satisfied for any
optimal estimator in the sense of [13] and moreover could be weakened (see [17]), and (iii)
is a necessary condition. First, for all θ ∈ Θ and j ∈ N

d, j/= 0, f ′(θ, j) = (a · j + p′(θ, j))(a · j)−1/2,
where p′ denotes the derivative of p with respect to θ, which thanks to (2.17) is bounded on
Θ. Condition (i) is thus satisfied. Condition (ii) follows from (2.50). Condition (iii) comes
from the fact that, for every δ > 0 and every θ ∈ Θ such that | θ − θ0 |� δ, applying the mean
value theorem to the C1-function p(·,X∗

k−1),

n∑

k=1

(
f(θ0,X∗

k−1) − f(θ,X∗
k−1)
)2 = (θ0 − θ)2

n∑

k=1

a · X∗
k−1

(
1 +

p
(
θ0,X∗

k−1
) − p

(
θ,X∗

k−1
)

(θ0 − θ)a · X∗
k−1

)2

� δ2
n∑

k=1

a · X∗
k−1 inf

θ∈Θ

(
1 +

p′(θ,X∗
k−1)

a · X∗
k−1

)2

.

(2.53)
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Let us show that the function j 
→ a · j infθ∈Θ(1 + p′(θ, j)/a · j)2 is πθ0 -integrable. For every
θ ∈ Θ, j ∈ N

d and j/= 0, denoting Ξ := supi,θ∈Θ{ui(θ), | u′
i(θ) |} < ∞ (by continuity of u′

i(θ) on

Θγ ⊃ Θ), and u := mini,θ∈Θui(θ) > 0,

∣∣∣p
′(θ,j)
∣∣∣ =

∣∣∣∣∣∣∣

(
u′
i(θ)j ·Ψ(θ) + u1(θ)j · a

)∑d
i=2 jiui(θ) − u1(θ)j ·Ψ(θ)

∑d
i=2 jiu

′
i(θ)

(
u1(θ)j ·Ψ(θ) +

∑d
i=2 jiui(θ)

)2

∣∣∣∣∣∣∣

� Ξ2

u2

3j ·Ψ(θ)
∑d

i=2 ji
(
j ·Ψ(θ) +

∑d
i=2 ji
)2 � 3Ξ2

4u2
=: C1.

(2.54)

Hence, for all j/= 0, | a ·j infθ∈Θ(1+p′(θ, j)/a ·j)2 |� (1 + C1/a)
2a ·j, and applying (2.52) together

with (2.22)we obtain that

lim
n→∞

1
n + 1

n∑

k=1

a · X∗
k−1 inf

θ∈Θ

(
1 +

p′
(
θ,X∗

k−1
)

a · X∗
k−1

)2
a.s.=
∑

j∈Nd

a · jinf
θ∈Θ

(
1 +

p′(θ, j)
a · j

)2

πθ0(j). (2.55)

Let j/= 0 fixed. Since, for all θ ∈ Θ, p′(θ, j)/= − a · j, the extreme value theorem implies that
infθ∈Θ(1 + p′(θ, j)/a · j)2 > 0. Hence the right term in (2.55) is strictly positive, which together
with (2.55) leads to (iii).

Let us now consider the asymptotic distribution of θ̂∗
n −θ0. For this purpose, we follow

the steps of the proof of Proposition 6.1 in [17]. Writing the Taylor expansion of S′
n(θ̂

∗
n) at θ0

we obtain that θ̂∗
n − θ0 = −S′

n(θ0)/S
′′
n(θ̃n), for some θ̃n = θ0 + tn(θ̂∗

n − θ0), with tn ∈ ]0, 1[. Since
S′
n(θ0) = −2∑n

k=1 ε
∗
kf

′(θ0,X∗
k−1), we can write

√
n
(
θ̂∗
n − θ0

)
=

∑n
k=1 ε

∗
k
f ′(θ0,X∗

k−1
)

√
n

(
Fn

n

)−1
⎛
⎜⎝

1
2

S′′
n

(
θ̃n
)

Fn

⎞
⎟⎠

−1

, (2.56)

where Fn :=
∑n

k=1 (f
′(θ0,X∗

k−1))
2. Let us first show that

lim
n→∞

Fn

n
a.s.=
∑

j∈Nd

(
f ′(θ0, j)

)2
πθ0(j). (2.57)

This is an application of (2.52) and (2.22), since, for all j ∈ N
d, j/= 0,

(
f ′(θ0, j)

)2 � a · j + 2C1 +
C2

1

a
. (2.58)
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In view of (2.56), we now prove that

lim
n→∞

S′′
n

(
θ̃n
)

Fn

a.s.= 2. (2.59)

Computing S′′
n thanks to the formula Sn(θ) =

∑n
k=1 (ε

∗
k + f(θ0,X∗

k−1) − f(θ,X∗
k−1))

2, it appears
that (2.59) is true, as soon as the following holds:

lim
n→∞

sup
θ∈Θ

∣∣∑n
k=1 ε

∗
kf

′′(θ,X∗
k−1
)∣∣

Fn

a.s.= 0, (2.60)

lim
n→∞

∑n
k=1

(
f ′
(
θ̃n,X∗

k−1
))2

Fn

a.s.= 1, (2.61)

lim
n→∞

∑n
k=1

(
f
(
θ0,X∗

k−1
) − f

(
θ̃n,X∗

k−1
))

f ′′
(
θ̃n,X∗

k−1
)

Fn

a.s.= 0. (2.62)

Let us prove (2.60)–(2.62). First, (2.60) is given by a strong law of large numbers proved in
[17, Proposition 5.1]. The latter can be indeed applied since limnFn

a.s.= ∞ (as an immediate
consequence of the stronger result (2.57)), and since f ′′(·,X∗

k−1) fulfills the required Lipschitz
condition. Indeed we proved earlier that u′′′

i (θ) is continuous on the compact setΘ and is thus
bounded on Θ, which implies that f ′′′(·,X∗

k−1) = p′′′(·,X∗
k−1)(a ·X∗

k−1)
−1/2 is bounded by a F∗

k−1-
measurable function. In view of (2.61), we consider the function f(θ, j)2 and its derivative
2f ′(θ, j)f ′′(θ, j). Similarly as for (2.54), one can show that there exists a constant C2 > 0 such
that for all θ ∈ Θ, and all j/= 0, | p′′(θ, j) |� C2. This implies

∣∣2f ′(θ, j)f ′′(θ, j)
∣∣ � 2

∣∣∣∣∣

(
a · j + p′(θ, j)

)
p′′(θ, j)

a · j

∣∣∣∣∣ � 2C2

(
1 +

C1

a

)
. (2.63)

Consequently,

∣∣∣∣
∑n

k=1

(
f ′
(
θ̃n,X∗

k−1
))2 − (f ′(θ0,X∗

k−1
))2
∣∣∣∣

Fn
� 2C2

(
1 +

C1

a

)∣∣∣θ̂∗
n − θ0

∣∣∣
(
Fn

n

)−1
,

(2.64)

which by (2.57) and the strong consistency of θ̂∗
n almost surely tends to 0. Writing

∑n
k=1 f
(
θ̃n,X∗

k−1
)2

Fn
= 1 +

∑n
k=1

((
f ′
(
θ̃n,X∗

k−1
))2 − (f ′(θ0,X∗

k−1
))2
)

Fn
,

(2.65)
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this implies (2.61). It now remains to prove (2.62). We write

∣∣∣
∑n
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f
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n
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(
1 +

C1

a

)(
Fn

n

)−1
,

(2.66)

which thanks to (2.57) and the strong consistency of θ̂∗
n implies (2.62). In view of (2.56),

we finally want to prove that
∑n

k=1 ε
∗
kf

′(θ0,X∗
k−1)/

√
n converges in distribution. For this

purpose we make use of a central limit theorem for martingale difference arrays [18, 19]; if
{M(n)

k
,F(n)

k
, 1 � k � n}, n � 1 is a sequence of square integrable martingales with associated

Meyer process 〈M〉(n) = (〈M〉(n)
k

)1�k�n satisfying limn→∞〈Mn〉(n) P= c2 for some constant c,
and such that, for all ε > 0,
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2
1{|M(n)
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P= 0, (2.67)

then limn→∞M
(n)
n

D= N(0, c2). Let us define M
(n)
k

:=
∑k

l=1 ε
∗
l
f ′(θ0,X∗

l−1)/
√
n, for every k � n.

First, for any k � n, Eθ0(ε
∗
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√
n | X∗

k−1) = 0. Second,

Eθ0

⎛
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)

n
, (2.68)

hence {M(n)
k }k�n is a sequence of square integrable martingales. Moreover, using inequalities

(2.50) and (2.58), we obtain, by (2.22),

∑
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(
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So, by means of (2.52),
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Third, using Cauchy-Schwarz and Bienaymé-Chebyshev inequalities,
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(2.71)

Let us compute Eθ0((ε
∗
k)

4 | X∗
k−1). We can show that the 4th central moment of the independent

sum of a Poisson and a Bernoulli random variables equals μ4 + 6μ2γ2 + γ4, where μi and γi
denote the ith central moment of the Poisson and of the Bernoulli variable. If these variables
have parameter λ and p, respectively, then μ4 = λ(1 + 3λ), μ2 = λ, γ4 = p(1 − p)(3p2 − 3p + 1) ∈
[0, 1], and γ2 = p(1 − p) ∈ [0, 1]. We thus obtain
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(2.73)

Since the highest power of X∗
n involved in (2.73) is 3/2, and since by Proposition 2.4 the

stationary distribution πθ0 has finite second moments, we can apply (2.52) to (2.71) and
obtain that
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It then ensues from the central limit theorem mentioned above that
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Finally, (2.56), together with (2.57), (2.59), (2.75), and Slutsky’s theorem, implies that

lim
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which leads to
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It now remains to prove the asymptotic distribution (2.51). Thanks to what precedes,
this result is immediate as soon as we prove that
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as well as the equivalent result for the numerator. For this purpose, we write
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(2.79)

and show that (f ′(·, j))2g(·, j) has a bounded derivative and is thus Lipschitz. We have indeed
| g ′(θ, j) |=| a · j + p′(θ, j) | (a · j)−1 � 1 + C1a−1, hence
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for some constant C3 > 0. This enables us to write
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By the strong consistency of θ̂∗
n together with (2.52) and (2.22), (2.81) almost surely tends to

zero. Combined with (2.52) and (2.69) in (2.79), this implies (2.78).
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3. Application to Real Epidemics

3.1. Explicit Epidemic Model

Although the epidemic model (1.1) has a clear interpretation in terms of the disease
propagation, it can be also proved [9] that it is the limit process, as the initial population
size tends to infinity, of the incidence of infectives described by a thorough process in a large
branching population, taking into account all the health states of the disease and describing in
detail the infection and latent processes for each individual in the population. This detailed
process is a multitype branching process with age and population size dependence, taking
into account the variability of many individual factors such as the reproduction, the survival,
the transmission of the disease, and the latent time. We assume a disease of the general SEIR
type. We also assume a random latent period and, for the sake of simplicity, a duration of
the state I of one time unit only. Hence the incidence of infectives exactly corresponds to the
incidence of cases.

The main assumptions for the construction of the limit model {Xn}n are, concerning
the disease as follows: (i) at the initial time the disease is rare and the total population size
is large; (ii) the infection via horizontal route is of Reed-Frost type, with the probability for
a susceptible individual to become infected by a given dose of pathogens being inversely
proportional to the total population size; (iii) the individual survival law is the same for
E and S individuals and is independent of the population and of the time; (iv) the latent
time law given the individual survival is independent of the time, the individual age, and the
infectives population during the latent period. This last property is possible if we assume that
overinfection during the incubation has a negligible effect on the latent time. We moreover
assume that the whole healthy population size is relatively stable over time.

The limit process (1.1) is then obtained in an inductive way as the limit in distribution
of {In}n as the initial total population size |N0| → ∞, where In denotes the number of new
infectives at time n. More precisely, denoting by En the incidence of exposed individuals

at time n and by am the largest individual survival age, we obtain that {Xn,Zn}n D=
limN0 →∞{In, En}n, with

Xn | (Xn−1, . . . , Xn−am+1)
D= Poiss

(
am−1∑

k=1

ΨkXn−k

)
, (3.1)

Zn | Xn
D= Poiss(Ψ0Xn), (3.2)

and where for all k = 1 · · ·am − 1, Ψk satisfies (1.2) in Section 1, with the latent period
distribution given survival, Pinc,a, assumed independent of a, being denoted by Pinc. Thus

Ψk = θ0Pinc(k)
am∑

a=k+1

Page(a) + pmatPinc(k)Page(k + 1), (3.3)

and similarly,

Ψ0 = θ0 + pmatPage(1). (3.4)
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Moreover, when assuming a relatively stable population size and denoting by S(a) the
individual survival probability until age a at least, then Page(a) is equal to S(a)(

∑am
a′=1 S(a

′))−1.

3.2. Illustration: The BSE Epidemic in Great Britain

In this section we provide an illustration of the methodology developed in Section 2 by
studying the decay phase of the BSE epidemic in Great Britain, based on the observations
of the yearly diagnosed cases from 1989 until 2011, with 1988 being the date of the main
control measure. The disease that was first officially identified in 1986 [20] reached its peak
in 1992 (36682 cases) and is obviously now in its decay phase. Since only a very few cases
were recently reported [5], namely, 11 in 2010 and 5 in 2011, the spread of the disease should
a priori “soon” come to an end. It has been accepted that the epidemic is fading out, with
a very low level of risk for cattle and humans. However it might be interesting to have a
more precise idea of the extinction phase of the disease, for instance, of its length and of its
intensity.

3.2.1. Choice of the Epidemic Model

BSE is a transmissible disease through ingestion of prions (horizontal route) and through
maternal route. It is commonly accepted (see, e.g., [21]) that the infectious phase (including
the clinical state) lasts at most one year, while the latent state can be of several years. If
one compares the epidemic data with the total population of around 9 million cattle in
Great Britain, it is reasonable to assume that, even at the peak time, BSE may be considered
as a rare disease in a large population. We moreover assume that the probability for an
animal to become infected by a horizontal route follows a Reed-Frost type model as in (ii)
of Section 3.1, and that the probability for a calf to become infected by its dam is nonnull
and constant over time. Moreover, for the sake of simplicity and parsimony, we do not take
into account potential heterogeneity factors such as the different regulations from 1989 (the
main regulation was the feed ban of July 1988 and was shown to be quite efficient [22]), the
different types of breeding and of races, the age for animals older than one year, and the
evolution of the surveillance system and of diagnosis tests. So the process {Xn}n defined by
(3.1)–(3.4) appears relevant to model the spread of this fatal disease after the 1988 ban, where
the infectious state I corresponds to the end of the incubation period and the clinical state, and
R corresponds to the death (assumed to be either by routine slaughtering for E and S cattle,
and control slaughtering for I cattle). Choosing a time step of one year, Xn then represents
the yearly incidence of notified cases, which corresponds to the available data provided by
the World Organisation for Animal Health [5].

3.2.2. Choice of the Model Parameters

In order to predict the future epidemic evolution, we need to evaluate all the parameters
involved in (3.3). These parameters were already studied in previous works [22–25] using
different models, amounts of observations, and kinds of estimators. Since it might have a
crucial role in the decay phase of the disease, we focus here on θ0 the infection parameter
from 1989 via a horizontal route of transmission (i.e., the mean number per infective and per
year of newly infected). Until the 1988 feed ban regulation, the main routes of transmission
of BSE were horizontal via protein supplements (Meat and Bone Meal, milk replacers), and
maternal from a dam to its calf. Since a previous statistical study [22] concluded to the full
efficiency of the 1988 ban and since most of cattle are slaughtered before the age of 10 years,
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the fact that cases of BSE are still observedmore than 20 years later could suggest the existence
of a remaining source of infection, either via a maternal transmission route, or via a horizontal
one, for example, via the ingestion of excreted prions from alive infected animals, or from
prions left in the environment. The prediction of the future disease spread thus strongly relies
on the intensity of this infection, quantified by the parameter θ0. We provide an estimation
of θ0 together with a confidence interval, which will be used for prediction estimations. We
provide in addition a sensitivity analysis to the other parameters of the model, which are
chosen as follows. First, the maximal age of the individuals in the population am is set to am =
10, which corresponds to the largest reported survival age with a nonnegligible probability.
Next, we set pmat = 0.1, which is the largest order of magnitude commonly accepted for the
maternal infection probability [23, 25]. Following a previous work, [22], we assume here a
discretized Weibull distribution with parameters α, β for the distribution of the latent period;
that is to say, for each k � 1, Pinc(k) := e−((α−1)/αβ

α)(k−1)α − e−((α−1)/αβ
α)kα

, where α is a shape
parameter, and β is the mode of the probability density of the corresponding continuous
Weibull distribution. The parameters α and β have a very bad identifiability with the infection
parameters on a sole monotonous phase and are consequently estimated in [22] on the whole
epidemic series (growth and decay), by Bayesian maximum a posteriori (MAP) estimations.
We set α = α̂MAP = 3.84 and β = β̂MAP = 7.46. Since the death of susceptible and exposed
animals is mostly due to routine slaughtering, the survival probability S(k) (probability for
an apparently healthy animal to survive at least until k years) corresponds to the probability
of being slaughtered after the age of k years. It is derived from existing literature [24].

3.2.3. Estimation of the Infection Parameter

Our study is based on the yearly number of cases of BSE reported in Great Britain from 1989
until 2011 (Figure 1) provided by the World Organisation for Animal Health [5], denoted by
Xobs

n for each year n. We set d = am − 1 = 9 and denote by Xobs
n the d-dimensional vector

(Xobs
n , . . . , Xobs

n−d+1). We choose the first time n = 1 of the epidemic model such that the model
with its initial values covers the period starting from 1989, which we consider here as a time-
homogeneous period. HenceX−d+1 = Xobs

1989, and n = 1 corresponds to the year 1989+d = 1998.
We estimate θ0 by theWCLSE (2.30) in model (1.1)–(3.3), where {pmat, α, β, {S(k)}k} are given
by the previous values, and where X0 = Xobs

1997. According to [5], |X0| = |Xobs
1997| = 167977. We are

thus close to the asymptotic |X0| → ∞. The number of observations is n = 14. The estimator
(2.30) provides the estimation θ̂obs

|X0| = 2.4324. We point out that this estimation is of the same

order of magnitude as the maximum a posteriori Bayesian estimation θ̂MAP = 2.43 based on
the whole epidemic until 2007, assuming a uniform prior probability [22]. Using (2.32) we
obtain the following confidence interval [θ̂min, θ̂max] with asymptotic probability 95%, where
θ̂min := θ̂|X0| − 1.96ĉ−11 , θ̂max := θ̂|X0| + 1.96ĉ−11 , and ĉ1 := (

∑n
k=1 a · Xk−1/σ2(θ̂|X0|))

1/2. Assuming

αi = Xobs
1997−i+1|Xobs

1997|
−1
, we get ĉobs1 = 40.7343 (observed value of ĉ1), and

P

(
θ0 ∈

[
θ̂min, θ̂max

])
� 95%, θ̂obs

min = 2.3842, θ̂obs
max = 2.4805. (3.5)

Although this confidence interval is an asymptotic one, as |X0| → ∞, it is a very good
approximation of the true confidence interval for a finite |X0|, since |X0| is here very large.
Since the estimation of θ0 relies on the values given to the other model parameters {pmat, α, β},
we evaluate in addition its sensitivity to the values of these parameters. For this purpose,
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Figure 1: Yearly number of cases of BSE reported in Great Britain from 1987 to 2011 [5]. Our study only
takes into account the data from 1989, after the 1988 feed ban law.

Table 1: Sensitivity analysis. Estimation of the infection parameter θ0, and its confidence interval
[θ̂obs

min, θ̂
obs
max] with asymptotic probability 95%, for different values of the maternal infection parameter pmat

and of the latency parameters (α, β). The values (3.84, 7.46) correspond to the Bayesian MAP estimations
(α̂MAP, β̂MAP), and 0.1 to the largest commonly accepted order of magnitude for pmat. The estimations of θ0
are based on the observed data over the years 1989–2011.

pmat α β θ̂obs
|X0 | [θ̂obs

min, θ̂
obs
max]

0.1 3.84 7.46 2.4324 [2.3842, 2.4805]
0 3.84 7.46 2.4860 [2.4379, 2.5342]
1 3.84 7.46 1.9492 [1.9014, 1.9970]
0.1 2 7.46 2.7835 [2.7287, 2.8382]
0.1 20 7.46 4.0186 [3.9395, 4.0977]
0.1 3.84 1 1.0127 [0.9925, 1.0329]
0.1 3.84 10 6.2128 [6.0914, 6.3341]
0.1 3 6 1.5402 [1.5095, 1.5710]
0.1 4 5 1.0227 [1.0020, 1.0434]

we compute the estimation of θ0 and the associated confidence interval with asymptotic
probability 95%, for different values of (pmat, α, β) (Table 1). The first line of the table
corresponds to the parameters chosen for themodel. In each of the four following lines, we fix
two coordinates and choose an extremal (unrealistic) value for the third one. It appears that
the estimation of θ0 is almost independent of the value of the maternal infection parameter.
However, the estimation seems more strongly dependent on the parameters of the latent
period distribution. Nevertheless, even for very unrealistic values (α, β), all the estimations
of θ0 remain in the same order of magnitude of several units. This is really small compared to
estimations obtained for the infection viaMeat and Bone Meal or lactoreplacers (before 1989)
which are of the order of 1000 [22]. However, although these estimations are all very small,
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θ0 seems nonnull. This could suggest the existence of a minor but nonnull infection source
which is not of maternal type.

3.2.4. Extinction of the Epidemic

We know thanks to Proposition 2.1 that {Xn}n becomes extinct almost surely if and only
if R0 =

∑d
k=1 Ψk(θ0) � 1. The estimated basic reproduction is here R0(θ̂obs

|X0|) = 0.1072.

Moreover, solving with a computing program the equation
∑d

k=1 Ψk(θ̂obs
|X0|)ρ

−k = 1, we obtain

the following value for the Perron’s root ρ(θ̂obs
|X0|) = 0.6665, which provides the speed of decay

of the expected yearly incidence of cases (see (2.6)); from a certain time, the expected number
of new cases will decrease from around 33% every year.

3.2.5. Prediction of the Incidences of Cases and Incidences of Infected Cattle

Let us predict the spread of the disease from 2012 by means of simulations of {Xn}n, where
θ0 is replaced by its previous estimation θ̂obs

|X0| = 2.4324, and where the initial time of the model

is 2011, that is, X0 = Xobs
2011. The simulations are done recursively using the transition law (3.1).

We point out that the model initialized by X0 = Xobs
1997 provides quite realistic simulations on

the period 1998–2011 compared to the real observations on the same period, as illustrated
in Figure 2(a). The epidemic process {Xn}n thus seems to provide a satisfying prediction
of the overall evolution of the real epidemic. In order to predict the incidences of futures
cases, we simulate 1000 trajectories of {Xn}n initialized by the observed values Xobs

2011, with the
estimated infection parameter θ̂obs

|X0| = 2.4324. We illustrate in Figure 2(c), for each year from
2012, the maximum, minimum, median, 2.5%, and 97.5% quantiles associated with these 1000
realizations. It is also relevant to study and predict the evolution of the incidence of infected
cattle in the population, which represents the hidden face of the epidemic. The incidence Zn

of infected cattle at time n, conditionally on the number Xn of cases at that time, is given
by the Poisson distribution (3.2). For every n � 2012 and for each of the 1000 previously
simulated values Xn, we generate one realization of Zn. We then illustrate in Figure 2(d),
the yearly maximum, minimum, median, 2.5%, and 97.5% quantiles associated with the 1000
realizations.

3.2.6. Prediction of the Year of Extinction

Let T := 2011 + inf{n � 1,Xn = 0} denote the extinction year of the epidemic process {Xn}n.
According to (2.7) and denoting by fθ0 the offspring generating function of {Xn}n defined in
(2.2) (from now on we let the dependence in θ0 appear in the notation), we have Pθ0(T �
2011 + n) = fθ0,n(0)

Xobs
2011 , for every n � 1, which by iterating fθ0 can be computed explicitly.

We obtain in particular, for the estimated value θ̂obs
|X0| = 2.4324, the following p-quantiles for

the extinction time (see (2.8)): nT
0.5 = 2028, nT

0.95 = 2035 and nT
0.99 = 2039. Keeping in mind

that T corresponds to the complete extinction of the epidemic (i.e., d = 9 consecutive years
without any case), these results actually mean that for the infection parameter θ0 = 2.4324,
with probability larger than 50% (resp., 95% and 99%), no case will arise in the population
from year 2020 (resp., 2027 and 2031). Moreover, in order to take into account the uncertainty
around the estimation θ̂obs

|X0| of the infection parameter θ0, we make use of the asymptotic
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Figure 2: Figure 2(a) 10 simulations of {Xn}n initialized by Xobs
1997, and comparison with the observations

on the period 1998–2011. Figure 2(b) 5 simulations of {Xn}n initialized by Xobs
2011. Figures 2(c) and 2(d)

prediction, based on 1000 simulations of the process of the yearly incidences of cases (resp., infected cattle)
from 2012. 95% of the trajectories remain in the band delimited by the blue dotted lines. All the simulations
are done with the infection parameter θ̂obs

|X0 | = 2.4324.

confidence interval (3.5) of θ0 and of the fact that θ 
→ Pθ(T � n) is a decreasing function of
θ, which implies that for every n � 2011,

P

(
Pθ0(T � n) ∈

[
Pθ̂max

(T � n),Pθ̂min
(T � n)

])
� 95%. (3.6)

We collect in Table 2 the observed interval [Pθ̂obsmax
(T � n),Pθ̂obsmin

(T � n)], for each n � 2020

(if n < 2019 we have, conditionally on the initial value Xobs
2011, P(Xn = 0) = 0 because of the

memory which is not equal to 0). Note that these intervals are very narrow, leading to an
accurate estimation of Pθ0(T � n).
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Table 2:Cumulative distribution function of the year of extinction computed with the infection parameters
θ̂obs
min = 2.3842 and θ̂obs

max = 2.4805 defined by (3.5). The values in bold character correspond to the p-quantiles
nT
p for p = 0.5, 0.95, and 0.99, and to the asymptotic confidence intervals of Pθ0(T � nT

p ) based on (3.6).

n Pθ̂obsmax
(T � n) Pθ̂obsmin

(· · · ) n Pθ̂obsmax
(· · · ) Pθ̂obsmin

(· · · ) n Pθ̂obsmax
(· · · ) Pθ̂obsmin

(· · · )
2020 0.0000 0.0000 2030 0.7610 0.7807 2040 0.9950 0.9957
2021 0.0000 0.0000 2031 0.8310 0.8465 2041 0.9967 0.9972
2022 0.0010 0.0014 2032 0.8816 0.8934 2042 0.9978 0.9981
2023 0.0121 0.0152 2033 0.9186 0.9273 2043 0.9985 0.9988
2024 0.0496 0.0592 2034 0.9451 0.9513 2044 0.9990 0.9992
2025 0.1211 0.1390 2035 0.9633 0.9677 2045 0.9995 0.9994
2026 0.2325 0.2579 2036 0.9755 0.9786 2046 0.9996 0.9996
2027 0.3756 0.4047 2037 0.9835 0.9857 2047 0.9997 0.9998
2028 0.5303 0.5584 2038 0.9889 0.9904 2048 0.9998 0.9998
2029 0.6619 0.6862 2039 0.9925 0.9936 2049 0.9999 0.9999

Table 3: Cumulative distribution function of the total size of the epidemic for the infection parameters
θ̂obs
min = 2.3842 and θ̂obs

max = 2.4805 defined by (3.5). The values in bold character correspond to the p-quantiles
nN
p for p = 0.5, 0.95, and 0.99, and to the asymptotic confidence intervals of Pθ0(N � nN

p ).

n Pθ̂obsmax
(N � n) Pθ̂obsmin

(N � n) n Pθ̂obsmax
(· · · ) Pθ̂obsmin

(· · · ) n Pθ̂obsmax
(· · · ) Pθ̂obsmin

(· · · )
· · · · · · · · · 16 0.1293 0.1669 28 0.8702 0.9048
5 0.0001 0.0000 17 0.1795 0.2263 29 0.8942 0.9302
6 0.0002 0.0003 18 0.2373 0.2915 30 0.9283 0.9495
7 0.0005 0.0008 19 0.3025 0.3637 31 0.9480 0.9646
8 0.0013 0.0020 20 0.3741 0.4409 32 0.9635 0.9759
9 0.0027 0.0046 21 0.4486 0.5189 33 0.9742 0.9838
10 0.0060 0.0094 22 0.5231 0.5934 34 0.9824 0.9892
11 0.0119 0.0178 23 0.5975 0.6639 35 0.9881 0.9928
12 0.0214 0.0310 24 0.6655 0.7287 36 0.9917 0.9952
13 0.0365 0.0518 25 0.7282 0.7840 37 0.9945 0.9968
14 0.0585 0.0801 26 0.7829 0.8323 38 0.9964 0.9980
15 0.0891 0.1181 27 0.8304 0.8726 39 0.9977 0.9989

3.2.7. Prediction of the Epidemic Size

Let N :=
∑T−2011

n=1 Xn be the total size of the future epidemic from 2012 (total number of cases
from 2012 until the extinction of the epidemic). We compute the distribution of N using
(2.11), conditionally on the event {X0 = Xobs

2011}. We obtain in particular, for the estimated
value θ̂obs

|X0| = 2.4324, the following p-quantiles for the total epidemic size (see (2.12)): nN
0.5 = 22,

nN
0.95 = 31 and nN

0.99 = 35. From (2.13)we deduce that the mean value and variance ofN for the
parameter θ̂obs

min (resp., θ̂
obs
max) are 21 and 27 (resp., 22 and 28). Moreover, we obtain similarly as

for the extinction time and thanks to (3.5) a confidence interval [Pθ̂max
(N � n),Pθ̂min

(N � n)]
of Pθ0(N � n), for every n ∈ N, with asymptotic probability 95%, collected in Table 3.
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3.2.8. Study of the Very Late Extinction Case

In order to predict the behavior of the “most dangerous” evolution of the epidemic, we first
need to compute the estimation θ̂∗obs

n (2.47) based on the data in Great Britain. The number
of available observations is only n = 14, so we are far from the asymptotic setting n → ∞
of Theorem 2.7. However, the large value of |X0| can make us hope for a good accuracy. We
point out that, by making use of the estimator θ̂∗

n on the real data, we make an unverifiable
assumption on the future of the epidemic; we consider the data as if they were the beginning
of a trajectory with very late extinction. This should have the following consequence: the
estimation provided by θ̂∗obs

n should a priori be a bit smaller than the value 2.4324 provided by
θ̂obs
|X0|. Indeed we obtain θ̂∗obs

n = 2.4305. Using this value, we deduce from (2.51) the confidence

interval [θ̂∗
min, θ̂

∗
max] of θ0 with asymptotic probability 95%, where θ̂∗

min := θ̂∗
n − 1.96ĉ−12 , θ̂∗

max :=
θ̂∗
n + 1.96ĉ−12 , and

ĉ2 :=
n∑

k=0

(
f ′
(
θ̂∗
n,X

∗
k

))2
[

n∑

k=0

(
f ′
(
θ̂∗
n,X

∗
k

))2
g
(
θ̂∗
n,X

∗
k

)]−1/2
. (3.7)

Therefore, ĉobs2 = 40.6988, and

P

(
θ0 ∈

[
θ̂∗
min, θ̂

∗
max

])
� 95%, θ̂∗obs

min = 2.3823, θ̂∗obs
max = 2.4787, (3.8)

which is of the same magnitude order as the confidence interval [2.3842, 2.4805] obtained
with the unconditioned process (see (3.5)). Let us predict the most dangerous evolution
thanks to the transition law of the conditioned process given by Proposition 2.2. Note that
if one computes the eigenvalues ρ and λ introduced in Proposition 2.5, one obtains ρ(θ̂∗obs) =
0.6664 and |λ(θ̂∗obs)| = 0.5570. It thus appears that the convergence of the epidemic process
conditioned on nonextinction at time k to the Q-process as k → ∞ is not very fast. As a
consequence the study of the Q-process only provides information about the behavior of the
disease spread in the case of an extremely late extinction. First, we see thanks to Figure 3(a)
that the simulations provided by the conditioned process initialized by X0 = Xobs

1997, and
where θ0 is estimated by θ̂∗obs

n = 2.4305, are true to the real observations on the period 1999–
2011. Figure 3(b) is an example of one simulation in the period 2012–2040 of the conditioned
process, for X∗

0 = Xobs
2011. It appears that the values of this simulated trajectory are rapidly very

small and of course are never equal to 0 for d = 9 consecutive times. For a finer prediction, we
simulate 1000 realizations of this process from 2012 until 2050, with X∗

0 = Xobs
2011. Moreover, for

every n � 2012 and for each of the 1000 simulated values X∗
n, we make one realization of the

incidence Zn of infected cattle at time n, according to the law given by (3.2). Figures 3(c) and
3(d) represent the yearly maximum, minimum, median, 2.5%, and 97.5% quantiles associated
with the 1000 realizations of, respectively, the incidence of cases and infected cattle, in case
of an extreme late extinction. It appears thanks to Figures 3(c) and 3(d) that the supposedly
“most dangerous” trajectories nevertheless do not reach high values and do not present a
new peak of epidemic.
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Figure 3: Figure 3(a) 10 simulations of {X∗
n}n initialized by Xobs

1997, and comparison with the observations
on the period 1998–2011. Figure 3(b) one simulation of {X∗

n}n initialized by Xobs
2011. Figures 3(c) and 3(d)

prediction, based on 1000 simulations of the conditioned process of the yearly incidences of cases (resp.,
infected cattle) from 2012. 95% of the trajectories remain in the band delimited by the blue dotted lines. All
the simulations are done with the infection parameter θ̂∗obs

|X0 | = 2.4305.

4. Conclusion

The methodology developed in Section 2 thus applies well here and enables not only to
confirm mathematically what is commonly accepted, namely, that BSE is fading out, but also
to predict, with a very large probability, that the last BSE case will occur before 2027, and
that until the complete extinction of the epidemic in the population, there will be less than 31
cases to come. We obtain moreover from Figure 2(d) the order of magnitude of the number
of infected cattle in the population. In addition, the estimation of the infection parameter
concludes to the possible existence of a minor but nonnull infection source which is not of
maternal type, and which is very small (only around 3 newly infected animal per year and
per infective) compared to the main source of horizontal infection until 1988 due to protein
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supplements. Finally, the study of the worst-case scenario shows that even in the case of an
extreme late extinction of the disease in the population, the incidence of cases will decrease
quite rapidly to 0, with afterwards only 1 or 2 yearly cases occurring regularly but sparsely,
with no appearance of a new peak of epidemic. We have shown with this example that
the methodology developed in Section 2 provides accurate tools to study the decay phase
of an epidemic under the current sanitary measures, which would help to make new policy
decisions. This evaluation is all themore relevant since it is obtained not by simply computing
what should most probably happen, but also by taking into account the variability of many
factors (infection, incubation, and survival), and by studying the potentially most dangerous
evolution.
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