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We consider a finite-buffer single server queueing system with queue-length dependent vacations where arrivals occur according
to a batch Markovian arrival process (BMAP). The service discipline is P-limited service, also called E-limited with limit
variation (ELV) where the server serves until either the system is emptied or a randomly chosen limit of 𝐿 customers has been
served. Depending on the number of customers present in the system, the server will monitor his vacation times. Queue-length
distributions at various epochs such as before, arrival, arbitrary and after, departure have been obtained. Several other service
disciplines like Bernoulli scheduling, nonexhaustive service, and E-limited service can be treated as special cases of the P-limited
service. Finally, the total expected cost function per unit time is considered to determine locally optimal values 𝑁∗ of 𝑁 or a
maximum limit �̂�∗ of �̂� as the number of customers served during a service period at a minimum cost.

1. Introduction

Queueing systems with vacations have found wide applica-
tions in the modelling and analysis of computer and com-
munication networks and several other engineering systems
in which single server is performing more than one type
of jobs. Modelling such systems as single server queues
with vacations allows one to analyze each queue in relative
isolation since the time the server is attending to other jobs in
the systemmay be modeled as vacation. For more details and
versatile implementation of vacation models, one can refer
to the comprehensive survey by Doshi [1]. Vacation models
are distinguished by their scheduling disciplines, that is, the
rules governing when a service stops and a vacation begins.
Several service disciplines in combination with vacations are
possible, for example, exhaustive, limited, gated, exhaustive
limited (E-limited), gated limited (G-limited), and so forth.
In fact, there is an extensive amount of literature available on
infinite- and finite-buffer M/G/1 and GI/M/1 type vacation
models that can be found in Takagi [2, 3], Tian and Zhang
[4], and so forth.

Traditional teletraffic analysis using Poisson process is
not powerful enough to capture the correlated and bursty
nature of traffic arising in the present high-speed networks
where packets or cells of voice, video, images and data are
sent over a common transmission channel on statistical
multiplexing basis. The performance analysis of statistical
multiplexers whose input consists of superposition of several
packetized sources has been done through some analytically
tractable arrival process, for example, Markovian arrival
process (MAP); see Lucantoni et al. [5]. To consider batch
arrival of variable capacity, Lucantoni [6, 7] introduced
batch Markovian arrival process (BMAP) which is a
convenient representation of the versatile Markovian point
process; see Neuts [8]. BMAP includes many familiar input
processes such as Markovian arrival process (MAP), Markov
modulated Poisson process (MMPP), PH-type renewal
process, interrupted Poisson process (IPP), Poisson process.
Later on, some researchers have analyzed queueing systems
of finite- or infinite-buffer with MAP or BMAP arrival, for
example, Akar and Arikan [9], Nishimura [10], Lee et al.
[11], Dudin [12], Dudin et al. [13], and so forth. Asymptotic
analysis of MAP/G/1 type queueing system has been
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performed by a few researchers, for example, Kim et al. [14],
Gouweleeuw [15], and so forth. Chydzinski [16] obtained
probability distribution of time to reach a buffer capacity
in a BMAP/G/1 system. Further, Matendo [17], Ferrandiz
[18], and so forth have discussed BMAP/G/1 queue with
vacations. As queueing analysis of finite systems is more
realistic in applications than infinite systems, the detailed
study of finite capacity vacation model BMAP/G/1/N queue
under exhaustive service discipline was performed by Niu
et al. [19] where they have included setup time, close-down
time, and single/multiple vacations.

In this paper, we analyze BMAP/G/1/N queue where
the server serves until either the system empties or a
randomly chosen limit of 𝐿 (0 ≤ 𝐿 ≤ �̂�) customers has
been served, whichever occurs first. The server then goes
for a vacation of random length of time depending on the
number of customers remaining in the system. For example,
the duration of vacation time will be short if there are a large
number of customers present in the system, whereas duration
of vacation time will be long if there are very few number
of customers who are waiting for service. Returning from a
vacation if the queue is empty or the limit 𝐿 = 0 is chosen,
then the server takes another vacation of length depending on
the number of customers present in the preceding vacation
termination instant. The service discipline analyzed in this
paper is known as P-limited service; see Takagi [3, page 398].
P-limited service was earlier studied by LaMaire [20, 21] for
the case ofM/G/1 infinite and finite buffer queue, respectively,
and he uses the term E-limited with limit variation (ELV) for
P-limited service. The analysis of MAP/G/1/N queue with
limited service discipline is carried out by Blondia [22] and
Gupta et al. [23]. Banik et al. [24, 25] discussed BMAP/G/1/N
queue under limited service disciplines. Queue-length
dependent vacation schedule has been studied by Shin
and Pearce [26] for the case of infinite-buffer BMAP/G/1
system with queue-length dependent vacation and Bernoulli
scheduling. In case of finite-buffer batch arrival queue, a batch
which upon arrival does not find enough space in the buffer
is either fully rejected or a part of that batch is rejected. Some
queueing protocols are based on the former strategy, and they
are known as the total batch acceptance/rejection policy. The
latter one is known as the partial batch acceptance/rejection
policy. For more details on different type of batch
acceptance/rejection policies in the context of finite-buffer
BMAP/G/1 queue, readers are referred to Dudin et al. [13]. In
this paper, we analyze partial batch acceptance strategy and
obtain queue-length distributions at various epochs using a
combination of embeddedMarkov chain and the supplemen-
tary variable method. One may note here that results of sev-
eral vacation policies, namely, Bernoulli scheduling, exhaus-
tive service, pure limited service and E-limited, service can be
obtained as special cases of P-limited service model. Regard-
ing the decision making, study of cost model for a practical
situation is useful to optimize the cost, for example, see Lee
and Srinivasan [27], Lee andPark [28], andWang andKe [29].
For this reason, we calculate the total expected cost function
per unit time to determine locally optimal values𝑁∗ of𝑁 and
�̂�
∗ of �̂�. At the end we provide some numerical results using

the analytical results obtained in this paper. Finally, some
conclusions and future research directions are discussed.

2. Description of the Model

Let us consider a BMAP/G/1/N queue wherein the server is
allowed to serve a maximum of 𝐿 (0 ≤ 𝐿 ≤ �̂�) customers
during a busy period, and then the server goes for a vacation
whose duration depends on the number of customers present
in the system. Here,𝑁 is the capacity of queue excluding the
one in service.That is, there is𝑁+1different type of vacations.
The server may go for any one of the 𝑖 (0 ≤ 𝑖 ≤ 𝑁)th type of
vacation. If the queue has been emptied after a service, then
the server will take (𝑖 = 0)-type of vacation. On the other
hands if𝐿 customers have been served during a service period
and a total of 𝑖 (0 < 𝑖 ≤ 𝑁) customers remain in the system,
then the serverwill take 𝑖 (0 < 𝑖 ≤ 𝑁)th type of vacation.After
returning from a vacation, if the queue is empty or a limit zero
is chosen, the server immediately goes on another vacation of
𝑖th (0 ≤ 𝑖 ≤ 𝑁) type if there are a 𝑖 (0 ≤ 𝑖 ≤ 𝑁) number of
customer who remain after the end of previous vacation com-
pletion instant. The limit 𝐿 is a random variable whose mass
function is denoted by 𝑝

𝐿
(0 ≤ 𝐿 ≤ �̂�). The limit for the num-

ber of customers to be served during a service interval (i.e., a
busy period) is determined at the preceding vacation termi-
nation instant.The sequence of limits chosen at these instants
is independent and identically distributed random variables
(i.i.d.r.vs.). By suitably choosing 𝑝

𝐿
, one can obtain results

for several other service disciplines, including Bernoulli
scheduling, exhaustive service, pure limited service and E-
limited service; for example, if we take𝑝̂

𝐿
= 1 and𝑝

𝐿
= 0 (0 ≤

𝐿 < �̂�), then the service system is equivalent to E-limited
service. If �̂� → ∞ (= 1) in the above assumption, the service
system is equivalent to exhaustive service system (= pure
limited service). Bernoulli scheduling system can be thought
of as a special case of P-limited service system with �̂� → ∞,
𝑝
0
= 0 and 𝑝

𝐿
= (1 − 𝑝)𝑝

𝐿−1, 0 < 𝑝 < 1 for 𝐿 = 1, 2, . . ..
The input process is BMAPwhere arrivals are governed by

an underlying 𝑚-state Markov chain which is characterized
by 𝑚 × 𝑚 matrices D

𝑘
, 𝑘 ≥ 0, where (𝑖, 𝑗)th (1 ≤ 𝑖, 𝑗 ≤

𝑚) element of D
0
is the state transition rate from state 𝑖 to

state 𝑗 in the underlying Markov chain without an arrival
and (𝑖, 𝑗)th element of D

𝑘
, 𝑘 ≥ 1, is the state transition rate

from state 𝑖 to state 𝑗 in the underlying Markov chain with
an arrival of batch size 𝑘. The matrix D

0
has nonnegative

off-diagonal and negative diagonal elements, and the matrix
D

𝑘
, 𝑘 ≥ 1, has nonnegative elements. Let 𝑁(𝑡) denote the

number of arrivals in (0, 𝑡], and let 𝐽(𝑡) be the state of the
underlying Markov chain at time 𝑡. Then, {𝑁(𝑡), 𝐽(𝑡)} is a
two-dimensional Markov process of BMAP with state space
{(𝑛, 𝑖) : 𝑛 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚}. The infinitesimal generator of
BMAP is given by

Q = (

D
0
D

1
D

2
D

3
⋅ ⋅ ⋅

0 D
0
D

1
D

2
⋅ ⋅ ⋅

0 0 D
0
D

1
⋅ ⋅ ⋅

...
...

...
... d

). (1)
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As Q is the infinitesimal generator of the BMAP, we have
∑

∞

𝑘=0
D

𝑘
e = 0, where e is an 𝑚 × 1 column vector with

all its elements equal to 1. If e’s dimension is other than 𝑚,
we denote by e regardless of its dimension. Further, since
D = ∑

∞

𝑘=0
D

𝑘
is irreducible infinitesimal generator of the

underlying Markov chain {𝐽(𝑡)}, there exists a stationary
probability vector 𝜋 such that 𝜋D = 0, 𝜋e = 1. Then, the
average arrival rate 𝜆∗ and average batch arrival rate 𝜆

𝑔
of

the stationary BMAP are given by 𝜆
∗

= 𝜋∑
∞

𝑘=1
𝑘D

𝑘
e and

𝜆
𝑔
= 𝜋∑

∞

𝑘=1
D

𝑘
e = 𝜋D

1
e, respectively, whereD

𝑛
= ∑

∞

𝑖=𝑛
D

𝑖
.

Let us define {P(𝑛, 𝑡), 0 ≤ 𝑛 ≤ 𝑁, 𝑡 ≥ 0} as 𝑚 × 𝑚

matrix whose (𝑖, 𝑗)th element is the conditional probability
that 𝑛 customers accepted in the queueing system whose
maximum capacity is 𝑁 excluding the one in service. Since
we deal with finite-buffer queue with of batch arrival, one
may consider different kinds batch acceptance/or rejection
strategies; see Dudin et al. [13]. The matrices P(𝑛, 𝑡) satisfy
the following system of difference-differential equations for
the case of partial batch acceptance strategy:

P(1)

(𝑛, 𝑡) = P (𝑛, 𝑡)D
0
+

𝑛−1

∑

𝑘=0

P (𝑘, 𝑡)D
𝑛−𝑘

,

0 ≤ 𝑛 ≤ 𝑁 − 1,

P(1)

(𝑁, 𝑡) = P (𝑁, 𝑡)D

0
+

𝑁−1

∑

𝑘=0

P (𝑘, 𝑡)D

𝑁−𝑘
,

(2)

with P(0, 0) = I
𝑚
, where I

𝑚
is an identity matrix of order 𝑚

for the above three cases and P(1)

(𝑛, 𝑡) = (𝑑/𝑑𝑡)P(𝑛, 𝑡).
Let 𝑆(𝑥){𝑠(𝑥)}[𝑆∗(𝜃)] be the distribution function (DF)

{probability density function (pdf)} [Laplace-Stieltjes trans-
form (LST)] of the service time 𝑆 of a typical customer.
Similarly, 𝑉

𝑖
(𝑥){V

𝑖
(𝑥)}[𝑉

∗

𝑖
(𝜃)] (0 ≤ 𝑖 ≤ 𝑁) is the DF {pdf}

[LST] of a typical vacation time 𝑉
𝑖
of the server where 𝑖

denotes the number of customers present in the system at the
starting point of a vacation.Themean service [vacation] time
is 𝐸(𝑆) = −𝑆

∗(1)

(0) [𝐸(𝑉
𝑖
) = −𝑉

∗(1)

𝑖
(0)], where 𝑓∗(𝑗)

(𝜁) is the
𝑗th (𝑗 ≥ 1) derivative of 𝑓∗

(𝜃) at 𝜃 = 𝜁. The service, vacation
times are assumed to be i.i.d.r.vs. and each is independent
of the arrival process. The traffic intensity is given by 𝜌 =

𝜆
∗

𝐸(𝑆). Further, let 𝜌 be the probability that the server is
busy.The state of the system at time 𝑡 is described by the r.vs.,
namely,

(i)

𝜉 (𝑡) =

{{{{{{{{{{{

{{{{{{{{{{{

{

(𝑘, 𝐿) , if the server is serving 𝑘th (1 ≤ 𝑘 ≤ 𝐿)

customer in the service period
consisting of services of at themost
𝐿 (1 ≤ 𝐿 ≤ �̂�) customers,

𝑖, if the server is on a vacationwhich
startedwith 𝑖 (0 ≤ 𝑖 ≤ 𝑁) customers
in the system,

(3)

(ii) 𝑁
𝑞
(𝑡) is the number of customers present in the queue

excluding the one in service,

(iii) 𝐽(𝑡) is the state of the underlying Markov chain of
BMAP,

(iv) 𝑆(𝑡) is the remaining service time of the customer in
service,

(v) �̃�
𝑖
(𝑡) is the remaining vacation time of the server,

whereas this vacation started with 𝑖 (0 ≤ 𝑖 ≤ 𝑁)

customers in the system.

We define for 1 ≤ 𝑖 ≤ 𝑚 the joint probabilities of queue-
length 𝑁

𝑞
(𝑡), state of the server 𝜉(𝑡), and the remaining

service (vacation) time 𝑆(�̃�
𝑗
), respectively, by

𝜋
[𝑘]

𝑖,𝐿
(𝑛, 𝑥; 𝑡) Δ𝑥

= 𝑃 {𝑁
𝑞
(𝑡) = 𝑛, 𝐽 (𝑡) = 𝑖, 𝑥 < 𝑆 (𝑡)<𝑥 + Δ𝑥, 𝜉 (𝑡)=(𝑘, 𝐿)} ,

0 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝐿 ≤ �̂�, 1 ≤ 𝑘 ≤ 𝐿, 𝑥 ≥ 0,

𝜔
𝑖,𝑗
(𝑛, 𝑥; 𝑡) Δ𝑥

= 𝑃 {𝑁
𝑞
(𝑡) = 𝑛, 𝐽 (𝑡) = 𝑖, 𝑥 < �̃�

𝑗
(𝑡) < 𝑥 + Δ𝑥, 𝜉 (𝑡) = 𝑗} ,

0 ≤ 𝑛 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑛, 𝑥 ≥ 0.

(4)

As we shall discuss the model in limiting case, that is, when
𝑡 → ∞ the above probabilities will be denoted by 𝜋[𝑘]

𝑖,𝐿
(𝑛, 𝑥)

and 𝜔
𝑖,𝑗
(𝑛, 𝑥). Let us further define the row vectors of order

1 × 𝑚 as follows:

𝜋
[𝑘]

𝐿
(𝑛, 𝑥) = [𝜋

[𝑘]

𝑖,𝐿
(𝑛, 𝑥)] , 𝜔

𝑗
(𝑛, 𝑥) = [𝜔

𝑖,𝑗
(𝑛, 𝑥)] ,

1 ≤ 𝑖 ≤ 𝑚,

(5)

where 𝜋[𝑘]

𝑖,𝐿
(𝑛, 𝑥) denotes the arbitrary epoch probability that

there are 𝑛 customers in the queue and the state of the arrival
process is 𝑖when the server is serving the 𝑘th customerwhose
remaining service time is 𝑥 in the present busy period con-
sisting of the sum of the service times of 𝐿 or lesser number
of customers. Similarly, 𝜔

𝑖,𝑗
(𝑛, 𝑥) denotes the arbitrary epoch

probability that 𝑛 customers are in the queue and state of
the arrival process is 𝑖 when the server is on vacation of 𝑗th
(0 ≤ 𝑗 ≤ 𝑛) type with remaining vacation time 𝑥.

3. Queue-Length Distributions at
Various Epochs

3.1. Queue-Length Distribution at Service Completion and
Vacation Termination Epochs. Consider the system at service
completion/vacation termination epochs which are taken as
embedded points. Let 𝑡

0
, 𝑡

1
, 𝑡

2
, . . . be the time epochs at which

either service completion or vacation termination occurs. 𝑡+
𝑖
,

𝑖 ≥ 0 denotes the time epoch just after a service completion
or vacation termination occurs.The state of the system at 𝑡+

𝑖
is

defined as {𝑁
𝑞
(𝑡

+

𝑖
), 𝜉(𝑡

+

𝑖
), 𝐽(𝑡

+

𝑖
)}, where𝑁

𝑞
(𝑡

+

𝑖
), 𝜉(𝑡+

𝑖
) and 𝐽(𝑡+

𝑖
)

are defined earlier. Therefore, 𝜉(𝑡+
𝑖
) = 𝑗 (0 ≤ 𝑗 ≤ 𝑁) indicates

that the embedded point is 𝑗th type vacation termination
instant which started with 𝑗 customers in the system, whereas
𝜉(𝑡

+

𝑖
) = (𝑘, 𝐿) (1 ≤ 𝐿 ≤ �̂�, 1 ≤ 𝑘 ≤ 𝐿) indicates that the

embedded point is a service completion instant of the 𝑘th
customer in the present busy period consisting of services
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of 𝐿 or lesser number of customers. In limiting case, these
probability distributions are

𝑔
[𝑘]

𝑗,𝐿
(𝑛) = lim

𝑖→∞

𝑃 (𝑁
𝑞
(𝑡

+

𝑖
) = 𝑛, 𝜉 (𝑡

+

𝑖
) = (𝑘, 𝐿) , 𝐽 (𝑡

+

𝑖
) = 𝑗) ,

0 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝐿, 1 ≤ 𝐿 ≤ �̂�, 1 ≤ 𝑗 ≤ 𝑚,

𝑓
𝑗,𝑟
(𝑛) = lim

𝑖→∞

𝑃 (𝑁
𝑞
(𝑡

+

𝑖
) = 𝑛, 𝜉 (𝑡

+

𝑖
) = 𝑗, 𝐽 (𝑡

+

𝑖
) = 𝑖) ,

0 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑚, 0 ≤ 𝑟 ≤ 𝑛,

(6)

where 𝑔
[𝑘]

𝑗,𝐿
(𝑛) represents the probability that there are 𝑛

customers in the queue and the state of the arrival process is 𝑗
at service completion epoch of the 𝑘th customer in the service
period consisting of services of at the most 𝐿 customers.
Similarly, 𝑓

𝑖,𝑗
(𝑛) represents the probability that there are 𝑛

customers in the queue and the state of the arrival process is 𝑖
at 𝑗th type vacation termination epoch. Further, let us denote
the row vectors of order 1 × 𝑚:

g[𝑘]
𝐿

(𝑛) = [𝑔
[𝑘]

𝑗,𝐿
(𝑛)] , f

𝑗
(𝑛) = [𝑓

𝑖,𝑗
(𝑛)] ,

1 ≤ 𝑗 ≤ 𝑚.

(7)

Let A
𝑛
(V

𝑛,𝑘
), 𝑛 ≥ 0, 0 ≤ 𝑘 ≤ 𝑛, denote an 𝑚 × 𝑚 matrix

whose (𝑖, 𝑗)th element represents the conditional probabil-
ity that 𝑛 customers have been accepted during a service

(𝑘th type vacation, i.e., vacation started with 𝑘 customers)
time of a customer (the server), and the underlying Markov
chain is in phase 𝑗 at the end of the service (𝑘th type vacation)
time given that the underlyingMarkov chain was in phase 𝑖 at
the beginning of the service (𝑘th type vacation). A

𝑛
and V

𝑛,𝑘

as the𝑚×𝑚matrices of mass functions as defined above are
given by

A
𝑛
= ∫

∞

0

P (𝑛, 𝑡) 𝑑𝑆 (𝑡) , 0 ≤ 𝑛 ≤ 𝑁, (8)

A𝑐

𝑛
=

𝑁

∑

𝑘=𝑛

A
𝑘
, 1 ≤ 𝑛 ≤ 𝑁, (9)

V
𝑛,𝑘

= ∫

∞

0

P (𝑛, 𝑡) 𝑑𝑉
𝑘
(𝑡) , 0 ≤ 𝑛 ≤ 𝑁, 0 ≤ 𝑘 ≤ 𝑁, (10)

V𝑐

𝑛,𝑘
=

𝑁

∑

𝑖=𝑛

V
𝑖,𝑘
, 0 ≤ 𝑛 ≤ 𝑁, 0 ≤ 𝑘 ≤ 𝑁. (11)

Obviously, A𝑐

𝑖
, 𝑖 ≥ 𝑁 + 1 will be equal to null matrix of order

𝑚 × 𝑚 and similarly, for V𝑐

𝑖,𝑘
, 𝑖 ≥ 𝑁 + 1.

Observing the system immediately after each embedded
point, we have the transition probability matrix (TPM) P
with four block matrices of the following form:

P = [
Ξ
(𝑁+1)(

̂
𝐿(

̂
𝐿+1)/2)𝑚×(𝑁+1)(

̂
𝐿(

̂
𝐿+1)/2)𝑚

Ω
(𝑁+1)(

̂
𝐿(

̂
𝐿+1)/2)𝑚×((𝑁+1)(𝑁+2)/2)𝑚

Δ
((𝑁+1)(𝑁+2)/2)𝑚×(𝑁+1)(

̂
𝐿(

̂
𝐿+1)/2)𝑚

Φ
((𝑁+1)(𝑁+2)/2)𝑚×((𝑁+1)(𝑁+2)/2)𝑚

]

((𝑁+1)(
̂
𝐿(

̂
𝐿+1)+𝑁+2)/2)𝑚×((𝑁+1)(

̂
𝐿(

̂
𝐿+1)+𝑁+2)/2)𝑚

,

(12)

where Ξ describes the probability of transitions among the
service completion epochs. A typical service completion
epoch will be denoted by the triplet {𝑁

𝑞
(𝑡

+

𝑖
), 𝜉(𝑡

+

𝑖
), 𝐽(𝑡

+

𝑖
)} of

which we first consider the change in 𝑁
𝑞
(𝑡

+

𝑖
), that is, 𝑛 (0 ≤

𝑛 ≤ 𝑁), and the second element of 𝜉(𝑡+
𝑖
) = (𝑘, 𝐿), that is, 𝐿

(1 ≤ 𝐿 ≤ �̂�) to describe the construction of the first block of
the TPM.Then the elements of Ξ can be written as follows:

Ξ
(𝑖,𝐿),(𝑗,𝐿


)
=

{{{{{{{

{{{{{{{

{

Q
𝑗−𝑖+1

(𝐿) , 1 ≤ 𝑖 ≤ 𝑁, 𝑖 − 1 ≤ 𝑗 ≤ 𝑁 − 1,

2 ≤ 𝐿 = 𝐿


≤ �̂�,

Q
𝑗−𝑖+1

(𝐿) , 1 ≤ 𝑖 ≤ 𝑁, 𝑗 = 𝑁,

2 ≤ 𝐿 = 𝐿


≤ �̂�,

0
𝑙𝑚
, otherwise,

(13)

where Q
𝑟
(𝐿), Q

𝑟
(𝐿), 0 ≤ 𝑟 ≤ 𝑁, 2 ≤ 𝐿 ≤ �̂� are all matrices of

order 𝑙𝑚× 𝑙𝑚. 0 is the null matrix of order given in the suffix.
The matricesQ

𝑟
(𝐿) andQ𝑐

𝑟
(𝐿) are given by

(Q
𝑟
(𝐿))

𝑖,𝑗
= {

A
𝑟
, 2 ≤ 𝐿 ≤ �̂�, 1 ≤ 𝑖 ≤ 𝐿; 𝑗 = 𝑖 + 1,

0
𝑚
, otherwise,

(Q
𝑟
(𝐿))

𝑖,𝑗
= {

A𝑐

𝑟
, 2 ≤ 𝐿 ≤ �̂�, 1 ≤ 𝑖 ≤ 𝐿; 𝑗 = 𝑖 + 1,

0
𝑚
, otherwise.

(14)

Ω gives the probability of transition from any service comple-
tion epoch to the next vacation termination epochs. Vacation
termination epochs are classified by the {𝑁

𝑞
(𝑡

+

𝑖
), 𝜉(𝑡

+

𝑖
), 𝐽(𝑡

+

𝑖
)}

of which we consider the change in 𝑁
𝑞
(𝑡

+

𝑖
), that is, 𝑛 (0 ≤

𝑛 ≤ 𝑁) and in case of vacation termination epoch 𝜉(𝑡+
𝑖
) = 𝑠,

that is, the number of customers present at the last service
completion instant. The structure ofΩ is given by

Ω
(𝑖,𝐿,𝑘)(𝑗,𝑠)

=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

V
𝑗,𝑠
, 𝑖 = 0, 𝑠 = 𝑖, 1 ≤ 𝐿 ≤ �̂�,

1 ≤ 𝑘 ≤ 𝐿, 0 ≤ 𝑗 ≤ 𝑁 − 1,

V𝑐

𝑗,𝑠
, 𝑖 = 0, 𝑠 = 𝑖, 1 ≤ 𝐿 ≤ �̂�,

1 ≤ 𝑘 ≤ 𝐿, 𝑗 = 𝑁,

V
𝑗−𝑖,𝑠

, 1 ≤ 𝑖 ≤ 𝑁, 𝑠 = 𝑖, 1 ≤ 𝐿 ≤ �̂�,

𝑘 = 𝐿, 𝑖 ≤ 𝑗 ≤ 𝑁 − 1,

V𝑐

𝑗−𝑖,𝑠
, 1 ≤ 𝑖 ≤ 𝑁, 𝑠 = 𝑖, 1 ≤ 𝐿 ≤ �̂�,

𝑘 = 𝐿, 𝑗 = 𝑁,

0
𝑚
, otherwise.

(15)

Δ of TPM gives the probability of transition from every
vacation termination epoch to the next service completion
epochs. This block is of the given form following:
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Δ
(𝑖,𝑠)(𝑗,𝐿,𝑘)

=

{{{{{{{

{{{{{{{

{

𝑝
𝐿
A

𝑗−𝑖+1
, 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑠 ≤ 𝑖, 1 ≤ 𝐿 ≤ �̂�,

𝑘 = 1, 𝑖 − 1 ≤ 𝑗 ≤ 𝑁 − 1,

𝑝
𝐿
A𝑐

𝑗−𝑖+1
, 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑠 ≤ 𝑖, 1 ≤ 𝐿 ≤ �̂�,

𝑘 = 1, 𝑗 = 𝑁,

0
𝑚

otherwise.
(16)

Φ of the TPM describes the probability of transitions among
vacation termination epochs. This block matrix is of the
following form:

Φ
(𝑖,𝑠)(𝑗,𝑘)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

V
𝑗,0
, 𝑖 = 0, 𝑠 = 0 = 𝑘, 0 ≤ 𝑗 < 𝑁,

V𝑐

𝑗,0
, 𝑖 = 0, 𝑠 = 0 = 𝑘, 𝑗 = 𝑁,

𝑝
0
V

𝑗−𝑖,𝑖
, 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑠 ≤ 𝑖,

𝑘 = 𝑖, 𝑖 ≤ 𝑗 ≤ 𝑁 − 1,

𝑝
0
V𝑐

𝑗−𝑖,𝑖
, 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑠 ≤ 𝑖,

𝑘 = 𝑖, 𝑗 = 𝑁,

0
𝑚
, otherwise.

(17)

The evaluation of the matrices A
𝑛
(V

𝑛,𝑘
), in general,

for arbitrary service (vacation) time distribution requires
numerical integration or infinite summation, and it can be
carried out along the lines proposed by Lucantoni [6] for
BMAP arrival. For the sake of completeness, in the following
we present the derivation of finding the matrix A

𝑛
. As

presented in [6], applying uniformization argument to the
matrices P(𝑛, 𝑡) is of the given form following:

P (𝑛, 𝑡) =
∞

∑

𝑙=0

𝑒
−𝜓𝑡

(𝜓𝑡)
𝑙

𝑙!
U(𝑙)

𝑛
, 0 ≤ 𝑛 ≤ 𝑁, (18)

where 𝜓 = max
𝑖
{−[𝐷

0
]
𝑖𝑖
} (1 ≤ 𝑖 ≤ 𝑚) and U(𝑙)

𝑛
is given by

U(0)

0
= I

𝑚
, U(0)

𝑛
= 0, U(𝑙+1)

0
= U(𝑙)

0
(I

𝑚
+ 𝜓

−1D
0
) ,

U(𝑙+1)

𝑛
= U(𝑙)

𝑛
(I

𝑚
+ 𝜓

−1D
0
) + 𝜓

−1

𝑛−1

∑

𝑖=0

U(𝑙)

𝑖
D

𝑛−𝑖
,

1 ≤ 𝑛 ≤ 𝑁 − 1, 𝑙 ≥ 0,

U(𝑙+1)

𝑁
= U(𝑙)

𝑁
(I

𝑚
+ 𝜓

−1D
0
) + 𝜓

−1

𝑁−1

∑

𝑖=0

U(𝑙)

𝑖
D

𝑁−𝑖
, 𝑙 ≥ 0.

(19)

Now, substituting the values ofP(𝑛, 𝑡) from (18) in (8), we
obtain

A
𝑛
=

∞

∑

𝑙=0

𝑟
𝑙
U(𝑙)

𝑛
, 0 ≤ 𝑛 ≤ 𝑁, (20)

where 𝑟
𝑙
= ∫

∞

0

𝑒
−𝜓𝑡

((𝜓𝑡)
𝑙

/𝑙!)𝑑𝑆(𝑡). Similarly, the matrix V
𝑛,𝑘

can be found out for any arbitrary vacation time distribu-
tion function 𝑉

𝑘
(𝑡). However, when the service (vacation)

time distributions are of phase type (PH-distribution), these
matrices can be evaluated without any numerical integration;
see Neuts [30, pages 67–70]. It may be noted here that various

service (vacation) time distributions arising in practical
applications can be approximated by PH-distribution. The
following theorem gives a procedure for the computation of
the matrices A

𝑛
(V

𝑛,𝑘
).

Theorem 1. If 𝑆(𝑥) follow PH-distribution with irreducible
representation (𝛽,U), where 𝛽 and U are of dimension 𝛾, then
the matrices A

𝑛
are given by

A
𝑛
= B

𝑛
(I

𝑚
⊗ U0

) , 0 ≤ 𝑛 ≤ 𝑁, (21)

where

B
0
= − (I

𝑚
⊗ 𝛽) [D

0
⊗ I

𝛾
+ I

𝑚
⊗ U]

−1

,

B
𝑛
= −

𝑛−1

∑

𝑖=0

B
𝑖
(D

𝑛−𝑖
⊗ I

𝛾
) [D

0
⊗ I

𝛾
+ I

𝑚
⊗ U]

−1

,

1 ≤ 𝑛 ≤ 𝑁 − 1,

B
𝑁
= −

𝑁−1

∑

𝑖=0

B
𝑖
[D

𝑁−𝑖
⊗ I

𝛾
] (D ⊗ I

𝛾
+ I

𝑚
⊗ U)

−1

,

(22)

with U0

= −Ue
𝛾
, and the symbol ⊗ denotes the Kronecker

product of two matrices. Similarly, let 𝑉
𝑘
(𝑥) follow a PH-

distribution with irreducible representation (𝛼
𝑘
,T

𝑘
), where 𝛼

𝑘

and T
𝑘
are of dimension 𝜇

𝑘
, then the matricesV

𝑛,𝑘
are given by

V
𝑛,𝑘

= R
𝑛,𝑘

(I
𝑚
⊗ T0

) , 0 ≤ 𝑛 ≤ 𝑁, 0 ≤ 𝑘 ≤ 𝑛, (23)

where

R
0,𝑘

= − (I
𝑚
⊗ 𝛼

𝑘
) [D

0
⊗ I

𝜇
𝑘

+ I
𝑚
⊗ T

𝑘
]
−1

,

R
𝑛,𝑘

= −

𝑛−1

∑

𝑖=0

R
𝑖,𝑘
(D

𝑛−𝑖
⊗ I

𝜇
𝑘

) [D
0
⊗ I

𝜇
𝑘

+ I
𝑚
⊗ T

𝑘
]
−1

,

1 ≤ 𝑛 ≤ 𝑁 − 1,

R
𝑁,𝑘

= −

𝑁−1

∑

𝑖=0

R
𝑖,𝑘
[D

𝑁−𝑖
⊗ I

𝜇
𝑘

] (D ⊗ I
𝜇
𝑘

+ I
𝑚
⊗ T

𝑘
)
−1

,

(24)

with T0

= −Te
𝜇
𝑘

.

Proof. See Neuts [30, pages 67–70], Banik and Gupta [25],
and so forth.

The unknown probability vectors g[𝑘]
𝐿
(𝑛) and f

𝑗
(𝑛) can be

obtained by solving the system of equations: (g[𝑘]
𝐿
(𝑛), f

𝑗
(𝑛)) =

(g[𝑘]
𝐿
(𝑛), f

𝑗
(𝑛))P and (g[𝑘]

𝐿
(𝑛), f

𝑗
(𝑛))e = 1. We use GTH

algorithm, see Grassmann et al. [31], for solving the system
of equations.

Considering the departure of a customer as an embedded
point excluding vacation termination epochs, onemay obtain
queue-length distributions at departure epoch. Distributions
of number of customers in the queue at service completion
and departure epochs are proportional. Let u[𝑘]

𝐿
(𝑛) denote

a row vector whose 𝑖th element represents steady-state



6 International Journal of Stochastic Analysis

probability that there are 𝑛 (0 ≤ 𝑛 ≤ 𝑁) customers in the
queue and phase of the arrival process is 𝑖 (1 ≤ 𝑖 ≤ 𝑚) at
departure epoch of the 𝑘th (1 ≤ 𝑘 ≤ 𝐿) customer in the
service period consisting of services of 𝐿 (1 ≤ 𝐿 ≤ �̂�) or lesser
number of customers. Since u[𝑘]

𝐿
(𝑛) is proportional to g[𝑘]

𝐿
(𝑛)

and ∑𝑁

𝑛=0
∑

̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
u[𝑘]

𝐿
(𝑛)e = 1, we get

u[𝑘]

𝐿
(𝑛) =

g[𝑘]
𝐿

(𝑛)

∑
𝑁

𝑖=0
∑

̂
𝐿

𝑟=1
∑

𝑟

𝑠=1
g[𝑠]
𝑟
(𝑛) e

,

0 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝐿 ≤ �̂�, 1 ≤ 𝑘 ≤ 𝐿.

(25)

3.2. Queue-Length Distribution at Arbitrary Epoch. To deter-
mine queue-length distribution at arbitrary epoch, we will
develop relations between distributions of number of cus-
tomers in the queue at service completion (vacation termina-
tion) and arbitrary epochs. Supplementary variable method
has been used, and for that we relate the states of the system
at two consecutive time epochs 𝑡 and 𝑡 + Δ𝑡, and using
probabilistic arguments, we have a set of partial differential
equations for each phase 𝑖, (1 ≤ 𝑖 ≤ 𝑚). Taking limit as
𝑡 → ∞ and using matrices and vector notations, we obtain

−
𝑑

𝑑𝑥
𝜋
[1]

𝐿
(0, 𝑥) = 𝜋

[1]

𝐿
(0, 𝑥)D

0
+ 𝑝

𝐿

1

∑

𝑗=0

𝜔
𝑗
(1, 0) 𝑠 (𝑥) ,

1 ≤ 𝐿 ≤ �̂�,

−
𝑑

𝑑𝑥
𝜋
[𝑘]

𝐿
(0, 𝑥) = 𝜋

[𝑘]

𝐿
(0, 𝑥)D

0
+ 𝜋

[𝑘−1]

𝐿
(1, 0) 𝑠 (𝑥) ,

2 ≤ 𝐿 ≤ �̂�, 2 ≤ 𝑘 ≤ 𝐿,

−
𝑑

𝑑𝑥
𝜋
[1]

𝐿
(𝑛, 𝑥) = 𝜋

[1]

𝐿
(𝑛, 𝑥)D

0
+

𝑛

∑

𝑖=1

𝜋
[1]

𝐿
(𝑛 − 𝑖, 𝑥)D

𝑖

+ 𝑝
𝐿

𝑛+1

∑

𝑗=0

𝜔
𝑗
(𝑛 + 1, 0) 𝑠 (𝑥) ,

1 ≤ 𝑛 ≤ 𝑁 − 2, 1 ≤ 𝐿 ≤ �̂�,

−
𝑑

𝑑𝑥
𝜋
[1]

𝐿
(𝑛, 𝑥) = 𝜋

[1]

𝐿
(𝑛, 𝑥)D

0
+

𝑛

∑

𝑖=1

𝜋
[1]

𝐿
(𝑛 − 𝑖, 𝑥)D

𝑖

+ 𝑝
𝐿

𝑛+1

∑

𝑗=0

𝜔
𝑗
(𝑛 + 1, 0) 𝑠 (𝑥) ,

𝑛 = 𝑁 − 1, 1 ≤ 𝐿 ≤ �̂�,

−
𝑑

𝑑𝑥
𝜋
[1]

𝐿
(𝑛, 𝑥) = 𝜋

[1]

𝐿
(𝑛, 𝑥)D

0
+

𝑛

∑

𝑖=1

𝜋
[1]

𝐿
(𝑛 − 𝑖, 𝑥)D

𝑖

+ 𝜋
[𝑘−1]

𝐿
(𝑛 + 1, 0) 𝑠 (𝑥) ,

1 ≤ 𝑛 ≤ 𝑁 − 2, 1 ≤ 𝐿 ≤ �̂�, 2 ≤ 𝑘 ≤ 𝐿,

−
𝑑

𝑑𝑥
𝜋
[𝑘]

𝐿
(𝑁, 𝑥) = 𝜋

[𝑘]

𝐿
(𝑁, 𝑥)D

0
+

𝑁

∑

𝑖=1

𝜋
[𝑘]

𝐿
(𝑁 − 𝑖, 𝑥)D

𝑖
,

1 ≤ 𝐿 ≤ �̂�, 1 ≤ 𝑘 ≤ 𝐿,

−
𝑑

𝑑𝑥
𝜔
𝑗
(0, 𝑥) = 𝜔

𝑗
(0, 𝑥)D

0

+ (

̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

𝜋
[𝑘]

𝐿
(0, 0) + 𝜔

𝑗
(0, 0)) V

𝑗
(𝑥) ,

𝑗 = 0,

−
𝑑

𝑑𝑥
𝜔
𝑗
(𝑛, 𝑥) = 𝜔

𝑗
(𝑛, 𝑥)D

0
+

𝑛−𝑗−1

∑

𝑖=0

𝜔
𝑗
(𝑗 + 𝑖, 𝑥)D

𝑛−𝑗−𝑖

+ 𝑝
0
𝜔
𝑗
(𝑛, 0) V

𝑗
(𝑥) ,

1 ≤ 𝑛 ≤ 𝑁 − 1, 0 ≤ 𝑗 < 𝑛,

−
𝑑

𝑑𝑥
𝜔
𝑗
(𝑛, 𝑥) = 𝜔

𝑗
(𝑛, 𝑥)D

0

+ (

̂
𝐿

∑

𝐿=1

𝜋
[𝐿]

𝐿
(𝑛, 0) + 𝑝

0
𝜔
𝑗
(𝑛, 0)) V

𝑗
(𝑥) ,

1 ≤ 𝑛 ≤ 𝑁 − 1, 𝑗 = 𝑛,

−
𝑑

𝑑𝑥
𝜔
𝑗
(𝑁, 𝑥) = 𝜔

𝑗
(𝑁, 𝑥)D

0
+

𝑁−𝑗−1

∑

𝑖=0

𝜔
𝑗
(𝑗 + 𝑖, 𝑥)D

𝑁−𝑗−𝑖

+ 𝑝
0
𝜔
𝑗
(𝑁, 0) V

𝑗
(𝑥) , 0 ≤ 𝑗 < 𝑁,

−
𝑑

𝑑𝑥
𝜔
𝑗
(𝑁, 𝑥) = 𝜔

𝑗
(𝑁, 𝑥)D

0

+ (

̂
𝐿

∑

𝐿=1

𝜋
[𝐿]

𝐿
(𝑁, 0) + 𝑝

0
𝜔
𝑗
(𝑁, 0)) V

𝑗
(𝑥) ,

𝑗 = 𝑁,

(26)

where𝜋[𝑘]
𝐿
(𝑛, 0)(𝜔

𝑗
(𝑛, 0)) are the respective departure rates of

customers (vacation termination rates of the server). Let us
define the Laplace transform of 𝜋[𝑘]

𝐿
(𝑛, 𝑥) and 𝜔

𝑗
(𝑛, 𝑥) as

𝜋
∗[𝑘]

𝐿
(𝑛, 𝜃) = ∫

∞

0

𝑒
−𝜃𝑥

𝜋
[𝑘]

𝐿
(𝑛, 𝑥)𝑑𝑥,

𝜔
∗

𝑗
(𝑛, 𝜃) = ∫

∞

0

𝑒
−𝜃𝑥

𝜔
𝑗
(𝑛, 𝑥) 𝑑𝑥,

0 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝐿 ≤ �̂�, 1 ≤ 𝑘 ≤ 𝐿,

0 ≤ 𝑗 ≤ 𝑛, Re 𝜃 ≥ 0,

(27)
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so that

𝜋
[𝑘]

𝐿
(𝑛) ≡ 𝜋

∗[𝑘]

𝐿
(𝑛, 0) = ∫

∞

0

𝜋
[𝑘]

𝐿
(𝑛, 𝑥) 𝑑𝑥,

𝜔
𝑗
(𝑛) ≡ 𝜔

∗

𝑗
(𝑛, 0) = ∫

∞

0

𝜔
𝑗
(𝑛, 𝑥) 𝑑𝑥.

(28)

Multiplying (26) by 𝑒
−𝜃𝑥 and integrating with respect to. 𝑥

over 0 to∞, we obtain

− 𝜃𝜋
∗[1]

𝐿
(0, 𝜃) + 𝜋

[1]

𝐿
(0, 0)

= 𝜋
∗[1]

𝐿
(0, 𝜃)D

0
+ 𝑝

𝐿

1

∑

𝑗=0

𝜔
𝑗
(1, 0) 𝑆

∗

(𝜃) ,

1 ≤ 𝐿 ≤ �̂�,

(29)

− 𝜃𝜋
∗[𝑘]

𝐿
(0, 𝜃) + 𝜋

[𝑘]

𝐿
(0, 0)

= 𝜋
∗[𝑘]

𝐿
(0, 𝜃)D

0
+ 𝜋

[𝑘−1]

𝐿
(1, 0) 𝑆

∗

(𝜃) ,

2 ≤ 𝐿 ≤ �̂�, 2 ≤ 𝑘 ≤ 𝐿,

(30)

− 𝜃𝜋
∗[1]

𝐿
(𝑛, 𝜃) + 𝜋

[1]

𝐿
(𝑛, 0)

= 𝜋
∗[1]

𝐿
(𝑛, 𝜃)D

0
+

𝑛

∑

𝑖=1

𝜋
∗[1]

𝐿
(𝑛 − 𝑖, 𝜃)D

𝑖

+ 𝑝
𝐿

𝑛+1

∑

𝑗=0

𝜔
𝑗
(𝑛 + 1, 0) 𝑆

∗

(𝜃) ,

1 ≤ 𝑛 ≤ 𝑁 − 2, 1 ≤ 𝐿 ≤ �̂�,

(31)

− 𝜃𝜋
∗[1]

𝐿
(𝑛, 𝜃) + 𝜋

[1]

𝐿
(𝑛, 0)

= 𝜋
∗[1]

𝐿
(𝑛, 𝜃)D

0
+

𝑛

∑

𝑖=1

𝜋
∗[1]

𝐿
(𝑛 − 𝑖, 𝜃)D

𝑖

+ 𝑝
𝐿

𝑛+1

∑

𝑗=0

𝜔
𝑗
(𝑛 + 1, 0) 𝑆

∗

(𝜃) ,

𝑛 = 𝑁 − 1, 1 ≤ 𝐿 ≤ �̂�,

(32)

− 𝜃𝜋
∗[𝑘]

𝐿
(𝑛, 𝜃) + 𝜋

[𝑘]

𝐿
(𝑛, 0)

= 𝜋
∗[𝑘]

𝐿
(𝑛, 𝜃)D

0
+

𝑛

∑

𝑖=1

𝜋
∗[𝑘]

𝐿
(𝑛 − 𝑖, 𝜃)D

𝑖

+ 𝜋
[𝑘−1]

𝐿
(𝑛 + 1, 0) 𝑆

∗

(𝜃) , 1 ≤ 𝑛 ≤ 𝑁 − 1,

2 ≤ 𝐿 ≤ �̂�, 2 ≤ 𝑘 ≤ 𝐿,

(33)

− 𝜃𝜋
∗[𝑘]

𝐿
(𝑁, 𝜃) + 𝜋

[𝑘]

𝐿
(𝑁, 0)

= 𝜋
∗[𝑘]

𝐿
(𝑁, 𝜃)D

0
+

𝑁

∑

𝑖=1

𝜋
∗[𝑘]

𝐿
(𝑁 − 𝑖, 𝜃)D

𝑖
,

1 ≤ 𝐿 ≤ �̂�, 1 ≤ 𝑘 ≤ 𝐿,

(34)

− 𝜃𝜔
∗

𝑗
(0, 𝜃) + 𝜔

𝑗
(0, 0)

= 𝜔
∗

𝑗
(0, 𝜃)D

0
+ (

̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

𝜋
[𝑘]

𝐿
(0, 0) + 𝜔

𝑗
(0, 0))𝑉

∗

𝑗
(𝜃) ,

𝑗 = 0,

(35)

− 𝜃𝜔
∗

𝑗
(𝑛, 𝜃) + 𝜔

𝑗
(𝑛, 0)

= 𝜔
∗

𝑗
(𝑛, 𝜃)D

0
+

𝑛−𝑗−1

∑

𝑖=0

𝜔
∗

𝑗
(𝑗 + 𝑖, 𝜃)D

𝑛−𝑗−𝑖

+ 𝑝
0
𝜔
𝑗
(𝑛, 0) 𝑉

∗

𝑗
(𝜃) ,

1 ≤ 𝑛 ≤ 𝑁 − 1, 0 ≤ 𝑗 < 𝑛,

(36)

− 𝜃𝜔
∗

𝑗
(𝑛, 𝜃) + 𝜔

𝑗
(𝑛, 0)

= 𝜔
∗

𝑗
(𝑛, 𝜃)D

0
+ (

̂
𝐿

∑

𝐿=1

𝜋
[𝐿]

𝐿
(𝑛, 0) + 𝑝

0
𝜔
𝑗
(𝑛, 0))𝑉

∗

𝑗
(𝜃),

1 ≤ 𝑛 ≤ 𝑁 − 1, 𝑗 = 𝑛,

(37)

− 𝜃𝜔
∗

𝑗
(𝑁, 𝜃) + 𝜔

𝑗
(𝑁, 0)

= 𝜔
∗

𝑗
(𝑁, 𝜃)D



0
+

𝑁−𝑗−1

∑

𝑖=0

𝜔
∗

𝑗
(𝑗 + 𝑖, 𝜃)D



𝑁−𝑗−𝑖

+ 𝑝
0
𝜔
𝑗
(𝑁, 0) 𝑉

∗

𝑗
(𝜃) , 0 ≤ 𝑗 < 𝑁,

(38)

− 𝜃𝜔
∗

𝑗
(𝑁, 𝜃) + 𝜔

𝑗
(𝑁, 0)

= 𝜔
∗

𝑗
(𝑁, 𝜃)D



0
+(

̂
𝐿

∑

𝐿=1

𝜋
[𝐿]

𝐿
(𝑁, 0) + 𝑝

0
𝜔
𝑗
(𝑁, 0))𝑉

∗

𝑗
(𝜃),

𝑗 = 𝑁.

(39)

Using equations (29)–(39), we will derive certain results in
the form of lemmas and theorems.

Lemma 2. Consider the following:

̂
𝐿

∑

𝐿=2

𝐿−1

∑

𝑘=1

𝜋
[𝐿]

𝐿
(0, 0) e +

𝑁

∑

𝑛=0

̂
𝐿

∑

𝐿=1

𝜋
[𝐿]

𝐿
(𝑛, 0) e

=

𝑁

∑

𝑛=1

̂
𝐿

∑

𝐿=1

𝑛

∑

𝑗=0

𝑝
𝐿
𝜔
𝑗
(𝑛, 0) e.

(40)
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The left hand side is the mean number of entrances into the
vacation states per unit of time, and the right hand side is the
mean number of departure from the vacation states per unit of
time.

Proof. Setting 𝜃 = 0 in (29)–(34), using (28), and then post-
multiplying all the equations by the vector e and adding them,
usingD

0
e = 0 after simplification, we obtain the result.

Theorem 3. Consider the following:

𝐸 (𝑆)

𝑁

∑

𝑛=0

̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

𝜋
[𝑘]

𝐿
(𝑛, 0) e

=

𝑁

∑

𝑛=0

̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

𝜋
[𝑘]

𝐿
(𝑛) e = 𝜌



,

(41)

𝑁

∑

𝑛=0

𝑛

∑

𝑗=0

𝐸 (𝑉
𝑗
)𝜔

𝑗
(𝑛, 0) e

=

𝑁

∑

𝑛=0

𝑛

∑

𝑗=0

𝜔
𝑗
(𝑛) e = 1 − 𝜌



.

(42)

∑
𝑁

𝑛=0
∑

̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
𝜋
[𝑘]

𝐿
(𝑛, 0)e denotes themean number of service

completions per unit of time, and multiplying this by 𝐸(𝑆) will
give 𝜌. Similarly, the other result can be interpreted.

Proof. Differentiating (29)–(34) w.r.t. 𝜃, setting 𝜃 = 0 in
those equations and postmultiplying by e, adding them using
D

0
e = 0 and Lemma 2, after simplification, we obtain (41).

Similarly, post-multiplying (35)–(39) by e, differentiating
these equations w.r.t 𝜃, and setting 𝜃 = 0, after some alge-
braic manipulation, we obtain ∑

𝑁

𝑛=0
∑

𝑛

𝑗=0
𝐸(𝑉

𝑗
)𝜔

𝑗
(𝑛, 0)e =

∑
𝑁

𝑛=0
∑

𝑛

𝑗=0
𝜔
𝑗
(𝑛)e.

3.2.1. Relation between Queue-Length Distributions at Arbi-
trary and Service Completion (Vacation Termination) Epochs.
We first relate the service completion (vacation termination)
epoch probabilities, g[𝑘]

𝐿
(𝑛) and f

𝑗
(𝑛), with the rates 𝜋[𝑘]

𝐿
(𝑛, 0)

and 𝜔
𝑗
(𝑛, 0) which are given by

𝑔
[𝑘]

𝑖,𝐿
(𝑛) =

𝜋
[𝑘]

𝑖,𝐿
(𝑛, 0)

∑
𝑁

𝑛=0
∑

̂
𝐿

𝑟=1
∑

𝑟

𝑠=1
𝜋
[𝑠]

𝑟
(𝑛, 0) e + ∑

𝑁

𝑛=0
∑

𝑛

𝑟=0
𝜔
𝑟
(𝑛, 0) e

=
1

𝜎
𝜋
[𝑘]

𝑖,𝐿
(𝑛, 0) , 0 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝐿 ≤ �̂�,

1 ≤ 𝑘 ≤ 𝐿, 1 ≤ 𝑖 ≤ 𝑚,

(43)

and similarly,

𝑓
𝑖,𝑗
(𝑛) =

1

𝜎
𝜔
𝑖,𝑗
(𝑛, 0) , 0 ≤ 𝑛 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑚,

(44)

where 𝜎 = ∑
𝑁

𝑛=0
∑

̂
𝐿

𝑟=1
∑

𝑟

𝑠=1
𝜋
[𝑠]

𝑟
(𝑛, 0)e + ∑

𝑁

𝑛=0
∑

𝑛

𝑟=0
𝜔
𝑟
(𝑛, 0)e.

Employing the above relations, we will determine arbitrary

epoch probabilities in terms of service completion or vacation
termination epoch probabilities. Setting 𝜃 = 0 in the
(29)–(33) and (35)-(36), using (43) and (44), we obtain the
following relations:

𝜋
[1]

𝐿
(0) = (𝜎(𝑝

𝐿

1

∑

𝑗=0

f
𝑗
(1) − g[1]

𝐿
(0))) (−D

0
)
−1

,

1 ≤ 𝐿 ≤ �̂�,

𝜋
[𝑘]

𝐿
(0) = 𝜎 (g[𝑘−1]

𝐿
(1) − g[𝑘]

𝐿
(0)) (−D

0
)
−1

,

2 ≤ 𝐿 ≤ �̂�, 2 ≤ 𝑘 ≤ 𝐿,

𝜋
[1]

𝐿
(𝑛) = (

𝑛

∑

𝑖=1

𝜋
[1]

𝐿
(𝑛 − 𝑖)D

𝑖

+𝜎(𝑝
𝐿

𝑛+1

∑

𝑗=0

f
𝑗
(𝑛 + 1) − g[1]

𝐿
(𝑛))) (−D

0
)
−1

,

1 ≤ 𝑛 ≤ 𝑁 − 2, 1 ≤ 𝐿 ≤ �̂�,

𝜋
[1]

𝐿
(𝑛) = (

𝑛

∑

𝑖=1

𝜋
[1]

𝐿
(𝑛 − 𝑖)D

𝑖

+𝜎(𝑝
𝐿

𝑛+1

∑

𝑗=0

f
𝑗
(𝑛 + 1) − g[1]

𝐿
(𝑛))) (−D

0
)
−1

,

𝑛 = 𝑁 − 1, 1 ≤ 𝐿 ≤ �̂�,

𝜋
[𝑘]

𝐿
(𝑛) = (

𝑛

∑

𝑖=1

𝜋
[𝑘]

𝐿
(𝑛 − 𝑖)D

𝑖

+ 𝜎 (g[𝑘−1]
𝐿

(𝑛 + 1) − g[𝑘]
𝐿

(𝑛))) (−D
0
)
−1

,

1 ≤ 𝑛 ≤ 𝑁 − 1, 2 ≤ 𝐿 ≤ �̂�, 2 ≤ 𝑘 ≤ 𝐿,

𝜔
𝑗
(0) = 𝜎(

̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

g[𝑘]
𝐿

(0)) (−D
0
)
−1

,

𝜔
𝑗
(𝑛) = (

𝑛−𝑗−1

∑

𝑖=0

𝜔
𝑗
(𝑗 + 𝑖)D

𝑛−𝑗−𝑖

+ 𝜎 (𝑝
0
f
𝑗
(𝑛) − f

𝑗
(𝑛))) (−D

0
)
−1

,

1 ≤ 𝑛 ≤ 𝑁 − 1, 0 ≤ 𝑗 < 𝑛,

𝜔
𝑗
(𝑛) =(𝜎(

̂
𝐿

∑

𝐿=1

g[𝐿]
𝐿

(𝑛) + 𝑝
0
f
𝑗
(𝑛) − f

𝑗
(𝑛))) (−D

0
)
−1

,

1 ≤ 𝑛 ≤ 𝑁 − 1, 𝑗 = 𝑛.

(45)
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It may be noted here that we do not have such
expression for 𝜋[𝑘]

𝐿
(𝑁) and 𝜔

𝑗
(𝑁). However, one can

compute ∑
̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
𝜋
[𝑘]

𝐿
(𝑁)e and ∑

𝑁

𝑗=0
𝜔
𝑗
(𝑁)e by using

Theorem 1 and is given by ∑
̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
𝜋
[𝑘]

𝐿
(𝑁)e =

𝜌


− ∑
𝑁−1

𝑛=0
∑

̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
𝜋
[𝑘]

𝐿
(𝑛)e and 𝜔(𝑁)e = (1 − 𝜌



) −

∑
𝑁−1

𝑛=0
∑

𝑛

𝑗=0
𝜔
𝑗
(𝑛)e, respectively. Though the vectors

𝜋
[𝑘]

𝐿
(𝑁) and 𝜔

𝑗
(𝑁) are not obtained componentwise,

∑
̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
𝜋
[𝑘]

𝐿
(𝑁)e and ∑

𝑁

𝑗=0
𝜔
𝑗
(𝑁)e are sufficient to

determine key performance measures (Section 4).

Lemma 4. 𝜌 (probability that the server is busy) is given by

𝜌


= 𝐸 (𝑆)

𝑁

∑

𝑛=0

̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

g[𝑘]
𝐿

(𝑛) e

× (𝐸 (𝑆)

𝑁

∑

𝑛=0

̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

g[𝑘]
𝐿

(𝑛) e

+

𝑁

∑

𝑛=0

𝑁

∑

𝑗=0

𝐸 (𝑉
𝑗
) f

𝑗
(𝑛) e)

−1

.

(46)

Proof. LetΘ
𝑏
{Θ

𝑖
} be the random variable denoting the length

of busy {idle} period and 𝜃
𝑏
{𝜃

𝑖
} be the mean length of a busy

{idle} period, then we have

𝜌


=
𝜃
𝑏

𝜃
𝑏
+ 𝜃

𝑖

,
𝜃
𝑏

𝜃
𝑖

=
∑

𝑁

𝑛=0
∑

̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
𝜋
[𝑘]

𝐿
(𝑛) e

∑
𝑁

𝑛=0
∑

𝑁

𝑗=0
𝜔
𝑗
(𝑛) e

. (47)

Applying Theorem 3, and then dividing numerator and
denominator by 𝜎, using (43) and (44), we can write the
pervious ratio as

𝜃
𝑏

𝜃
𝑖

=
𝐸 (𝑆)∑

𝑁

𝑛=0
∑

̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
g[𝑘]
𝐿

(𝑛) e
∑

𝑁

𝑛=0
∑

𝑁

𝑗=0
𝐸 (𝑉

𝑗
) f

𝑗
(𝑛) e

. (48)

The above ratio yields the result.

Remark 5. One may note here that 𝜎 is frequently needed for
calculation of the state probabilities, and it can be obtained by
using 𝜌 and (43) in (41).

Let q(𝑛) denote the row vector of order 1 × 𝑚 whose 𝑖th
component is the probability of 𝑛 (0 ≤ 𝑛 ≤ 𝑁) customers in
the queue at arbitrary epoch, and state of the arrival process
is 𝑖 (1 ≤ 𝑖 ≤ 𝑚). q(𝑛) is given by

q (0) =
̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

𝜋
[𝑘]

𝐿
(0) + 𝜔

0
(0) ,

q (𝑛) =
̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

𝜋
[𝑘]

𝐿
(𝑛) +

𝑛

∑

𝑗=0

𝜔
𝑗
(𝑛) , 1 ≤ 𝑛 ≤ 𝑁 − 1,

q (𝑁) = 𝜋 −

𝑁−1

∑

𝑛=0

(

̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

𝜋
[𝑘]

𝐿
(𝑛) +

𝑛

∑

𝑗=0

𝜔
𝑗
(𝑛)) .

(49)

3.3. Queue-Length Distributions at Prearrival Epoch. Let
p−

(𝑛) be the 1×𝑚 vectors whose 𝑗th components are given by
𝑝
−

𝑗
(𝑛) which gives the probability that an arrival finds 𝑛 (0 ≤

𝑛 ≤ 𝑁) customers in the queue, and the arrival process is in
state 𝑗 at the postarrival instant.The vectors p−

(𝑛) is given by

p−

(𝑛) =
q (𝑛)∑∞

𝑖=1
D

𝑖

𝜆
𝑔

=
q (𝑛)D

1

𝜆
𝑔

, 0 ≤ 𝑛 ≤ 𝑁. (50)

4. Performance Measures

In this section, we discuss the various performance mea-
sures which are often needed for investigating the behavior
of a queueing system. As the state probabilities at which
departure, arbitrary and prearrival epochs are known, the
corresponding mean queue-lengths can be easily obtained.
For example, the average number in the queue at any arbitrary
epoch is 𝐿𝑞 = ∑

𝑁

𝑖=0
𝑖q(𝑖)e, the average number in the queue

when the server is busy is 𝐿𝑞
1
= ∑

𝑁

𝑖=0
𝑖[∑

̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
𝜋
[𝑘]

𝐿
(𝑖)]e,

and the average number in the queue when the server is on
vacation is 𝐿𝑞

2
= ∑

𝑁

𝑖=0
𝑖 ∑

𝑖

𝑗=0
𝜔
𝑗
(𝑖)e. It may be remarked here

that for large values of 𝑁, the computation of 𝐿
𝑞
may pose

some problems because of the storage of large number of
probability vectors 𝜋[𝑘]

𝐿
(𝑛). The problem can be resolved by

using main frame computer and applying efficient memory
management technique. One useful performance measure is
the blocking probability which is discussed below.

4.1. Blocking Probabilities. Since prearrival epoch probabili-
ties are known, the blocking probability of the first customer
of an arriving batch is given by

PBL
𝐹
= p−

(𝑁) e =
q (𝑁)D



1
e

𝜆
𝑔

. (51)

Let F
𝑘
be the matrix of order 𝑚 × 𝑚 whose element [𝐹

𝑘
]
𝑖𝑗

is the probability that the position of an arbitrary customer
in an arriving batch is 𝑘 with phase changes from 𝑖 to 𝑗.
The probability that an arbitrary customer belongs to a batch
of size 𝑛 is given by 𝜋𝑛D

𝑛
e/𝜆∗. Hence, the position of an

arbitrary customer in a batch of size 𝑛 is 𝑘with corresponding
phase changes is equal to (1/𝑛) ⋅ (D

𝑛
/𝜋D

𝑛
e), 𝑘 = 1, 2, 3, . . . , 𝑛,

where 1/𝑛 denotes the probability that an arbitrary customer
belongs to a batch of size 𝑛. Therefore,

F
𝑘
=
𝜋𝑛D

𝑛
e

𝜆∗

⋅
1

𝑛
⋅

D
𝑛

𝜋D
𝑛
e
=

∞

∑

𝑛=𝑘

D
𝑛

𝜆∗

, 𝑘 = 1, 2, 3, . . . . (52)

Hence, the blocking probability of an arbitrary customer
(PBL

𝐴
) is given by

PBL
𝐴
=

𝑁

∑

𝑛=0

q (𝑛)
∞

∑

𝑘=𝑁−𝑛+1

F
𝑘
e. (53)

Finally, the blocking probability of the last customer of a batch
(PBL

𝐸
) is given by

PBL
𝐸
=

𝑁

∑

𝑖=0

∞

∑

𝑗=𝑁−𝑖+1

q(𝑖)D
𝑗
e

𝜆
𝑔

. (54)
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One may note that mean waiting time 𝑊
𝑞
(in queue) of an

arbitrary customer can be obtained using Little’s law, and it is
given by 𝑊

𝑞
= 𝐿𝑞/𝜆

, where 𝜆 is the mean effective arrival
rate and is given by

𝜆


= 𝜆
∗

(1 − PBL
𝐴
) . (55)

Remark 6. Onemaynote here that𝜆 can be obtained another
way as described below. In the steady-state mean effective
arrival rate of customers should be equal to the total mean
departure rate of customers. From this argument, we obtain

𝜆


=

𝑁

∑

𝑛=0

̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

𝜋
[𝑘]

𝐿
(𝑛, 0) e. (56)

Now, using (41) and (46) in (56), we have

𝜆


=

𝑁

∑

𝑛=0

̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

g[𝑘]
𝐿

(𝑛) e

× (𝐸 (𝑆)

𝑁

∑

𝑛=0

̂
𝐿

∑

𝐿=1

𝐿

∑

𝑘=1

g[𝑘]
𝐿

(𝑛) e

+

𝑁

∑

𝑛=0

𝑁

∑

𝑗=0

𝐸 (𝑉
𝑗
) f

𝑗
(𝑛) e)

−1

.

(57)

Equations (55) and (57) can be used for comparison while
performing numerical experiments.

4.2. Optimal Policy. In this subsection, we develop the total
expected cost function per unit time for this queueing system
in which 𝑁 and �̂� are decision variables. We construct a
similar cost structure that has been widely used in many
works; see Lee and Srinivasan [27], Lee and Park [28], Wang
and Ke [29], and so forth. For this we need explicit expression
for expected length of busy and idle period. Let us assume that
Φ is the random variable denoting the length of a busy cycle
and 𝜗 is the mean length of busy cycle; then 𝜗 = 𝜃

𝑖
+𝜃

𝑏
. From

the definition of the carried load 𝜌 (the fraction of time that
the server is busy), it can be written as

𝜃
𝑏

𝜃
𝑖

=
𝜌


1 − 𝜌
. (58)

We first discuss the expected busy period which is
comparatively easy to evaluate. Let 𝑁

𝑞
(𝑡) denote the

number of customers in the queue at time 𝑡, let 𝜉
𝑞
(𝑡)

be the state of the server, that is, busy (= 1) or idle
(= 0), and let Γ

𝑞
(𝑡) = (𝑘, 𝐿) (1 ≤ 𝐿 ≤ �̂�, 1 ≤ 𝑘 ≤ 𝐿)

represent the 𝑘th customer in service in the service period
consisting of 𝐿 or lesser number of customers. Then,
{𝑁

𝑞
(𝑡), 𝜉

𝑞
(𝑡), Γ

𝑞
(𝑡)} enters the set of busy states, Υ ≡

{(0, 1, (𝑘, 𝐿)), (1, 1, (𝑘, 𝐿)), (2, 1, (𝑘, 𝐿)), . . . , (𝑁, 1, (𝑘, 𝐿))} at
the termination of an idle (vacations) period.The conditional
probability that {𝑁

𝑞
(𝑡), 𝜉

𝑞
(𝑡), Γ

𝑞
(𝑡)} enters (𝑛, 1) 0 ≤ 𝑛 ≤ 𝑁,

given that {𝑁
𝑞
(𝑡), 𝜉

𝑞
(𝑡)} enters (0, 1, (𝑘, 𝐿)) or (𝑛, 1, (𝐿, 𝐿)) is

therefore 𝐶[∑
̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
u[𝑘]

𝐿
(0)e + ∑

𝑁

𝑛=1
u[𝐿]

𝐿
(𝑛)e] where

𝐶 = 1/(∑
̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
u[𝑘]

𝐿
(0)e + ∑

𝑁

𝑛=1
u[𝐿]

𝐿
(𝑛)e). Now,

{𝑁
𝑞
(𝑡), 𝜉

𝑞
(𝑡), Γ

𝑞
(𝑡)} enters (𝑛, 1, (𝑘, 𝐿)) (0 ≤ 𝑛 ≤ 𝑁, 1 ≤

𝐿 ≤ �̂�, 1 ≤ 𝑘 ≤ 𝐿) irrespective of customers’ arrival during a
service time, which may happen in expected time 𝐸(𝑆). Thus,
we have

𝜃
𝑏
=

𝐸 (𝑆)∑
𝑁

𝑛=0
∑

̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
u[𝑘]

𝐿
(𝑛) e

∑
̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
u[𝑘]

𝐿
(0) e + ∑

𝑁

𝑛=1
u[𝐿]

𝐿
(𝑛) e

=
𝐸 (𝑆)

∑
̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
u[𝑘]

𝐿
(0) e + ∑

𝑁

𝑛=1
u[𝐿]

𝐿
(𝑛) e

.

(59)

Using (59) in (58), we obtain

𝜃
𝑖
= (

1 − 𝜌


𝜌
) ⋅

𝐸 (𝑆)

∑
̂
𝐿

𝐿=1
∑

𝐿

𝑘=1
u[𝑘]

𝐿
(0) e + ∑

𝑁

𝑛=1
u[𝐿]

𝐿
(𝑛) e

. (60)

4.2.1. Total Expected Cost Function. We consider a cost
function per unit time for this BMAP/G/1/N queueing system
under P-limited service disciplines with queue-length depen-
dent vacations, in which𝑁 and �̂� are decision variables. Our
objective is to determine the optimum value of the control
parameter, say 𝑁∗ and �̂�

∗, so as to minimize the expected
value of this cost function. Let us define the following costs:

𝐶
ℎ
= holding cost per unit time per customer present

in the system;
𝐶
𝑓
= cost incurred per unit time for keeping the

server off;
𝐶
𝑜
= cost incurred per unit time for keeping the

server on;
𝐶
𝑠
= start-up cost per unit time for turning the server

on;
𝐶
𝑑
= shut-down cost per unit time for turning the

server off;
𝐶
𝑙
= a fixed cost incurred per unit time for every lost

customer.

Using the definitions of each cost element listed above,
the total expected cost function per unit time is given by

𝐹 (𝑁, �̂�) = 𝐶
ℎ
𝐿
𝑞
+ 𝐶

𝑓

𝜃
𝑖

𝜗
+ 𝐶

𝑜

𝜃
𝑏

𝜗

+ (𝐶
𝑠
+ 𝐶

𝑑
)
1

𝜗
+ 𝜆

∗

𝐶
𝑙
PBL

𝐴

= 𝐶
ℎ
𝐿
𝑞
+ 𝐶

𝑓
(1 − 𝜌



) + 𝐶
𝑜
𝜌


+ (𝐶
𝑠
+ 𝐶

𝑑
)
1

𝜗
+ 𝜆

∗

𝐶
𝑙
PBL

𝐴
.

(61)

From the pervious formula, locally optimal values𝑁∗ may be
selected for a fixed value of �̂� as follows. For each selection
of �̂�, the local optimum value of 𝑁, 𝑁∗, is determined by
satisfying the following inequality:

𝐹 (𝑁
∗

+ 1, �̂�) ≥ 𝐹 (𝑁
∗

, �̂�) ≤ 𝐹 (𝑁
∗

− 1, �̂�) . (62)
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One may be interested to obtain locally optimal values
𝑁

∗ and �̂�
∗ using following procedure. We first select an

interval [𝑁
1
, 𝑁

2
] for buffer capacity (𝑁) and a set of limit

distributions; therefore, we can evaluate 𝐹(𝑁, �̂�) for every
possible ordered pairs (𝑁, �̂�),𝑁 ∈ [𝑁

1
, 𝑁

2
] and �̂� ∈ [�̂�

1
, �̂�

2
].

Finally, comparing each of them, we can determine locally
optimal values 𝑁∗ and �̂�

∗ for which 𝐹(𝑁, �̂�) is a minimal
one. This completes analytical analysis of the queueing
model under consideration. Now, we present discussion of
numerical results in Section 5.

5. Numerical Results

To demonstrate the applicability of the results obtained in
the previous sections, some numerical results have been
presented in the form of graphs showing the nature of some
performance measures against the variation of some critical
model parameters. We have conducted an experiment on the
BMAP/PH/1/N queue with queue-length dependentmultiple
vacations (vacation time follows PH-distribution) for the
following input parameters.

The 2-state BMAP representation is taken as
D

0
= [

−1.51250 0.750

0.875 −1.025
], D

1
= [

0.381250 0.000000

0.062500 0.012500
], D

3
=

[
0.228750 0.000000

0.037500 0.007500
], D

5
= [

0.152500 0.000000

0.025000 0.005000
], where 𝜆∗

= 1.2,
𝜆
𝑔

= 0.5, and D
2
, D

4
and D

𝑗
(𝑖 ≥ 6) are null matrices

of order 2. The PH-type representation of a vacation
time is taken as 𝛼

0
= [0.7 0.3], T

0
= [

−1.098 1.099

0.071 −1.832
] with

𝐸(𝑉
0
) = 1.242509. PH-type representation of service

time is taken as 𝛽 = [0.4 0.6], S = [
−6.683 2.453

1.367 −7.986
] with

𝐸(𝑆) = 0.180050, 𝜌 = 𝜆
∗

𝐸(𝑆) = 0.216060. We take the
maximum value of the limit �̂� = 5, and the limit mass
function is taken as uniform: 𝑝

𝐿
= 1/6, for 𝐿 = 0, 1, 2, . . . , 5.

Figure 1 shows the effect of 𝑁 on 𝜌
 for the above described

BMAP/PH/1/N queue where𝑁 varies from 2 to 28. We have
conducted this experiment two times to judge the effect of
queue-length dependent multiple vacations over normal
multiple vacations. Firstly, we assume that the rest of the
vacation time distributions 𝑉

𝑖
(1 ≤ 𝑖 ≤ 𝑁), which are not

given above, are the same as service time distribution given
above. Secondly, we consider 𝑉

𝑖
= 𝑉

0
(1 ≤ 𝑖 ≤ 𝑁). The reason

behind the above assumption is that for the case of queue-
length dependent multiple vacation when the system is
empty, server stays longer time in vacation, whereas vacation
duration is much smaller when any customer presents at the
starting point of a vacation.

In Figure 1, for the case of queue-length dependent
multiple vacation queue, as buffer space increases, the model
behaves as infinite-buffer queue. It is obvious that a finite-
buffer queue behaves like the corresponding infinite-buffer
queue as the buffer size increases. Consequently, 𝜌 asymp-
totically approaches towards 𝜌. We have used our method
described in Section 3.1 to evaluate service completion and
vacation termination epoch probabilities for BMAP/PH/1/N
model. After that we have evaluated the quantity 𝜌



=

0.216029 which closely matches with 𝜌 (upto four decimal
places) when 𝑁 = 28. Moreover, one may note that for the
case of normalmultiple vacationmodel as𝑁 increases,𝜌 also
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Figure 2:𝑁 versus PBL
𝐴
.

approaches towards 𝜌 with taking lesser value than queue-
length dependent multiple vacation queue.

In Figure 2, we have plotted the blocking probability
of an arbitrary customer against 𝑁 in the above described
BMAP/PH/1/N for above described queue-length dependent
vacation policy as stated in Figure 1. It is observed that as
𝑁, increase blocking probabilities asymptotically approach
towards zero for both the cases of queue-length dependent
multiple vacations and normal multiple vacations. PBL

𝐴
is

slightly higher for the case of normal multiple vacations
than queue-length dependent multiple vacations for any 𝑁.
One may observe from these experiments that queueing
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Figure 4: 𝑁 versus �̂� versus blocking probability of an arbitrary
customer.

system behaves quite differently for the case of queue-length
dependent multiple vacations.

In Figure 3, we have plotted the total expected cost per
unit of time against different values of 𝑁 and the maximum
limit (�̂�) for the number of customers to be served in a
busy period for the above described BMAP/PH/1/N queue
in Figure 1. 𝑁 varies from 5 to 30, and �̂� is taking values 3,
4 and 5. The limit mass function is taken as uniform, that
is, 𝑝

𝐿
= 1/(�̂� + 1), for 𝐿 = 0, 1, 2, . . . , �̂�. Various associated

costs are defined as 𝐶
ℎ

= 10.3, 𝐶
𝑓

= 20.4, 𝐶
𝑜
= 50.6,

𝐶
𝑠
= 20.3, 𝐶

𝑑
= 10.9, and 𝐶

𝐿
= 20.1. One can observe

from, the figure that as 𝑁 increases, the total expected cost
also increases irrespective of different values of �̂�.

In Figures 4 and 5, we have plotted the blocking prob-
ability of an arbitrary customer and the total expected
cost per unit of time against different values of 𝑁 and
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Figure 5:𝑁 versus �̂� versus 𝐹(𝑁, �̂�).

�̂� in a BMAP/PH/1/N queue with queue-length dependent
multiple vacations as described in Figure 3. For both Figures
4 and 5, �̂� is taking values 3, 4 and 5 as described in Figure 3.
Here, 𝑁 varies from 5 to 50. The BMAP representation is
taken as D

0
= [

−1.5125 0.750

0.875 −1.025
], D

3
= D

5
= [

0.076250 0.0000

0.012500 0.002500
],

and D
18

= [
0.610000 0.000000

0.100000 0.020000
] where 𝜆∗

= 7.6, 𝜆
𝑔
= 0.5, and

D
1
,D

2
, andD

𝑗
(6 ≤ 𝑖 ≤ 17, 𝑖 ≥ 19) are null matrices of order

2. The service and queue-length dependent vacation time
distributions are the same as described in Figure 1. As a result,
traffic intensity (𝜌) is equal to 1.368381. The associated costs
for Figure 5 are defined the same as Figure 3. From Figure 4,
it can be observed that as 𝑁 increases from 5 to 30, the
blocking probabilities of an arbitrary customer decrease for
any value of �̂�. But as𝑁, increases further PBL

𝐴
also relatively

increase. On the other, hand in Figure 5, 𝑁 increases and
the total expected cost also linearly increase for any value
of �̂�. Therefore, one may conclude that the queueing system
studied in this paper shows locally interesting behaviour with
variations of its model parameters.

Finally, in Figure 6, we have conducted experiments on
BMAP/D/1/N queues under queue-length dependent mul-
tiple vacations as described in Figure 1. BMAP arrival is
taken exactly same as we have taken in Figure 1. Here the
service as well as vacation time distributions are taken as
non-PH distributions. We have conducted this experiment
with two service time distributions. The first service time is
taken as deterministic with 𝐸(𝑆

1
) = 0.180050 and 𝑆

∗

1
(𝜃) =

𝑒
−0.180050𝜃. The second service time is also deterministic with
𝐸(𝑆

2
) = 0.100757 and 𝑆

∗

2
(𝜃) = 𝑒

−0.100757𝜃. Therefore, the
corresponding traffic intensities are 𝜌 = 𝜆

∗

𝐸(𝑆
1
) = 0.216060

and 𝜌 = 𝜆
∗

𝐸(𝑆
2
) = 0.120908. The vacation time is taken

as Gamma distribution with 𝐸(𝑉
0
) = 1.242509 and 𝑉∗

0
(𝜃) =

(𝜇/𝜇 + 𝜃)
𝛼, where 𝛼 = 3.7 and 𝜇 = 𝛼/𝐸(𝑉

0
) = 2.977845. We

take the maximum value of the limit �̂� = 5 and the limit mass
function is taken as uniform: 𝑝

𝐿
= 1/6, for 𝐿 = 0, 1, 2, . . . , 5.

Figure 6 shows the effect of 𝑁 on 𝜌
 for the above described

BMAP/D
1
/1/N and BMAP/D

2
/1/N queue where 𝑁 varies
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from 2 to 25. We have conducted this experiments for queue-
length dependent multiple vacations.We assume that the rest
of the vacation time distributions 𝑉

𝑖
(1 ≤ 𝑖 ≤ 𝑁), which are

not given above, are the same as service time distributions as
given above. Since service and vacation time distributions are
non-PH they cannot be represented as phase-type (PH) dis-
tribution. Therefore, A

𝑛
may be calculated using (20). Using

similarmethod,V
𝑛,𝑘
’s may be obtained. After that using these

A
𝑛
and V

𝑛,𝑘
various state probabilities are calculated using

the procedure described in Section 3. Figure 6 shows exactly
similar behaviour as Figure 1. That is, as 𝑁 increases, 𝜌
asymptotically approaches toward 𝜌. The above facts to some
extent support our analytical as well as numerical results.

6. Conclusions and Future Scope

In this paper, we have successfully analyzed the BMAP/G/1/N
queue with state-dependent vacations and P-limited service.
We have suggested a procedure to obtain the steady-state dis-
tributions of the number of customers in the systemat various
epochs. However, the analysis of the corresponding infinite-
buffer queue is an interesting as well as complex problem
as it appears tedious to apply matrix-analytic formalism for
solving this problem. One may be interested in other kinds
of vacation policies, for example, gated or gated limited (G-
limited) or G-limited with limit variations and so forth.These
problems are left for future investigations.
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