
Hindawi Publishing Corporation
International Journal of Stochastic Analysis
Volume 2012, Article ID 719237, 13 pages
doi:10.1155/2012/719237

Research Article
A Dependent Hidden Markov Model of
Credit Quality

Małgorzata Wiktoria Korolkiewicz

Centre for Industrial and Applied Mathematics, School of Mathematics and Statistics,
University of South Australia, City West Campus, GPO Box 2471, Adelaide, SA 5001, Australia

Correspondence should be addressed to
Małgorzata Wiktoria Korolkiewicz, malgorzata.korolkiewicz@unisa.edu.au

Received 29 February 2012; Accepted 11 May 2012

Academic Editor: Yaozhong Hu

Copyright q 2012 Małgorzata Wiktoria Korolkiewicz. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

We propose a dependent hiddenMarkov model of credit quality. We suppose that the ”true” credit
quality is not observed directly but only through noisy observations given by posted credit ratings.
The model is formulated in discrete time with aMarkov chain observed in martingale noise, where
”noise” terms of the state and observation processes are possibly dependent. The model provides
estimates for the state of the Markov chain governing the evolution of the credit rating process
and the parameters of the model, where the latter are estimated using the EM algorithm. The
dependent dynamics allow for the so-called ”rating momentum” discussed in the credit literature
and also provide a convenient test of independence between the state and observation dynamics.

1. Introduction

Credit ratings summarise a range of qualitative and quantitative information about the credit
worthiness of debt issuers and are therefore a convenient signal for the credit quality of
the debtor. The estimation of credit quality transition matrices is at the core of credit risk
measures with applications to pricing and portfolio risk management. In view of pending
regulations regarding the calculation of capital requirements for banks, there is renewed
interest in efficiency of credit ratings as indicators of credit quality and models of their
dynamics (Basel Committee on Banking Supervision [1]).

In the study of credit quality dynamics, it is convenient to assume that the credit
rating process is a time-homogeneous Markov chain, with past changes in credit quality
characterised by a transition matrix. The assumptions of time homogeneity and Markovian
behaviour of the rating process have been challenged by some empirical studies; see, for
example, Bangia et al. [2] or Lando and Skødeberg [3]. In particular, it has been proposed
that ratings exhibit “rating momentum” or “drift,” where a rating change in response to a
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change in credit quality does not fully reflect that change in credit quality. As pointed out by
Löffler in [4, 5], these violations of information efficiency could be the result of some of the
agencies’ rating policies, namely, rating through the cycle and avoiding rating reversals.

In recent years, a number of modelling alternatives were suggested to address
departures from the Markov assumption. In Frydman and Schuermann [6], a mixture of
two independent continuous time homogeneous Markov chains is proposed for the ratings
migration process, so that the future distribution of a firm’s ratings depends not only its cur-
rent rating but also on the past history of ratings. Wendin and McNeil [7] suppose that credit
ratings are subject to both observed and unobserved systematic risk. Rating transition patters
(e.g., rating momentum) are captured within the context of a generalised linear mixed model
(GLMM) that is estimated using Bayesian techniques. Stefanescu et al. [8] propose a Bayesian
hierarchical framework, based onMarkov Chain Monte Carlo (MCMC) techniques, to model
non-Markovian dynamics in ratings migrations. In Wozabal and Hochreiter [9], a coupled
Markov chain model is introduced to model dependency among rating migrations of issuers.

In this paper we follow the hidden Markov model (HMM) approach taken in
Korolkiewicz and Elliott [10] and assume that the “true” credit quality evolution can be
described by a Markov chain but we do not observe this Markov chain directly. Rather, it is
hidden in “noisy” observations represented by posted credit ratings. Themodel is formulated
in discrete time, with a Markov chain of “true” credit quality observed in martingale noise.
However, we suppose that noise terms of the signal and observation processes are not
independent, which allows for the presence of “rating momentum” in posted credit ratings.
Application of such dependent hidden Markov model dynamics to modelling credit quality
appears to be new. We employ hidden Markov filtering and estimation techniques described
in Elliott et al. [11] and use the filter-based EM (Expectation Maximization) algorithm
to estimate the parameters of the model. By construction parameters are revised as new
information is obtained and so the resulting filters are adaptive and “self-tuning.”

The paper is organized as follows. In Section 2 we describe a hidden Markov model
(HMM) of credit quality and in Section 3 the dependent dynamics. Recursive filters are
given in Section 4 and the parameter estimation procedure is described in Section 5. Section 6
provides an implementation example.

2. Dynamics of the Markov Chain and Observations

Here we briefly describe a hidden Markov model as given in Chapter 2 of Elliott et al. [11].
Formally, a discrete-time, finite-state, time homogeneousMarkov chain is a stochastic process
{Xk} with the state space S = {1, 2, . . . ,N} and a transition matrix A = (aji)1≤i,j≤N . Without
loss of generality, we can assume that the elements of S are identified with the standard unit
vectors {e1, e2, . . . , eN}, ei = (0, . . . , 0, 1, 0, . . . , 0)′ ∈ R

N .
WriteFk = σ{X0, X1, . . . , Xk} for a filtration {Fk}models all possible histories ofX. The

relationship between the state process at time k and the state of the process at time k + 1 is
then given by E[Xk+1|Xk] = AXk.

Define Vk+1 = Xk+1 −AXk ∈ R
N . Then, the semimartingale representation of the chain

X is

Xk+1 = AXk + Vk+1, k = 0, 1, . . . , (2.1)

where Vk+1 is a martingale increment with E[Vk+1|Fk] = 0 ∈ R
N .
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Suppose we do not observe X directly. Rather, we observe a process Y such that

Yk+1 = c(Xk,ωk+1), k = 0, 1, . . . , (2.2)

where c is a function with values in a finite set and {ωk} is a sequence of i.i.d. random
variables independent of X. Random variables {ωk} represent the noise present in the
system. Suppose the range of c consists of M points which are identified with unit vectors
{f1, f2, . . . , fM}, fj = (0, . . . , 0, 1, 0, . . . , 0)′ ∈ R

M.
Write

Yk = σ{Y0, Y1, . . . , Yk},

Gk = σ{X0, . . . , Xk, Y0, . . . , Yk}.
(2.3)

These increasing families of σ-fields are filtrations representing possible histories of the state
processX, the observation process Y , and both processes (X,Y ). Write cji = P(Yk+1 = fj | Xk =
ei), 1 ≤ i ≤ N, 1 ≤ j ≤ M, for the probability of observing a state fj when the signal process
is in fact in state ei. Then, it can be shown that E[Yk+1|Xk] = CXk, where C = (cji)1≤i,j≤M is a
matrix with cji ≥ 0 and

∑M
j=1 cji = 1.

Define Wk+1 = Yk+1 − CXk. The semimartingale representation of the process Y is

Yk+1 = CXk +Wk+1, k = 0, 1, . . . , (2.4)

where W is a martingale increment with E[Wk+1|Gk] = 0 ∈ R
M. In our context, the process Y

represents posted credit ratings and X “true” credit quality. For reasons which will become
apparent in the next section, we assume one-period delay between X and Y .

In summary, the model for the Markov chain X hidden in martingale noise is as
follows.

Hidden Markov Model (HMM)

Under a probability measure P ,

Xk+1 = AXk + Vk+1
(
signal equation, true credit quality

)
,

Yk+1 = CXk +Wk+1
(
observation equation, posted rating

)
.

(2.5)

A and C are matrices of transition probabilities whose entries satisfy

N∑

j=1

aji = 1, aji ≥ 0;
M∑

j=1

cji = 1, cji ≥ 0. (2.6)

Vk and Wk are martingale increments satisfying

E[Vk+1 | Fk] = 0, E[Wk+1 | Gk] = 0. (2.7)

Parameters of this model are (aji), 1 ≤ i, j ≤ N and (cji), 1 ≤ j ≤ M, 1 ≤ i ≤ 1.
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3. Dependent Dynamics

The situation considered in this section is that of a hidden Markov model (HMM) for which
the “noise” terms in the state and observation processes are possibly dependent.

The dynamics of the state process X and the observation process Y are as given in
Section 2. However, the noise terms Vk and Wk are not independent. Instead, we suppose
that the joint distribution of Yk and Xk is given by

Yk+1X
′
k+1 = SXk + Γk+1, k = 0, 1, . . . , (3.1)

where S = (srji) denotes a (M ×N) ×N matrix mapping R
N into R

M × R
N and

srji = P
(
Yk+1 = fr, Xk+1 = ej | Xk = ei

)
, 1 ≤ r ≤ M, 1 ≤ i, j ≤ N. (3.2)

Γk+1 is a {Gk}-martingale increment with E[Γk+1|Gk] = 0. Write 1 = (1, 1, . . . , 1)′ for the vector
in R

N or R
M depending on the context. Then, for 1 ∈ R

M, 〈1, SXk〉 = AXk and for 1 ∈
R

N, 〈SXk, 1〉 = CXk, where 〈, 〉 denotes the scalar product in R
M and R

N , respectively.
Write γrji = P(Yk+1 = fr | Xk+1 = ej , Xk = ei) = srji/aji, and let C̃ be the M × (N ×N)

matrix (γrji), 1 ≤ r ≤ M, 1 ≤ i, j ≤ N. Then it can be shown that Yk+1 = C̃(Xk+1X
′
k
) + W̃k+1,

where E[W̃k+1|Gk] = 0.
In summary, the model is now as follows.

Dependent Hidden Markov Model (Dependent HMM)

Under a probability measure P ,

Xk+1 = AXk + Vk+1,

Yk+1 = C̃
(
Xk+1X

′
k

)
+ W̃k+1.

(3.3)

A and C̃ are matrices of transition probabilities whose entries satisfy

N∑

j=1

aji = 1,
M∑

r=1

γrji = 1. (3.4)

Vk and W̃k are martingale increments satisfying

E[Vk+1 | Fk] = 0, E
[
W̃k+1 | Gk

]
= 0. (3.5)

Parameters of this model are (aji), 1 ≤ i, j ≤ N, (cji), 1 ≤ j ≤ M, 1 ≤ i ≤ 1, and (srji), 1 ≤
i, j ≤ N, 1 ≤ r ≤ M.

We are in a situation analogous to the dependent hiddenMarkovmodel case discussed
in Chapter 2, Section 10 of Elliott et al. [11]. The difference is that we are assuming dynamics
where the observation Yk depends on both Xk and Xk−1. In other words, we suppose
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that the current credit rating contains information about both current and previous credit
quality, thus allowing for the situation where a rating does not immediately reflect all
available information about credit quality, as indicated by a number of empirical studies
(see, e.g., Lando and Skødeberg [3]). Put differently, in this model Xk and observation Yk

jointly depend on Xk−1, which means that, in addition to previous period’s credit quality,
knowledge of current credit rating carries information about current credit quality. Moreover,
probabilities γrji provide the distribution of the next period’s credit rating given both current
and next period’s credit quality, thus allowing us to capture “rating momentum” or “rating
drift.”

In the following sections we will presents estimates for the state of the Markov chain
X, the number of jumps from one state to another, the occupation time of X in any state,
the number of transitions of the observation process Y into a particular state of X, and the
number of joint transitions of X and Y . We will then use the filter-based EM (expectation
maximization) algorithm as described in Elliott et al. [11], to obtain optimal estimates of the
model, making it adaptive or “self-tuning.”

Note that if the noise terms in the stateX and observation Y are independent, we have

P
(
Yk+1 = fr, Xk+1 = ej | Xk = ei

)

= P
(
Yk+1 = fr | Xk = ei

)
P
(
Xk+1 = ej | Xk = ei

)
.

(3.6)

Hence if the noise terms are independent,

srji = crjaji (3.7)

for 1 ≤ r ≤ M, 1 ≤ i, j ≤ N. Consequently, a test of independence is to check whether
parameter estimates satisfy

ŝrji = ĉrj âji. (3.8)

4. Recursive Filter

Following Elliott et al. [11], suppose that under some probability measure P on (Ω,F), {Yk}
is a sequence of i.i.d. uniform variables, that is, P(Yk+1 = fj | Gk) = P(Yk+1 = fj) = 1/M.
Further, under P, X is Markov chain independent of Y , with state space S = {e1, . . . , eN} and
transition matrix A = (aji). That is, Xk+1 = AXk + Vk+1, where E[Vk+1 | Gk] = E[Vk+1 | Fk] =
0 ∈ R

N . Suppose C̃ = (γrji), 1 ≤ r ≤ M, 1 ≤ i, j ≤ N, is a matrix with γji ≥ 0, and
∑M

j=1 γrji = 1.

Define λl = M
∑M

j=1〈C̃(XlX
′
l−1), fj〉〈Yl, fj〉 and Λk =

∏k
l=1λl. Define a new probability

measure P by putting (dP/dP)|Gk
= Λk. Then, under P, X remains a Markov chain with

transition matrix A and P(Yk+1 = fr | Xk+1 = ej , Xk = ei) = γrji. That is, under P, Xk+1 =
AXk + Vk+1 and Yk+1 = C̃(Xk+1X

′
k
) + W̃k+1.

Suppose we observe Y0, . . . , Yk, and we wish to estimate X0, . . . , Xk. The best (mean
square) estimate of Xk given Yk = σ{Y0, . . . , Yk} is E[Xk | Yk] ∈ R

N . However, P is a much
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easier measure under which to work. Using Bayes’ Theorem as described in Elliott et al. [11],
we have

E[Xk | Yk] =
E
[
ΛkXk | Yk

]

E
[
Λk | Yk

] . (4.1)

Write q̃k := E[ΛkXk | Yk] ∈ R
N . q̃k is then an unnormalized conditional expectation of

Xk given the observations Yk. Note that E[Λk | Yk] = 〈q̃k, 1〉, where 1 = (1, 1, . . . , 1)′ ∈ R
N . It

then follows that

E[Xk | Yk] =
q̃k

〈
q̃k, 1

〉 . (4.2)

Hence, to estimate E[Xk | Yk] we need to know the dynamics of q̃. Using the methods of
Elliott et al. [11], the following recursive formula for q̃k+1 is obtained:

q̃k+1 = MY ′
k+1Sq̃k. (4.3)

5. Parameter Estimates

To estimate parameters of the model, matrices A, C, and S, we need estimates of the
following processes:

Jij

k
=

k∑

n=1

〈Xn−1, ei〉
〈
Xn, ej

〉
, 1 ≤ i, j ≤ N,

Oi
k =

k∑

n=1

〈Xn−1, ei〉, 1 ≤ i ≤ N,

Tir
k =

k∑

n=1

〈Xn−1, ei〉
〈
Yn, fr

〉
, 1 ≤ i ≤ N, 1 ≤ r ≤ M,

Lijr

k
=

k∑

n=1

〈Xn−1, ei〉
〈
Xn, ej

〉〈
Yn, fr

〉
, 1 ≤ r ≤ M, 1 ≤ i, j ≤ N.

(5.1)

The above processes are interpreted as follows:
Jij

k
is the number of jumps of X from state ei to state ej up to time k. Oi

k
is the amount

of time, up to time k − 1, X has spent in state ei. Tir
k
is the number of transitions, up to

time k, from state ei to observation fr . L
ijr

k is the number of jumps of X from state ei to
state ej while Y was in state fr up to time k.
Note that

∑N
j=1 J

ij

k =
∑M

j=1 T
ij

k =
∑M

r=1
∑N

j=1 L
ijr

k = Oi
k.
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Consider first the jump process {Jij

k }. We wish to estimate Jij

k given the observations
Y0, . . . , Yk. As in the case of a filter for the state X described in Section 4, the best (mean-
square) estimate is

E
[
Jij

k
| Yk

]
=

E
[
ΛkJ

ij

k | Yk

]

E
[
Λk | Yk

] :=
σ
(
Jij
)
k〈

q̃k, 1
〉 . (5.2)

We wish to know how σ(Jij)k is updated as time passes and new information arrives.
However, as noted in Elliott et al. [11], we work with σ(JijX)k = E[ΛkJ

ij

k
Xk | Yk] rather than

σ(Jij)k = E[ΛkJ
ij

k | Yk], in order to obtain closed-form recursions. The quantity of interest,
namely, σ(Jij)k, is then readily obtained as σ(Jij)k = 〈σ(JijX)k, 1〉. We have

σ
(
JijX

)

k+1
= MY ′

k+1Sσ
(
JijX

)

k
+
〈
q̃k, ei

〉
(

M
M∑

r=1

srji
〈
Yk+1, fr

〉
)

ej . (5.3)

Similarly, we consider the best (mean square) estimates of Oi
k
, Tjr

k
, and Lrji given Yk:

E
[
Oi

k | Yk

]
=

E
[
ΛkOi

k
| Yk

]

E
[
Λk | Yk

] :=
σ
(
Oi
)
k〈

q̃k, 1
〉 ,

E
[
Tjir

k | Yk

]
=

E
[
ΛkT

jir

k
| Yk

]

E
[
Λk | Yk

] :=
σ
(
Tir
)
k〈

q̃k, 1
〉 ,

E
[
Lijr

k
| Yk

]
=

E
[
ΛkL

ijr

k | Yk

]

E
[
Λk | Yk

] :=
σ
(
Lijr
)
k〈

q̃k, 1
〉 .

(5.4)

Recursive formulae for the processes

σ
(
OiX

)

k
:= E
[
ΛkOi

kXk | Yk

]
,

σ
(
TirX

)

k
:= E
[
ΛkTir

k Xk | Yk

]
,

σ
(
LijrX

)

k
:= E
[
ΛkL

ijr

k
Xk | Yk

]

(5.5)
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are as follows:

σ
(
OiX

)

k+1
= MY ′

k+1Sσ
(
OiX

)

k
+
〈
q̃k, ei

〉M∑

j=1

(

M
M∑

r=1

srji
〈
Yk+1, fr

〉
)

ej ,

σ
(
TirX

)

k+1
= MY ′

k+1Sσ
(
TirX

)

k
+M

〈
q̃k, ei

〉
⎛

⎝
N∑

j=1

srjiej

⎞

⎠
〈
Yk+1, fr

〉
,

σ
(
LijrX

)

k+1
= MY ′

k+1Sσ
(
LijrX

)

k
+
〈
q̃k, ei

〉
Msrji

〈
Yk+1, fr

〉
ej .

(5.6)

As in the case of the number of jumps of the state process X, quantities of interest σ(Oi)k,
σ(Tir)k, and σ(Lijr)k are obtained by taking inner products with 1 = (1, 1, . . . , 1)′:

σ
(
Oi
)

k
=
〈
σ
(
OiX

)

k
, 1
〉
,

σ
(
Tir
)

k
=
〈
σ
(
TirX

)

k
, 1
〉
,

σ
(
Lijr
)

k
=
〈
σ
(
LijrX

)

k
, 1
〉
.

(5.7)

The model is determined by parameters θ = {aji, 1 ≤ i, j ≤ N; cji, 1 ≤ i ≤ N, 1 ≤ j ≤
M; srji, 1 ≤ r ≤ M, 1 ≤ i, j ≤ N}. These satisfy

aji ≥ 0,
N∑

j=1

aji = 1, cji ≥ 0,
M∑

j=1

cji = 1, srji ≥ 0,
M∑

r=1

N∑

j=1

srji = 1. (5.8)

We want to determine a new set of parameters θ̂ = {âji, 1 ≤ i, j ≤ N; ĉji, 1 ≤ i ≤ N, 1 ≤
j ≤ M}; ŝrji, 1 ≤ r ≤ M, 1 ≤ i, j ≤ N} given the arrival of new information embedded in
the values of the observation process Y . This requires maximum likelihood estimation. As in
[11], we proceed by using the filter-based EM (Expectation Maximization) algorithm, which
retains the well-established statistical properties of the EM algorithmwhile reducingmemory
costs and thus allowing for faster computation (see, e.g., Krishnamurthy and Chung [12]).

Consider first the parameter aji. Suppose that, under measure Pθ, X is a Markov chain
with transition matrix A = (aji). We define a new probability measure Pθ̂ such that, under
Pθ̂, X is a Markov chain with transition matrix Â = (âji), that is,

Pθ̂

(
Xk+1 = ej | Xk = ei

)
= âji, (5.9)

âji ≥ 0,
∑N

j=1 âji = 1. Define

Λ0 = 1,

Λk =
k∏

l=1

(
N∑

r,s=1

(
âsr

asr

)

〈Xl, es〉〈Xl−1, er〉
)

.
(5.10)

In case aji = 0 take âji = 0 and âsr/asr = 1.



International Journal of Stochastic Analysis 9

Define Pθ̂ by setting (dPθ̂/dPθ) | Fk = Λk. It can then be shown that, under Pθ̂, X is a
Markov chain with transitionmatrix Â = (âji). Moreover, given the observations up to time k,
{Y0, Y1, . . . , Yk}, and given the parameter set θ = {aji, 1 ≤ i, j ≤ N; cji, 1 ≤ i ≤ N, 1 ≤ j ≤ M},
the EM estimates âji are given by

âji =
σ
(
Jij
)
k

σ(Oi)k
. (5.11)

Consider now the parameter cji. Suppose that, under measure Pθ,

Yk+1 = CXk +Wk+1, (5.12)

where C = (cji). We define a new probability measure Pθ̂ as follows. Put

Λ0 = 1,

Λk =
k∏

l=1

(
N∑

r,s=1

(
ĉsr
csr

)

〈Xl−1, er〉
〈
Yl, fs

〉
)

.
(5.13)

In case cji = 0 take ĉji = 0 and ĉsr/csr = 1.
Define Pθ̂ by setting (dPθ̂/dPθ) | Gk = Λk. Again it can be shown that, under Pθ̂,

Yk+1 = ĈXk + Ŵk+1, (5.14)

that is, Pθ̂(Yk+1 = fs | Xk = er) = ĉsr . Moreover, given the observations up to time
k, {Y0, Y1, . . . , Yk}, and given the parameter set θ = {aji, 1 ≤ i, j ≤ N; cji, 1 ≤ i ≤ N, 1 ≤
j ≤ M}, the EM estimates ĉji are given by

ĉji =
σ
(
Tij
)
k

σ(Oi)k
. (5.15)

Finally, consider the parameter srji. A new probability measure Pθ̂ is defined by putting

Λ0 = 1,

Λk =
k∏

l=1

⎛

⎝
M∑

r=1

N∑

i,j=1

(
ŝrji

srji

)
〈
Yl, fr

〉〈
Xl, ej

〉
〈Xl−1, ei〉

⎞

⎠.
(5.16)

In case srji = 0 take ŝrji = 0 and ŝrji/srji = 1. Define Pθ̂ by setting (dPθ̂/dPθ) | Gk = Λk. Then,
under Pθ̂, Yk+1X

′
k+1 = ŜXk + Γ̂k+1, that is,

Pθ̂

(
Yk+1 = fr, Xk+1 = ej | Xk = ei

)
= ŝrji. (5.17)
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Given the observations up to time k, {Y0, Y1, . . . , Yk}, and given the parameter set θ = {aji, 1 ≤
i, j ≤ N; cji, 1 ≤ i ≤ N, 1 ≤ j ≤ M; srji, 1 ≤ r ≤ M, 1 ≤ i, j ≤ N}, the EM estimates ŝrji are
then given by

ŝrji =
σ
(
Lijr
)
k

σ(Oi)k
. (5.18)

6. Implementation Example

The dependent hidden Markov model (Dependent HMM) described in previous sections
was applied to a dataset of Standard & Poor’s credit ratings. Description of the data and
implementation results are given below.

6.1. Data Description

Our analysis takes advantage of the Standard & Poor’s COMPUSTAT database, which
contains rating histories for 1,301 obligors over the period 1985–1999 (Standard & Poor’s
[13]). The universe of obligors is mainly large US and Canadian corporate institutions.
The obligors include industrials, utilities, insurance companies, banks and other financial
institutions, and real-estate companies. The COMPUSTAT database provides annual ratings.
Every year each of the rated obligors is assigned to one of the Standard and Poor’s 7 rating
categories, ranging fromAAA (highest rating) to CCC (lowest rating) as well asD (payment
in default) and the NR (not rated) state.

We have a total of 19,515 firm-years in our sample. However, only 34% of those
observations correspond to one of the eight Standard & Poor’s rating labels in a given
year. The remaining 66% of observations represent the so-called NR (not rated) status. As
discussed in the literature, transitions to NRmay be due to several reasons, such as expiration
of the debt, calling of the debt, or the issuer deciding to bypass an agency rating (see, e.g.,
Bangia et al. [2]). Unfortunately, details of individual transitions to NR are not known.

Excluding NR, approximately 85% of the remaining ratings are in categories A down
to B. The median rating is BB, the highest non-investment-grade rating. Approximately 1%
of the observed ratings are AAA and 2% are defaults. The most common rating is B, two
rating categories above default, which accounts for 25.5% of the observations.

6.2. Implementation Results

Since individual firms generally experience few rating changes and changes that do occur
are to neighbouring categories, we apply the Dependent HMM algorithm to an aggregate of
firms in the dataset rather to allow for more observed transitions between rating categories
andmake inferences possible. Specifically, we follow the filter-based cohort approach adopted in
Korolkiewicz and Elliott [10], and instead of estimating the distribution and parameters for
the Markov chain Xl

k for each firm l, we estimate the distribution and parameters for
∑L

l=1 X
l
k

given the additivity of all stochastic processes discussed in Sections 4 and 5.
Given the fairly large number of parameters to be estimated compared to the number

of rating transitions in the dataset, we have reclassified all firms in the sample as IG
(investment grade), SG (speculative grade),D, or NR and then applied the Dependent HMM



International Journal of Stochastic Analysis 11

Table 1: Estimates of matrices A, C, and S.

(a)

Estimated matrix A Estimated matrix C

IG SG D NR IG SG D NR
IG 0.408 0.018 0.000 0.000 IG 0.126 0.038 0.000 0.000
SG 0.068 0.249 0.000 0.000 SG 0.094 0.118 0.010 0.000
D 0.000 0.017 1.000 0.000 D 0.001 0.004 0.000 0.000
NR 0.524 0.715 0.000 0.999 NR 0.780 0.840 0.990 1.000

(b)

Estimated matrix S

IG category D category
IG SG D NR IG SG D NR

IG 0.119 0.007 0.000 0.000 IG 0.000 0.000 0.000 0.000
SG 0.076 0.018 0.000 0.000 SG 0.000 0.000 0.010 0.000
D 0.000 0.001 0.000 0.000 D 0.000 0.000 0.000 0.000
NR 0.211 0.043 0.000 0.524 NR 0.000 0.000 0.990 0.000

SG category NR category
IG SG D NR IG SG D NR

IG 0.007 0.032 0.000 0.000 IG 0.000 0.000 0.000 0.000
SG 0.006 0.105 0.008 0.000 SG 0.000 0.000 0.000 0.000
D 0.000 0.003 0.000 0.000 D 0.000 0.000 0.000 0.000
NR 0.008 0.108 0.009 0.715 NR 0.000 0.000 0.000 0.999

algorithm to the new dataset. This classification is motivated by the fact that a corporation
which can issue higher rated debt usually receives better financing terms. Further, as a matter
of policy or law, some institutional investors can only purchase investment-grade bonds.
Hence it is often crucial for a borrower to maintain an investment-grade rating and so it
is interesting to see if rating transition data reflects this.

Each modified credit rating category IG, SG, as well as default D and NR, was
identifiedwith a unit vector in R

4. Given the relatively short time period, parameter estimates
were updated with the arrival of every new observation for the 1,301 firms in the dataset.
Repetition of the estimation procedures ensures that the model and estimates improve with
each iteration. Estimated parameters of the model, namely, matrices Â, Ĉ, and S, are given
in Table 1.

Considering the estimated transition matrix Â, note that entries above the diagonal
correspond to rating upgrades and those below the diagonal to rating downgrades. Nonzero
transition probabilities are concentrated and highest on the diagonal and the second largest
probability is in the last row, indicating that obligors generally either maintain their rating
or enter the NR (not rated) category. Our results show that investment-grade firms generally
hold on to their status. The probability of downgrade to speculative-grade status is estimated
as 6.8%. However, for speculative-grade firms, the probability of upgrade to investment-
grade status is lower (estimated probability of 1.8%). Speculative-grade firms tend to
maintain their status or disappear from the dataset because of either default or withdrawn
rating. The probability of transition to the NR status is higher for speculative-grade obligors
(71.5%) than for investment-grade obligors (52.4%).
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Table 2: Linear regression results.

(a) Summary output

Regression statistics
Multiple R 0.9935
R square 0.9871
Adjusted R square 0.9868
Standard error 0.0236
Observations 64

(b) ANOVA

df SS MS F Significance F
Regression 1 2.6345 2.6345 4728.10 0.0000
Residual 62 0.0345 0.0006
Total 63 2.6690

(c)

Coeff Std err t stat P value Lower Upper
95% 95%

Intercept −0.0003 0.0031 −0.1109 0.9121 −0.0065 0.0058
s(rji) 1.0058 0.0146 68.7612 0.0000 0.9765 1.0350

Recall from Section 3 that, given estimates of matrices A and C, our Dependent HMM
also provides the distribution of posted credit ratings at time k + 1 given “true” credit quality
at times k and k + 1, namely, estimates of conditional probabilities γrji = P(Yk+1 = fr | Xk+1 =
ej , Xk = ei). To illustrate, consider a borrower with investment-grade “true” credit quality at
times k and k + 1. The probability that this borrower is assigned to a speculative-grade rating
class is P(Yk+1 = SG | Xk+1 = IG, Xk = IG), which, given our model parameter estimates,
is given by ŝSG,IG,IG/âIG,IG = 0.007/0.408 = 0.017. Similarly, for a borrower whose “true”
credit quality improves from SG to IG, the probability of being assigned to an IG rating
class is given by P(Yk+1 = IG | Xk+1 = IG, Xk = SG), which we would estimate to be
0.007/0.018 = 0.389. These estimates again suggest that rating agencies may be somewhat
reluctant to downgrade (upgrade) borrowers from (to) investment grade, thus introducing a
degree of “rating momentum.”

6.3. Test of Independence

Recall that the Dependent HMM allows the “noise” terms in the state and observation
processes to be possibly dependent. As indicated in Section 3, a convenient test of
independence is to check whether the estimated parameters of the model satisfy ŝrji = ĉrj âji.

Given our estimates of matrices Â and Ĉ, products ĉrj âji were calculated and then
compared to corresponding entries of the estimated matrix Ŝ using linear regression. The
regression results are given in Table 2. As indicated by the high F-statistic (4728.10) and high
R2 value (98.71%), the fitted regression model is significant. The slope estimate is very close
to one with low standard error and P value of 0.000, while the intercept estimate is very
close zero and not significant (P value of 0.91). These regression results suggest no major
departures from independence, which seems to agree with findings in Kiefer and Larson [14]
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that indicate the Markov assumption, implicit in most credit risk models, does not seem to be
“too wrong” for typical forecast horizons. However, longer rating histories may be necessary
to verify these results.

7. Conclusion

We have proposed a Dependent Hidden Markov Model for the evolution of credit quality
in discrete time with a Markov chain observed in martingale noise. We have applied
the estimation techniques of hidden Markov models from Elliott et al. [11] to obtain the
best estimate of the Markov chain representing “true” credit quality and estimates of the
parameters. The estimation procedure was repeated to ensure that the model and estimates
improvedwith each iteration. Themodel was applied to a dataset of Standard & Poor’s issuer
ratings and our preliminary results agree with some qualitative observations made in the
literature regarding credit rating systems but also indicate no significant dependence in the
dynamics of the “state” (credit quality) and “observation” (credit rating) processes.
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