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We consider the general one-dimensional time-homogeneous regular diffusion process between
two reflecting barriers. An approach based on the Itô formula with corresponding boundary
conditions allows us to derive the differential equations with boundary conditions for the Laplace
transform of the first passage time and the value function. As examples, the explicit solutions of
them for several popular diffusions are obtained. In addition, some applications to risk theory are
considered.

1. Introduction and the Model

Diffusion processes with one or two barriers appear in many applications in economics,
finance, queueing, mathematical biology, and electrical engineering. Among queueing system
applications, reflected Ornstein-Uhlenbeck and reflected affine processes have been studied
as approximations of queueing systems with reneging or balking [1, 2]. Motivated by Ward
and Glynn’s one-sided problem, Bo et al. [3] considered a reflected Ornstein-Uhlenbeck
process with two-sided barriers. In this paper, we consider the expectations of some random
variables involving the first passage time and local times for the general one-dimensional
diffusion processes between two reflecting barriers.

Let X = {Xt, t ≥ 0} be a one-dimensional time-homogeneous reflected diffusion
process with barriers a and b, which is defined by the following stochastic differential
equation:

dXt = μ(Xt)dt + σ(Xt)dBt + dLt − dUt,

X0 = x ∈ (a, b),
(1.1)
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where B(t) is a Brownian motion in R, L = {Lt, t ≥ 0} and U = {Ut, t ≥ 0} are the regulators
of point a and b, respectively. Further, the processes L andU are uniquely determined by the
following properties (see, e.g., [4]):

(1) both t → Lt and t → Ut are continuous nondecreasing processes with L0 = U0 = 0,

(2) L andU increase only when X = a and X = b, respectively, that is,
∫ t
0 I{Xs=a}dLs = Lt

and
∫ t
0 I{Xs=b}dUs = Ut, for t ≥ 0.

It is well known that under certain mild regularity conditions on the coefficients μ(x)
and σ(x), the SDE (1.1) has a unique strong solution for each starting point (see, e.g., [5]).
The solution Xt is a time-homogeneous strong Markov process with infinitesimal generator

Af(x) =
1
2
σ2(x)f ′′(x) + μ(x)f ′(x), x ∈ (a, b), (1.2)

acting on functions on [a, b] subject to boundary conditions: f ′(a) = f ′(b) = 0.
Define the first passage time

τy = inf
{
t ≥ 0 : Xt = y

}
, (1.3)

where τy = ∞ if Xt never reaches y.
For λ > 0, η > 0, θ > 0, we consider the Laplace transform ϕ, and the value functions

ψ, ψ1, and ψ2 on x ∈ [a, b]:

ϕ(x) = Ex
[
e−λτy

]
, (1.4)

ψ(x) = Ex
[
η

∫∞

0
e−λtdUt − θ

∫∞

0
e−λtdLt

]
, (1.5)

ψ1(x) = Ex
[∫∞

0
e−λtdUt

]
, (1.6)

ψ2(x) = Ex
[∫∞

0
e−λtdLt

]
. (1.7)

The rest of the paper is organized as follows. Section 2 studies the Laplace transform
of the first passage time. Section 3 deals with the value function. Some applications in risk
theory are considered in Section 4.

2. Laplace Transform

Bo et al. [3] consider the Laplace transform Ex[e−λτy] for a reflected Ornstein-Uhlenbeck
process with two-sided barriers. In this section we consider the Laplace transform of the first
passage time for the general reflected diffusion process X defined by (1.1).
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Theorem 2.1. Let x ∈ [a, b], λ > 0, and assume that f1(y), f2(y) satisfy the following equations,
respectively:

Af1
(
y
)
= λf1

(
y
)
, y ∈ (a, b),

f ′
1(a) = 0,

Af2
(
y
)
= λf2

(
y
)
, y ∈ (a, b),

f ′
2(b) = 0.

(2.1)

If f1(y)/= 0 for y ∈ [x, b] and f2(y)/= 0 for y ∈ [a, x], then

Ex
[
e−λτy

]
=
f1(x)
f1
(
y
) , y ∈ [x, b],

Ex
[
e−λτy

]
=
f2(x)
f2
(
y
) , y ∈ [a, x].

(2.2)

Proof. Applying the Itô formula for semimartingales to h(t, Xt) = e−λtf(Xt) with f ∈
C2
b
([a, b])we obtain

h(t, Xt) = h(0, X0) +
∫ t

0

∂h

∂s
h(s,Xs)ds +

∫ t

0

∂h

∂x
h(s,Xs)dXs

+
1
2

∫ t

0

∂2h

∂x2
h(s,Xs)d[Xs,Xs]

= f(X0) +
∫ t

0
−λe−λsf(Xs)ds +

∫ t

0
e−λsf ′(Xs)dXs

+
1
2

∫ t

0
e−λsf ′′(Xs)σ2(Xs)ds

= f(x) +
∫ t

0
e−λs(A − λ)f(Xs)ds +

∫ t

0
e−λsf ′(Xs)dBs

+ f ′(a)
∫ t

0
e−λsdLs − f ′(b)

∫ t

0
e−λsdUs.

(2.3)

Since τy <∞ is a stopping time and x ∈ [a, b], it follows from the optional sampling theorem
that

Ex
(
e−λτyf

(
Xτy

))
= f(x) + Ex

(∫ τy

0
e−λs(A − λ)f(Xs)ds

)

+ f ′(a)Ex
(∫ τy

0
e−λsdLs

)
− f ′(b)Ex

(∫ τy

0
e−λsdUs

)
.

(2.4)
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By the definitions of τy,U, and Lwe have

Ex

[∫ τy

0
e−λsdLs

]
= 0, y ∈ [a, x]; Ex

[∫ τy

0
e−λsdUs

]
= 0, y ∈ [x, b]; X

(
τy
)
= y. (2.5)

Substituting them into (2.4) one gets

Ex
[
e−λτyf

(
y
)]

= f(x) + Ex
[∫ τy

0
e−λs(A − λ)f(Xs)ds

]

+ f ′(a)Ex
[∫ τy

0
e−λsdLs

]
, y ∈ [x, b].

Ex
[
e−λτyf

(
y
)]

= f(x) + Ex
[∫ τy

0
e−λs(A − λ)f(Xs)ds

]

− f ′(b)Ex
[∫ τy

0
e−λsdUs

]
, y ∈ [a, x].

(2.6)

The result follows.

Remark 2.2. Although neither f1(·) nor f2(·) in the Theorem 2.1 is unique, but each of their
ratios is unique.

As illustrations of Theorem 2.1, we consider some examples.

Example 2.3. Bessel process: dXt = ((d − 1)/2Xt)dt + dBt, where d > 1 is a real number.
We consider the differential equation (1/2)ψ ′′(x) + ((d − 1)/2x)ψ ′(x) = λψ(x), λ > 0. It

is well known that the increasing and decreasing solutions are, respectively:

ψ+(x) = x−νIν
(√

2λx
)
, ψ−(x) = x−νKν

(√
2λx
)
, (2.7)

where ν = (d − 2)/2 and Iν and Kν are the usual modified Bessel functions.
Then, we can give f1(x), f2(x) as follows:

f1(x) = C1ψ+(x) + C2ψ−(x), f2(x) = C3ψ+(x) + C4ψ−(x), (2.8)

where the constants C1, C2 and C3, C4 can be derived from f ′
1(a) = 0 and f ′

2(b) = 0,
respectively. We can obtain their ratios, respectively:

M =
C1

C2
= −

√
2λaK′

ν

(√
2λa
)
− νKν

(√
2λa
)

√
2λaI ′ν

(√
2λa
)
− νIν

(√
2λa
) ,

N =
C3

C4
= −

√
2λbK′

ν

(√
2λb
)
− νKν

(√
2λb
)

√
2λbI ′ν

(√
2λb
)
− νIν

(√
2λb
) .

(2.9)
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Substituting them into (2.2), we get

Ex
[
e−λτy

]
=
Mx−νIν

(√
2λx
)
+ x−νKν

(√
2λx
)

My−νIν
(√

2λy
)
+ y−νKν

(√
2λy
) , y ∈ [x, b],

Ex
[
e−λτy

]
=
Nx−νIν

(√
2λx
)
+ x−νKν

(√
2λx
)

Ny−νIν
(√

2λy
)
+ y−νKν

(√
2λy
) , y ∈ [a, x].

(2.10)

Example 2.4. The Ornstein-Uhlenbeck process [6] is as follows:

dXt = v(k −Xt)dt + σdBt, v, σ > 0, k ∈ [a, b]. (2.11)

In mathematical finance, the Ornstein-Uhlenbeck process above is known as Vasicek
model for the short-term interest rate process [7]. We consider the differential equation
(1/2)σ2ψ ′′(x) + v(k − x)ψ ′(x) = λψ(x).

In the case k = 0, σ = 1, the two independent solutions to (1/2)ψ ′′(x)−vxψ ′(x) = λψ(x)
are

ψ+(x) = H−λ/v
(−√vx) = 2−λ/2ve(1/2)vx

2
D−λ/v

(
−
√
2vx
)
,

ψ−(x) = H−λ/v
(√

vx
)
= 2−λ/2ve(1/2)vx

2
Dλ/v

(√
2vx
)
,

(2.12)

where Hν(·) and Dν(·) are, respectively, the Hermite and parabolic cylinder functions [8].
Then, as the way used in Example 2.3, we obtain the ratios of the constants C1, C2 and C3, C4,
respectively:

M =
C1

C2
= −

vaDλ/v

(√
2va
)
+
√
2vD′

λ/v

(√
2va
)

vaD−λ/v
(√

2va
)
− √

2vD′
−λ/v
(√

2va
) ,

N =
C3

C4
= −

vbDλ/v

(√
2vb
)
+
√
2vD′

λ/v

(√
2vb
)

vbD−λ/v
(√

2vb
)
− √

2vD′
−λ/v
(√

2vb
) .

(2.13)

Substituting them into (2.2), we get

Ex
[
e−λτy

]
=
Me(1/2)vx

2
D−λ/v

(
−√2vx

)
+ e(1/2)vx

2
Dλ/v

(√
2vx
)

Me(1/2)vy
2
D−λ/v

(
−√2vy

)
+ e(1/2)vy2

Dλ/v

(√
2vy
) , y ∈ [x, b],

Ex
[
e−λτy

]
=
Ne(1/2)vx

2
D−λ/v

(
−√2vx

)
+ e(1/2)vx

2
Dλ/v

(√
2vx
)

Ne(1/2)vy
2
D−λ/v

(
−√2vy

)
+ e(1/2)vy2

Dλ/v

(√
2vy
) , y ∈ [a, x].

(2.14)
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For the general k and σ, the two independent solutions are, respectively

ψ+(x) = H−λ/v

(
−
√
v

σ
(x − k)

)
= 2−λ/2ve(1/2)(v/σ

2)(x−k)2D−λ/v

(

−
√
2v
σ

(x − k)
)

,

ψ−(x) = H−λ/v

(√
v

σ
(x − k)

)
= 2−λ/2ve(1/2)(v/σ

2)(x−k)2D−λ/v

(√
2v
σ

(x − k)
)

.

(2.15)

Then, as the way used in Example 2.3, we obtain the ratios of the constants C1, C2 and C3, C4,
respectively

M =
C1

C2
= −

√
v(a − k)D−λ/v

((√
2v/σ

)
(a − k)

)
+
√
2σD′

−λ/v
((√

2v/σ
)
(a − k)

)

√
v(a − k)D−λ/v

(
−
(√

2v/σ
)
(a − k)

)
− √

2σD′
−λ/v
(
−
(√

2v/σ
)
(a − k)

) ,

N =
C3

C4
= −

√
v(b − k)D−λ/v

((√
2v/σ

)
(b − k)

)
+
√
2σD′

−λ/v
((√

2v/σ
)
(b − k)

)

√
v(b − k)D−λ/v

(
−
(√

2v/σ
)
(b − k)

)
− √

2σD′
−λ/v
(
−
(√

2v/σ
)
(b − k)

) .

(2.16)

Substituting them into (2.2), we get

Ex
[
e−λτy

]
=

h(x)
(
MD−λ/v

(
−
(√

2v/σ
)
(x − k)

)
+D−λ/v

((√
2v/σ

)
(x − k)

))

h
(
y
)(
MD−λ/v

(
−
(√

2v/σ
)(
y − k)

)
+D−λ/v

((√
2v/σ

)(
y − k)

)) , y ∈ [x, b],

Ex
[
e−λτy

]
=

h(x)
(
ND−λ/v

(
−
(√

2v/σ
)
(x − k)

)
+D−λ/v

((√
2v/σ

)
(x − k)

))

h
(
y
)(
ND−λ/v

(
−
(√

2v/σ
)(
y − k)

)
+D−λ/v

((√
2v/σ

)(
y − k)

)) , y ∈ [a, x],

(2.17)

where h(x) = e(1/2)(v/σ
2)(x−k)2 .

Remark 2.5. If we take k = 0, σ = 1, a = 0 and substitute the series forms of Hν(·) and Dν(·)
into the above result, then it is the same as Bo et al. [3].

Example 2.6. The square root process of Cox et al. [9]:

dXt = v(k −Xt)dt + σ
√
XtdBt, v, σ > 0, k ∈ [a, b]. (2.18)

Now consider the differential equation

1
2
σ2xψ ′′(x) + (vk − vx)ψ ′(x) = λψ(x), λ > 0. (2.19)
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If (2v/σ2)k is not an integer, the two linear independent solutions are

ψ+(x) =M
(
λ

v
,
2v
σ2
k,

2v
σ2
x

)
, ψ−(x) = U

(
λ

v
,
2v
σ2
k,

2v
σ2
x

)
, (2.20)

where M and U are the confluent hypergeometric functions of the first and second kinds,
respectively. Then, as the way used in Example 2.3, we obtain the ratios of the constants C1,
C2 and C3, C4, respectively:

M1 =
C1

C2
= −U

′(λ/v,
(
2v/σ2)k,

(
2v/σ2)a

)

M′(λ/v, (2v/σ2)k, (2v/σ2)a)
,

N =
C3

C4
= −U

′(λ/v,
(
2v/σ2)k,

(
2v/σ2)b

)

M′(λ/v, (2v/σ2)k, (2v/σ2)b)
.

(2.21)

Substituting them into (2.2), we get

Ex
[
e−λτy

]
=
M1M

(
λ/v,

(
2v/σ2)k,

(
2v/σ2)x

)
+U
(
λ/v,

(
2v/σ2)k,

(
2v/σ2)x

)

M1M
(
λ/v, (2v/σ2)k, (2v/σ2)y

)
+U
(
λ/v, (2v/σ2)k, (2v/σ2)y

) , y ∈ [x, b].

Ex
[
e−λτy

]
=
NM

(
λ/v,

(
2v/σ2)k,

(
2v/σ2)x

)
+U
(
λ/v,

(
2v/σ2)k,

(
2v/σ2)x

)

NM
(
λ/v, (2v/σ2)k, (2v/σ2)y

)
+U
(
λ/v, (2v/σ2)k, (2v/σ2)y

) , y ∈ [a, x].

(2.22)

Example 2.7. The Gompertz Brownian motion process [10] is as follows:

dXt = vX(t)(ln(k) − ln(Xt))dt + σXtdBt, v, σ > 0, k ∈ [a, b]. (2.23)

Now consider the differential equation

1
2
σ2x2ψ ′′(x) + vx(ln k − lnx)ψ ′(x) = λψ(x), λ > 0. (2.24)

The increasing and decreasing solutions are, respectively:

ψ+(x) =M

⎛

⎝ λ

2v
,
1
2
,
v

σ2

(

ln
x

k
+
σ2

2v

)2
⎞

⎠,

ψ−(x) = U

⎛

⎝ λ

2v
,
1
2
,
v

σ2

(

ln
x

k
+
σ2

2v

)2
⎞

⎠,

(2.25)
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whereM andU, as in Example 2.6, are the first and second Kummer’s functions, respectively.
Then, as the way used in Example 2.3, we obtain the ratios of the constants C1, C2 and C3, C4,
respectively:

M1 =
C1

C2
= −

U′
(
λ/2v, 1/2,

(
v/σ2)(ln(a/k) + σ2/2v

)2)

M′
(
λ/2v, 1/2, (v/σ2)(ln(a/k) + σ2/2v)2

) ,

N =
C3

C4
= −

U′
(
λ/2v, 1/2,

(
v/σ2)(ln(b/k) + σ2/2v

)2)

M′
(
λ/2v, 1/2, (v/σ2)(ln(b/k) + σ2/2v)2

) .

(2.26)

Substituting them into (2.2), we get

Ex
[
e−λτy

]
=
M1M

(
λ/2v, 1/2,

(
v/σ2)(ln(x/k) + σ2/2v

)2) +U(A)

M1M
(
λ/2v, 1/2, (v/σ2)(ln(x/k) + σ2/2v)2

)
+U(A)

, y ∈ [x, b],

Ex
[
e−λτy

]
=
NM

(
λ/2v, 1/2,

(
v/σ2)(ln(x/k) + σ2/2v

)2) +U(A)

NM
(
λ/2v, 1/2, (v/σ2)(ln(x/k) + σ2/2v)2

)
+U(A)

, y ∈ [a, x],

(2.27)

where (A) denotes (λ/2v, 1/2, (v/σ2)(ln(x/k) + σ2/2v)2).

Remark 2.8. For a certain choice of parameters for a and b in Examples 2.3–2.7, we get the
Laplace transform of the first passage time of one-dimensional diffusion with one-sided
barrier. For example, letting a → −∞ or b → +∞ in Example 2.4, one gets the Laplace
transform of the first passage time of the Ornstein-Uhlenbeck process with one-sided barrier;
see Nobile et al. [11], Ricciardi and Sato [12], Alili et al. [13], and Ditlevsen [6].

3. The Value Function

In this section we study the value functions (1.5)–(1.7). Using Itô’s formula, we derive
differential equation with boundary conditions for ψ.

Theorem 3.1. The function ψ defined by (1.5) satisfies the differential equation

1
2
σ2(x)ψ ′′(x) + μ(x)ψ ′(x) = λψ(x), a < x < b, (3.1)

with the boundary conditions ψ ′(a) = θ, ψ ′(b) = η.
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Proof. Applying the Itô’s formula for semimartingales to h(t, Xt) = e−λtψ(Xt) with ψ ∈
C2
b
([a, b])we obtain

h(t, Xt) = h(0, X0) +
∫ t

0

∂h

∂s
h(s,Xs)ds +

∫ t

0

∂h

∂x
h(s,Xs)dXs

+
1
2

∫ t

0

∂2h

∂x2
h(s,Xs)d[Xs,Xs]

= ψ(X0) +
∫ t

0
−λe−λsψ(Xs)ds +

∫ t

0
e−λsψ ′(Xs)dXs

+
1
2

∫ t

0
e−λsψ ′′(Xs)σ2(Xs)ds

= ψ(x) +
∫ t

0
e−λs(A − λ)ψ(Xs)ds +

∫ t

0
e−λsψ ′(Xs)dBs

+ ψ ′(a)
∫ t

0
e−λsdLs − ψ ′(b)

∫ t

0
e−λsdUs,

(3.2)

where we have used that ψ ′(Xt)dLt = ψ ′(a)dLt and ψ ′(Xt)dUt = ψ ′(b)dUt. From (3.2) we
have

Ex
(
e−λtψ(Xt)

)
− ψ(x) = Ex

∫ t

0
e−λs(A − λ)ψ(Xs)ds

+ Ex

(

ψ ′(a)
∫ t

0
e−λsdLs − ψ ′(b)

∫ t

0
e−λsdUs

)

.

(3.3)

Let f be a solution of

Af(x) = λf(x), x ∈ (a, b),

f ′(a) = 0,

f ′(b) = 1.

(3.4)

In place of (3.3), we have

Ex
(
e−λtf(Xt)

)
− f(x) = −

∫ t

0
e−λsdUs. (3.5)

Letting t → ∞, we get

∫∞

0
e−λsdUs = f(x) <∞. (3.6)
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Likewise

∫∞

0
e−λsdLs <∞. (3.7)

Letting t → ∞ in (3.3) and noting (3.6) and (3.7), we get the desired result.

Corollary 3.2. The function ψ1(x) = Ex[
∫∞
0 e−λtdUt] is solution to the differential equation

1
2
σ2(x)ψ ′′

1(x) + μ(x)ψ
′
1(x) = λψ1(x), a < x < b, (3.8)

with the boundary conditions ψ ′
1(a) = 0, ψ ′

1(b) = 1.

Corollary 3.3. The function ψ2(x) = Ex[
∫∞
0 e−λtdLt] is solution to the differential equation

1
2
σ2(x)ψ ′′

2(x) + μ(x)ψ
′
2(x) = λψ2(x), a < x < b, (3.9)

with the boundary conditions ψ ′
2(a) = −1, ψ ′

2(b) = 0.

For diffusions in Examples 2.3–2.7 we can obtain the explicit expressions for ψ, ψ1, and ψ2.
Now we consider the Ornstein-Uhlenbeck process only.

Example 3.4. The Ornstein-Uhlenbeck process is as follows:

dXt = v(k −Xt)dt + σdBt, v, σ > 0, k ∈ [a, b]. (3.10)

From Example 2.4, the two independent solutions of differential equation

1
2
σ2ψ ′′(x) + v(k − x)ψ ′(x) = λψ(x) (3.11)

are, respectively,

ψ+(x) = H−λ/v

(
−
√
v

σ
(x − k)

)
= 2−λ/2ve(1/2)(v/σ

2)(x−k)2D−λ/v

(

−
√
2v
σ

(x − k)
)

,

ψ−(x) = H−λ/v

(√
v

σ
(x − k)

)
= 2−λ/2ve(1/2)(v/σ

2)(x−k)2D−λ/v

(√
2v
σ

(x − k)
)

.

(3.12)

The general solution of (3.11) is of the form

ψ(x) = C1ψ+(x) + C2ψ−(x), (3.13)
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where the constants C1 and C2 are determined by the boundary conditions ψ ′(a) = θ, ψ ′(b) =
η. They are

C1 =
θψ ′

+(b) − ηψ ′
+(a)

ψ ′
−(a)ψ ′

+(b) − ψ ′
+(a)ψ ′

−(b)
,

C2 =
ηψ ′

−(a) − θψ ′
−(b)

ψ ′
−(a)ψ

′
+(b) − ψ ′

+(a)ψ ′
−(b)

.

(3.14)

4. Applications to Risk Theory

Let Xt denote the surplus of the company. If no dividends were paid, the surplus process
follows the stochastic differential equation

dXt = μ(Xt)dt + σ(Xt)dBt, t ≥ 0, X0 = x, (4.1)

where B is a Brownian motion and μ and σ are Lipschitz-continuous functions.
The company will pay dividends to its shareholders according to barrier strategy with

parameter b > 0. Whenever the surplus is about to go above the level b, the excess will be
paid as dividends, and when the surplus is below b nothing is paid out. Let D(t) denote the
aggregate dividends by time t. Thus the resulting surplus process Y is given by

dYt = μ(Yt)dt + σ(Yt)dBt − dD(t), t ≥ 0. (4.2)

Let T = inf{t ≥ 0 : Yt = 0} be the time of ruin. Note that when b < ∞ ruin is certain, that is,
P(T < ∞) = 1. We are interested in the Laplace transform of T . This model can be found in
Paulsen [14], and some important special cases can be found inGerber and Shiu [15], Cai et al.
[16]. It follows from Theorem 2.1 that, for 0 < x < b and λ > 0, Ex(e−λT) = h(x), where h is the
solution of

Ah(x) = λh(x), x ∈ (0, b),

h′(b) = 0, h(0) = 1.
(4.3)

Assume that an insurance company is not allowed to go bankrupt and the beneficiary
of the dividends is required to inject capital into the insurance company to keep its risk
process stays nonnegative. Under such a dividend policy the controlled risk process with
initial reserve x > 0 satisfies

dX̃t = μ
(
X̃t

)
dt + σ

(
X̃t

)
dBt + dLt − dDt, t ≥ 0, (4.4)
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where Lt andDt are local times at 0 and b, respectively. Lt ensures the insurance companywill
not ruin and Dt is the aggregate amount of paid dividends by time t. We consider the total
expected discounted dividends minus the total expected discounted costs of injected capital:

V (x; b) = Ex
[∫∞

0
e−λtdDt − k

∫∞

0
e−λtdLt

]
, (4.5)

where λ > 0 is discounted factor and k is the cost per unit injected capital. Avram et al. [17]
consider the problem in a Levy processes setting.

According to Theorem 3.1, we obtain the formula V (x, b), as long as we solve the
equation

1
2
σ2(x)V ′′(x) + μ(x)V ′(x) = λV (x), 0 < x < b, (4.6)

with the boundary conditions V ′(0) = k, V ′(b) = 1.
For 0 < x < b, let Tx = inf{t | X̃t = x} be the first time when the surplus reaches the

level x. It follows from Theorem 2.1 that, for 0 < x < b and λ > 0, Ex(e−λTx) = g(x), where g is
the solution of

Ag(x) = λg(x), x ∈ (0, b),

g ′(0) = 0, g(b) = 1.
(4.7)

We now give two examples.

Example 4.1. In this example we consider the uncontrolled surplus of insurance company
satisfying Xt = x +μt+σWt, whereWt is Brownian motion. The controlled surplus process X̃
at time t follows the equation

X̃t = x + μt + σWt + Lt −Dt. (4.8)

Now we consider the differential equation

1
2
σ2V ′′(x) + μV ′(x) = λV (x), 0 < x < b, (4.9)

with the boundary conditions V ′(0) = k, V ′(b) = 1. Then

V (x, b) =
kerb − 1

s
(
erb − esb)e

sx − kesb − 1
r
(
erb − esb)e

rx, 0 < x < b, (4.10)
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where r and s are the positive root and negative root of the equation (σ2/2)ξ2 + μξ − λ = 0,
respectively, that is,

r =
−μ +

√
μ2 + 2σ2λ

σ2
, s =

−μ −
√
μ2 + 2σ2λ

σ2
. (4.11)

For 0 < x < b and λ > 0, Ex(e−λTx) := g(x) is the solution of

1
2
σ2g ′′(x) + μg ′(x) = λg(x), 0 < x < b, (4.12)

with the boundary conditions g ′(0) = 0, g(b) = 1. Solving it gives

Ex
(
e−λTx

)
=
resx − serx
resb − serb , 0 < x < b. (4.13)

Example 4.2. In this example we consider the Ornstein-Uhlenbeck-type model. The com-
pany’s surplus evolves according to

X̃t = x +
∫ t

0

(
μ + ρX̃s

)
ds + σBt + Lt −Dt. (4.14)

The model is considered in Cai et al. [16] for the special case where Lt = 0.
The diffusion and drift coefficients are σ(x) ≡ σ, μ(x) = μ + ρx. We consider the

differential equation

1
2
σ2V ′′(x, b) +

(
μ + ρx

)
V ′(x, b) = λV (x, b), 0 < x < b, (4.15)

with the boundary conditions V ′(0) = k, V ′(b) = 1. In Cai et al. [16], they pointed out that the
solution is given by

V (x, b) = H(t) = C1(−t)1−cetM(1 − a, 2 − c;−t) + C2e
tU(c − a, c;−t) (4.16)

for certain coefficients C1 and C2, with c = 1/2, a = −λ/2ρ, t = −(1/ρσ2)(μ + ρx)2. Here
M and U are called the confluent hypergeometric functions of the first and second kinds,
respectively. For more details on confluent hypergeometric functions, see Abramowitz and
Stegun [8]. It follows from (3.7) in Cai et al. [16] that

H ′(t) = H(t) − C1(1 − c)(−t)−cetM(1 − a, 2 − c;−t)

− C1
1 − a
2 − c (−t)

1−cetM(2 − a, 3 − c;−t)

+ C2(c − a)etU(c − a + 1, c + 1;−t).

(4.17)
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The conditions C1 and C2 can be determined by V ′(0) = k, V ′(b) = 1, where V ′(x) = −(2(μ +
ρx)/σ2)H ′(t). Solving it gives

C1 =
σ2

2

(
C/
(
μ + ρx

))
e(μ+ρb)

2/ρσ2 − (kD/μ)eμ2/ρσ2

AD − BC ,

C2 =
σ2

2

(
kB/μ

)
eμ

2/ρσ2 − (A/(μ + ρb
))
e(μ+ρb)

2/ρσ2

AD − BC ,

(4.18)

where

A =

⎛

⎝
(

μ2

ρσ2

)1/2

− 1
2

(
μ2

ρσ2

)−1/2⎞

⎠M

(

1 − a, 2 − c; μ
2

ρσ2

)

− 1 − a
2 − c

(
μ2

ρσ2

)1/2

M

(

2 − a, 3 − c; μ
2

ρσ2

)

,

B =

⎛

⎝
((

μ + ρb
)2

ρσ2

)1/2

− 1
2

((
μ + ρb

)2

ρσ2

)−1/2⎞

⎠M

(

1 − a, 2 − c;
(
μ + ρb

)2

ρσ2

)

− 1 − a
2 − c

((
μ + ρb

)2

ρσ2

)1/2

M

(

2 − a, 3 − c;
(
μ + ρb

)2

ρσ2

)

,

C = U

(

c − a, c; μ
2

ρσ2

)

+ (c − a)U
(

c − a + 1, c + 1;
μ2

ρσ2

)

,

D = U

(

c − a, c;
(
μ + ρb

)2

ρσ2

)

+ (c − a)U
(

c − a + 1, c + 1;

(
μ + ρb

)2

ρσ2

)

.

(4.19)
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