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This paper presentsmodifications to the stochastic stability lemmawhich is thenused to estimate the convergence rate andpersistent
error of the linear Kalman filter online without using knowledge of the true state. Unlike previous uses of the stochastic stability
lemma for stability proof, this new convergence analysis technique considers time-varying parameters, which can be calculated
online in real-time tomonitor the performance of the filter.Through simulation of an example problem, the newmethodwas shown
to be effective in determining a bound on the estimation error that closely follows the actual estimation error. Different cases of
assumed process and measurement noise covariance matrices were considered in order to study their effects on the convergence
and persistent error of the Kalman filter.

1. Introduction

Since its introduction in 1960, the linear Kalman filter (LKF)
[1] has been used widely in industry. When the LKF is
implemented in real-time applications, it is often difficult
to quantify the performance of the filter without access
to some reference “truth.” Offline simulations can provide
some indication of the filter performance; however accurate
mathematical models are not always available. For the LKF,
there are two primary sources of error in the estimation:
initialization error and stochastic errors due to the process
and measurement noise. In the early stages of the filter, the
initialization error is dominant, and it takes some amount
of time for the estimated state to converge to the true
state from this incorrect initial state. After the initial error
convergence, the errors due to the noise terms remain,
resulting in “persistent” errors. Because of these types of error,
there is a need to analyze the performance of the LKF online
by quantifying the convergence rate and persistent error
bounds of the real system. Such a tool could benefit many
safety or performance critical systems, such as the aircraft
health management system. Existing techniques for online
performance analysis of the LKF include outlier detection
[2], performance reliability prediction [3], and confidence

bounds from the covariance matrix; for example, see [4].
Confidence bounds can also be established through use of
the Chebyshev inequality [5], although these bounds tend to
be too large for practical use [6]. Some other investigations
for confidence bounds on the Kalman filter consider the
non-Gaussian case using enhancements to the Chebyshev
inequality [6] or the Kantorovich inequality [7]. The work
presented herein offers a novel onlinemethod formonitoring
the performance of the LKF by providing an upper bound on
the estimation error.

This work was inspired by previous investigations of
the stability and convergence properties of Kalman filters.
Early continuous-time LKF stability work derived conditions
for stability of the homogeneous (no noise) equations [8]
and different causes of divergence [9]. For discrete-time
systems, first upper and lower bounds were derived for the
error covariance matrix [10]. Then, it was determined that
stochastic controllability and observability of the systemwere
sufficient conditions to prove asymptotic stability of the
homogenous equations [11, 12]. Later, after some comments
in [13, 14], corrections were provided for the calculations of
the error covariance bounds [15]. This work was expanded
to handle singular state transition matrices [16] and consider
convergence properties of the algebraic Riccati equation
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[17] and parameter identification [18]. Lyapunov stability
methods were later applied to the LKF equations as an alter-
native means to demonstrate stability of the homogeneous
equations [19]. More recently, the conditions for stability of
the discrete-timeKalman filter for linear time-invariant (LTI)
systems were evaluated with respect to perturbations in the
initial error covariance [20]. This existing work provided a
necessary basis for investigating the convergence and persi-
stent error properties of the LKF for stochastic systems.

An important and useful tool for analyzing the stochastic
stability of a system is the stochastic stability lemma [21,
22]. This lemma has been used to approach the stability
of the extended Kalman Filter (EKF) [23] and later for a
general class of nonlinear filters including EKF and unscented
Kalman filter (UKF) [24, 25]. A common problem with exist-
ing convergence analysis techniques for nonlinear state esti-
mators is extremely loose bounds on the system and noise
matrices, leading to very conservative andunrealistic require-
ments on the initial error and noise of the system [23]. A
method for the relaxation of these conditions for EKF was
considered in a related work [26]. Using the stochastic sta-
bility lemma, these works [23, 26] perform an Offline pre-
diction of the stability of the state estimation. This process
involves the calculation of a convergence rate and persistent
error which establish an upper bound on the estimation error.

In addition to its previous uses for nonlinear systems,
the stochastic stability lemma can also be used to establish
important results for the LKF. Since the LKF is an adaptive
process even for linear time-invariant (LTI) systems, it beco-
mes useful to analyze the convergence rate and persistent
error as a function of time. Motivated by this idea, the
stochastic stability lemma is reconsidered here, andmodifica-
tions are presented within to handle the time-varying nature
of the LKF. Using this modified stochastic stability lemma,
the convergence properties of the LKF are evaluated, thus
providing a more realistic bound on the estimation error.
Determining a bound on the estimation error is useful for
applications where a reference “truth” value is not available
for validation.This technique provides an upper boundon the
filter performance, which can be used to represent the worst
case scenario for the LKF estimation results. The purpose
of this paper is to present the modified stochastic stability
lemma, develop means of calculating an online bound of the
estimation error of the LKF, quantify the convergence rate of
the LKF, and offer some insight into the effects of different
assumed values of the noise covariance matrices. This work
also provides a foundation for future nonlinear stochastic
state estimation convergence analysis.

The rest of this paper is organized as follows. In Section 2
the LKF equations are defined. In Section 3, the derivation
of the modified stochastic stability lemma is presented.
Section 4 utilizes the modified stochastic stability lemma
from Section 3 to analyze the convergence of the LKF.
Section 5 presents the convergence analysis of an example
LKF problem. Finally, the conclusions are given in Section 4.

Throughout this paper, ‖ ⋅ ‖ denotes the Euclidean norm
of vectors, 𝐸[𝑥] is the expected value of 𝑥, 𝐸[𝑥 | 𝑦] is the
expected value of 𝑥 conditioned on 𝑦, I denotes an identity
matrix of appropriate dimensions, 𝜆min and 𝜆max denote the

minimum and maximum eigenvalues of a matrix, the matrix
inequality A > B implies that A − B is positive definite, and
similarly A ≥ B implies that A − B is positive semidefinite.

2. Linear Kalman Filter Equations

Consider a discrete-time linear stochastic state space system
of the following form:

x𝑘 = F𝑘−1x𝑘−1 + w𝑘−1,

y𝑘 = H𝑘x𝑘 + k𝑘,
(1)

where x is the state vector, y is the output vector, F and H
are system matrices, and wk−1 and vk are the process and
measurement noise vectors that are zero-mean, white, uncor-
related and have assumed covariance matrices Q𝑘−1 and R𝑘,
respectively. For this system, the LKF can be implemented
using the following standard set of equations [27]:

x̂𝑘|𝑘−1 = F𝑘−1x̂𝑘−1,

P𝑘|𝑘−1 = F𝑘−1P𝑘−1F
𝑇

𝑘−1
+Q𝑘−1,

x̂𝑘 = x̂𝑘|𝑘−1 + K𝑘 (y𝑘 −H𝑘x̂𝑘|𝑘−1) ,

P𝑘 = (I − K𝑘H𝑘)P𝑘|𝑘−1 = (P
−1

𝑘|𝑘−1
+H𝑇
𝑘
R−1
𝑘
H𝑘)
−1

,

K𝑘 = P𝑘|𝑘−1H
𝑇

𝑘
(H𝑘P𝑘|𝑘−1H

𝑇

𝑘
+ R𝑘)

−1

= P𝑘H
𝑇

𝑘
R−1
𝑘
,

(2)

where P is the error covariance matrix and K is the Kalman
gainmatrix. In order to analyze the convergence of the LKF, it
is important to understand its error dynamics. Defining the
error in the a posteriori state estimate as x̃𝑘 = x𝑘 − x̂𝑘 and
substituting in for the estimated state from (2) gives

x̃𝑘 = x𝑘 − F𝑘−1x̂𝑘−1 − K𝑘 (y𝑘 −H𝑘F𝑘−1x̂𝑘−1) . (3)

Inserting the output vector definition from (1) gives

x̃𝑘 = x𝑘 − F𝑘−1x̂𝑘−1 − K𝑘 (H𝑘x𝑘 + k𝑘 −H𝑘F𝑘−1x̂𝑘−1) . (4)

Collecting terms reduces the error dynamics to

x̃𝑘 = (I − K𝑘H𝑘) (x𝑘 − F𝑘−1x̂𝑘−1) − K𝑘k𝑘. (5)

Substituting the definition of the state vector from (1) leads to

x̃𝑘 = (I − K𝑘H𝑘) (F𝑘−1x𝑘−1 + w𝑘−1 − F𝑘−1x̂𝑘−1) − K𝑘k𝑘. (6)

Recognizing the state error at 𝑘 − 1 reduces the estimation
error dynamics to the following form:

x̃𝑘 = (I − K𝑘H𝑘) (F𝑘−1x̃𝑘−1 + w𝑘−1) − K𝑘k𝑘. (7)

Remark 1. This form of the estimation error is one possibility
of representing the error dynamics. An autoregressive form
of quantifying the estimation error is discussed in [28, 29].
Another interesting possibility for estimation error quantifi-
cation is presented in [6].
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3. Modified Stochastic Stability Lemma

The basis of this convergence analysis is the stochastic stabi-
lity lemma [21, 22], which is given as follows.

Lemma 2 (stochastic stability lemma). If there exists a sto-
chastic process V(𝜁𝑘) with the following properties:

V1, V2, 𝜇 > 0, 0 < 𝛼 ≤ 1,

V1
󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩
2
≤ 𝑉 (𝜁𝑘) ≤ V2

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩
2
,

𝐸 [𝑉 (𝜁𝑘) | 𝜁𝑘−1] − 𝑉 (𝜁𝑘−1) ≤ 𝜇 − 𝛼V (𝜁k−1) ,

(8)

then the random variable 𝜁𝑘 is exponentially bounded in mean
square with probability one, as in

𝐸 [
󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩
2
] ≤

V2
V1
𝐸 [
󵄩󵄩󵄩󵄩𝜁0
󵄩󵄩󵄩󵄩
2
] (1 − 𝛼)

𝑘
+
𝜇

V1

𝑘−1

∑
𝑖=0

(1 − 𝛼)
𝑖
, (9)

where 𝛼 is the convergence rate and V1, V2, and 𝜇, are constants.
The proof for this lemma is provided in [22]. This lemma has
been used to determine stability properties of the EKF in [23]. A
modified version of this lemma is presented here which includes
time-varying parameters.

Lemma 3 (modified stochastic stability lemma). Assume that
there is a stochastic process V(𝜁𝑘) and parameters bk, v0, 𝜇k > 0
and 0 < 𝛼k ≤ 1 such that the following inequalities are satisfied
for all k:

𝑉 (𝜁0) ≤ V0
󵄩󵄩󵄩󵄩𝜁0
󵄩󵄩󵄩󵄩
2
, (10)

𝑏𝑘
󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩
2
≤ 𝑉 (𝜁𝑘) , (11)

𝐸 [𝑉 (𝜁𝑘) | 𝜁𝑘−1] − 𝑉 (𝜁𝑘−1) ≤ 𝜇𝑘−1 − 𝛼𝑘−1𝑉 (𝜁𝑘−1) ; (12)

then the random variable 𝜁𝑘 is bounded in mean square with
probability one by the following inequality:

𝐸 [
󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩
2
] ≤

V0
𝑏𝑘
𝐸 [
󵄩󵄩󵄩󵄩𝜁0
󵄩󵄩󵄩󵄩
2
]

𝑘−1

∏
𝑖=0

(1 − 𝛼𝑖)

+
1

𝑏𝑘

𝑘−1

∑
𝑖=0

[

[

𝜇𝑘−𝑖−1

𝑖

∏
𝑗=1

(1 − 𝛼𝑘−𝑗)
]

]

.

(13)

Proof. An important property of expectations from statistics
is central to this proof [30]

𝐸 [𝐸 [𝑋 | 𝑌]] = 𝐸 [𝑋] , (14)

which can be extended for conditional expectations to

𝐸 [𝐸 [𝑋 | 𝑌] | 𝑍] = 𝐸 [𝑋 | 𝑍] . (15)

Taking the conditional expectation of (12) with respect to 𝜁𝑘−2
gives

𝐸 [𝐸 [𝑉 (𝜁𝑘) | 𝜁𝑘−1] | 𝜁𝑘−2]

≤ 𝐸 [𝜇𝑘−1 + (1 − 𝛼𝑘−1) 𝑉 (𝜁𝑘−1) | 𝜁𝑘−2] ,
(16)

which can be simplified using (15)

𝐸 [𝑉 (𝜁𝑘) | 𝜁𝑘−2] ≤ 𝜇𝑘−1 + (1 − 𝛼𝑘−1) 𝐸 [𝑉 (𝜁𝑘−1) | 𝜁𝑘−2] .

(17)

This method can be applied recursively for 𝑘 − 3, 𝑘 − 4, . . . , 0,
thus giving

𝐸 [𝑉 (𝜁𝑘) | 𝜁0] ≤ 𝑉 (𝜁0)

𝑘−1

∏
𝑖=0

(1 − 𝛼𝑖)

+

𝑘−1

∑
𝑖=0

[

[

𝜇𝑘−𝑖−1

𝑖

∏
𝑗=1

(1 − 𝛼𝑘−𝑗)
]

]

.

(18)

Taking the expectation of this inequality and applying (14)
gives

𝐸 [𝑉 (𝜁𝑘)] ≤ 𝐸 [𝑉 (𝜁0)]

𝑘−1

∏
𝑖=0

(1 − 𝛼𝑖)

+

𝑘−1

∑
𝑖=0

[

[

𝜇𝑘−𝑖−1

𝑖

∏
𝑗=1

(1 − 𝛼𝑘−𝑗)
]

]

.

(19)

Taking the expectation of (10) gives

𝐸 [𝑉 (𝜁0)] ≤ V0𝐸 [
󵄩󵄩󵄩󵄩𝜁0
󵄩󵄩󵄩󵄩
2
] , (20)

which can be inserted into (19), thus giving

𝐸 [𝑉 (𝜁𝑘)] ≤ V0𝐸 [
󵄩󵄩󵄩󵄩𝜁0
󵄩󵄩󵄩󵄩
2
]

𝑘−1

∏
𝑖=0

(1 − 𝛼𝑖)

+

𝑘−1

∑
𝑖=0

[

[

𝜇𝑘−𝑖−1

𝑖

∏
𝑗=1

(1 − 𝛼𝑘−𝑗)
]

]

.

(21)

Similarly for the lower bound, the expected value is taken for
(11), and the result is used to obtain

𝑏𝑘𝐸 [
󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩
2
] ≤ 𝐸 [𝑉 (𝜁𝑘)]

𝐸 [𝑉 (𝜁𝑘)] ≤ V0𝐸 [
󵄩󵄩󵄩󵄩𝜁0
󵄩󵄩󵄩󵄩
2
]

𝑘−1

∏
𝑖=0

(1 − 𝛼𝑖)

+

𝑘−1

∑
𝑖=0

[

[

𝜇𝑘−𝑖−1

𝑖

∏
𝑗=1

(1 − 𝛼𝑘−𝑗)
]

]

.

(22)

which is rearranged to obtain the final result in (13).

Remark 4. It is important to note the differences between
Lemmas 2 and 3. In Lemma 3, the terms 𝜇 and 𝛼 are time-
varying quantities, whereas for Lemma 2, these terms were
both considered as constants with respect to the discrete-
time, 𝑘. Additionally, the bounds for the stochastic process
are treated differently. The upper bound of the process is
considered only for the initial time step, while the lower
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bound is considered as a time-varying quantity. The useful-
ness of Lemma 3 is not for stability analysis, but for the online
monitoring of convergence and estimation error bounds.The
consideration of time-varying parameters is the key to the
following online convergence and error analysis.

4. Online Convergence and Error Analysis

This section considers a new approach to analyzing the
convergence and estimation error of the LKF in real-time.
Using Lemma 3, the main result of this paper can be stated.

Theorem 5 (Kalman filter convergence theorem). Consider a
linear stochastic system using the LKF equations as described
in Section 2. Let the following assumptions hold.

(1) The systemmatrix,F𝑘, is nonsingular (invertible) for all
k.

(2) The assumed initial covariance is bounded by

x̃𝑇
0
P−1
0
x̃0 ≤ V0

󵄩󵄩󵄩󵄩x̃0
󵄩󵄩󵄩󵄩
2
. (23)

(3) The state error covariance matrix is bounded by the
following inequality for all k:

x̃𝑇
𝑘
P−1
𝑘
x̃𝑘 ≥ 𝑏𝑘

󵄩󵄩󵄩󵄩x̃𝑘
󵄩󵄩󵄩󵄩
2
. (24)

(4) The assumed process and measurement noise covari-
ance matrices are conservative; that is,

Q𝑘−1 ≥ 𝐸 [w𝑘−1w
𝑇

𝑘−1
] , (25)

R𝑘 ≥ 𝐸 [v𝑘v
𝑇

𝑘
] . (26)

Then the expected value of the estimation error is bounded in
mean square with probability one by

𝐸 [
󵄩󵄩󵄩󵄩x̃𝑘
󵄩󵄩󵄩󵄩
2
] ≤

V0
𝑏𝑘
𝐸 [
󵄩󵄩󵄩󵄩x̃0
󵄩󵄩󵄩󵄩
2
]

𝑘−1

∏
𝑖=0

(1 − 𝛼𝑖)

+
1

𝑏𝑘

𝑘−1

∑
𝑖=0

[

[

𝜇𝑘−𝑖−1

𝑖

∏
𝑗=1

(1 − 𝛼𝑘−𝑗)
]

]

,

(27)

where the time varying parameters 𝛼𝑘−1, 𝜇𝑘−1, and 𝑏𝑘 are given
by

𝛼𝑘−1 = 𝜆min [(P𝑘|𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1)

−1

× (Q𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1) ] ,

(28)

𝜇𝑘−1 = Tr {(P𝑘|𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1)

−1

× (Q𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1) } ,

(29)

𝑏𝑘 = 𝜆min (P
−1

𝑘
) . (30)

Proof. The proof of this theorem is detailed in the following
sections.

Remarks. (1)The bound in (23) only matters for the assumed
initial covariance matrix. Since this has a known value, the
constant V0 should be selected as the minimum eigenvalue of
the inverse of the assumed initial covariance matrix and this
bound will be automatically satisfied.

(2) It is worth noting in (24) that if the error covari-
ance approaches infinity (divergence), then the term 𝑏𝑘 will
approach zero, which would lead to an infinite bound on the
estimation error, thus indicating divergence of the filter as
expected. For a stable system, however, the error covariance
matrix has an upper bound, which can be determined from
the stochastic controllability and observability properties of
the system [11, 15].

(3)Theparameters 𝛼 and 𝜇 are both functions of the same
matrix, where 𝛼 is the minimum eigenvalue and 𝜇 is the trace
of the matrix. Since the eigenvalues of this matrix lie between
0 and 1 (the a priori covariance is always greater than or equal
to the process noise covariance matrix) and recalling that the
trace of a matrix is equal to the sum of its eigenvalues [31],
the parameter 𝜇 will satisfy 0 < 𝛼𝑘−1 < 𝜇𝑘−1 < 𝑛 for all
𝑘, where 𝑛 is the number of states in the filter. From here, it
is interesting to note that increasing the parameter 𝛼, which
corresponds to the convergence of the stochastic process, will
in turn also increase the parameter 𝜇, which corresponds to
the persistent error bound due to noise. This introduces a
tradeoff in convergence and persistent error, which can be
tuned through the selection of the process and measurement
noise covariance matrices.

(4) Using Lemma 3 for analysis of the LKF convergence
leads to three important time-varying parameters: 𝛼𝑘, 𝜇𝑘,
and 𝑏𝑘. The parameter 𝛼𝑘 represents the convergence of the
stochastic process, as defined in the following section by
(31), while the parameter 𝑏𝑘 represents the convergence of
the error covariance. The parameter 𝜇𝑘 corresponds to the
persistent error bound on the filter due to the process and
measurement noise. That is, in (27) it is shown that the
initial error term will vanish as 𝑘 increases, thus leaving the
term containing 𝜇𝑘 which contains the persistent response.
This makes sense because as a LKF progresses in time,
eventually the performance will converge within a region
determined from the process and measurement noise, since
these phenomena do not disappear with time. Together, these
three parameters determine a bound on the convergence
and persistent error of the filter using (27). Due to the
time-varying nature of these parameters, the bound must be
determined online and therefore cannot provide an Offline
prediction of the filter convergence as in [23, 26].

The proof of Theorem 5 is provided next.

4.1. Defining and Decomposing the Estimation Error Analysis.
As recommended in other works, for example, [19, 23],
a candidate Lyapunov function is selected to define the
stochastic process using a quadratic form of the estimation
error and inverse error covariance matrix, as in

𝑉 (x̃𝑘) = x̃𝑇
𝑘
P−1
𝑘
x̃𝑘. (31)
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Note that this function is used in the context of Lemma 3, not
using traditional Lyapunov stability theorems; therefore it is
only being used as a tool for analyzing the convergence, not
to prove the stability of the filter. Inserting the error dynamics
from (7) into this function gives

𝑉 (x̃𝑘) = [(I − K𝑘H𝑘) (F𝑘−1x̃𝑘−1 + w𝑘−1) − K𝑘v𝑘]
𝑇

× P−1
𝑘
[(I − K𝑘H𝑘) (F𝑘−1x̃𝑘−1 + w𝑘−1) − K𝑘v𝑘] .

(32)

Taking the conditional expectation with respect to x̃𝑘−1 and
using the assumption that the process and measurement
noise are uncorrelated give

𝐸 [𝑉 (x̃𝑘) | x̃𝑘−1] = Γ
𝑥

𝑘
+ Γ
𝑤

𝑘
+ Γ

V
𝑘
, (33)

Γ
𝑥

𝑘
≜ x̃𝑇
𝑘−1

F𝑇
𝑘−1
(I − K𝑘H𝑘)

𝑇P−1
𝑘
(I − K𝑘H𝑘) F𝑘−1x̃𝑘−1, (34)

Γ
𝑤

𝑘
≜ 𝐸 [w𝑇

𝑘−1
(I − K𝑘H𝑘)

𝑇P−1
𝑘
(I − K𝑘H𝑘)w𝑘−1] , (35)

Γ
V
𝑘
≜ 𝐸 [v𝑇

𝑘
K𝑇
𝑘
P−1
𝑘
K𝑘v𝑘] . (36)

Now the problem of analyzing the LKF estimation error has
been divided into three parts: the homogeneous problem in
(34), the process noise problem in (35), and themeasurement
noise problem in (36). The homogeneous problem considers
the deterministic part of the filter, that is, no noise. The pro-
cess and measurement noise problems consider the effects of
the stochastic uncertainty in the prediction andmeasurement
equations, respectively. Each of these three parts is considered
separately in the following sections.

4.2. The Homogeneous Problem. The homogeneous part of
the problem is defined by (34). This part of the problem is
related to the convergence rate of the filter. For this part of
the analysis, a bound is desired in the form

Γ
𝑥

𝑘
≤ (1 − 𝛼𝑘−1) 𝑉 (x̃𝑘−1) . (37)

This inequality is desired as it is the assumption given by (12)
ignoring for now the noise terms and assuming that 𝜇𝑘 = 0
for all 𝑘. Substituting in for (31) and (34) gives

x̃𝑇
𝑘−1

F𝑇
𝑘−1
(I − K𝑘H𝑘)

𝑇P−1
𝑘
(I − K𝑘H𝑘) F𝑘−1x̃𝑘−1

≤ (1 − 𝛼𝑘−1) x̃
𝑇

𝑘−1
P−1
𝑘−1

x̃𝑘−1.
(38)

This scalar inequality is equivalent to the matrix inequality

F𝑇
𝑘−1
(I − K𝑘H𝑘)

𝑇P−1
𝑘
(I − K𝑘H𝑘) F𝑘−1 ≤ (1 − 𝛼𝑘−1)P

−1

𝑘−1
.

(39)

The following relationship can be derived from the LKF
equations in (2):

I − K𝑘H𝑘 = P𝑘P
−1

𝑘|𝑘−1
. (40)

Substituting (40) into (39) gives

F𝑇
𝑘−1

P−1
𝑘|𝑘−1

P𝑘P
−1

𝑘|𝑘−1
F𝑘−1 ≤ (1 − 𝛼𝑘−1)P

−1

𝑘−1
. (41)

Taking the inverse of this inequality gives

F−1
𝑘−1

P𝑘|𝑘−1P
−1

𝑘
P𝑘|𝑘−1F

−𝑇

𝑘−1
≥ (1 − 𝛼𝑘−1)

−1P𝑘−1. (42)

Note that this operation requires that the system matrix, F,
be nonsingular for all 𝑘 (assumption (1)). The covariance
matrices are invertible because they are positive definite by
definition. Starting from the covariance prediction equation
in (2) and rearranging give

P𝑘−1 = F−1
𝑘−1
(P𝑘|𝑘−1 −Q𝑘−1) F

−𝑇

𝑘−1
. (43)

Substituting this equation into the matrix inequality yields

F−1
𝑘−1

P𝑘|𝑘−1P
−1

𝑘
P𝑘|𝑘−1F

−𝑇

𝑘−1

≥ (1 − 𝛼𝑘−1)
−1F−1
𝑘−1
(P𝑘|𝑘−1 −Q𝑘−1) F

−𝑇

𝑘−1
.

(44)

Now, the system matrix can be removed from the inequality

P𝑘|𝑘−1P
−1

𝑘
P𝑘|𝑘−1 ≥ (1 − 𝛼𝑘−1)

−1
(P𝑘|𝑘−1 −Q𝑘−1) . (45)

The covariance update equation from (2) is used to relate the
a posteriori covariance and a priori covariance, as in

P𝑘|𝑘−1 (P
−1

𝑘|𝑘−1
+H𝑇
𝑘
R−1
𝑘
H𝑘)P𝑘|𝑘−1

≥ (1 − 𝛼𝑘−1)
−1
(P𝑘|𝑘−1 −Q𝑘−1) .

(46)

Rearranging this inequality results in the following simplifi-
cations:

(1 − 𝛼𝑘−1) (P𝑘|𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1) ≥ P𝑘|𝑘−1 −Q𝑘−1,

P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1

− 𝛼𝑘−1 (P𝑘|𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1) ≥ −Q𝑘−1,

𝛼𝑘−1 (P𝑘|𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1)

≤ Q𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1,

𝛼𝑘−1I ≤ (P𝑘|𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1)

−1

× (Q𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1) .

(47)

Therefore the time-varying parameter, 𝛼, can be determined
as the minimum eigenvalue of the matrix, as in (28). From
the covariance prediction equation in (2), it is clear that the a
priori covariance is greater than the process noise covariance
matrix; therefore 𝛼 is always between 0 and 1. Note that
increasing Q will increase 𝛼. Alternatively, increasing R will
decrease𝛼. If the parameter𝛼 is selected as in (28), the desired
inequality (37) is satisfied, thus satisfying the homogeneous
part of the problem. Next, the process noise is considered.

4.3. The Process Noise Problem. For the process noise prob-
lem, the quantity of interest is given by (35). Since this is a
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scalar equation, the trace can be taken without changing the
value

Γ
𝑤

𝑘
= Tr {Γ𝑤

𝑘
} = Tr {𝐸 [w𝑇

𝑘−1
(I − K𝑘H𝑘)

𝑇P−1
𝑘

× (I − K𝑘H𝑘)w𝑘−1]} .
(48)

Using the trace property ofmultiplication reordering [31] and
removing the deterministic terms from the expectation yield

Γ
𝑤

𝑘
= Tr {(I − K𝑘H𝑘)

𝑇P−1
𝑘
(I − K𝑘H𝑘) 𝐸 [w𝑘−1w

𝑇

𝑘−1
]} . (49)

Using (40) simplifies the equation to

Γ
𝑤

𝑘
= Tr {P−1

𝑘|𝑘−1
P𝑘P
−1

𝑘|𝑘−1
𝐸 [w𝑘−1w

𝑇

𝑘−1
]} . (50)

Inserting the covariance update equation from (2) gives

Γ
𝑤

𝑘
= Tr {P−1

𝑘|𝑘−1
(P−1
𝑘|𝑘−1

+H𝑇
𝑘
R−1
𝑘
H𝑘)
−1

P−1
𝑘|𝑘−1

𝐸 [w𝑘−1w
𝑇

𝑘−1
]} ,

(51)

which simplifies to

Γ
𝑤

𝑘
= Tr {(P𝑘|𝑘−1 + P𝑘|𝑘−1H

𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1)

−1

𝐸 [w𝑘−1w
𝑇

𝑘−1
]} .

(52)

Since the process noise covariance matrix can be chosen
freely for the LKF, it is assumed that the assumed process
noise covariance matrix is greater than the actual covariance
of the process noise, as in (25).This bound ismotivated by the
idea that it is better to assume greater rather than less noise
than there actually is in the system. This leads to the bound
on the process noise term

Γ
𝑤

𝑘
≤ Tr {(P𝑘|𝑘−1 + P𝑘|𝑘−1H

𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1)

−1

Q𝑘−1} . (53)

While increasing Q was shown to increase the convergence
rate in the previous section, it is clear here that this increase
in convergence comes at the expense of a larger bound on the
process noise term. This selection of Q becomes a tradeoff
between the convergence and the accuracy of the estimate;
that is, assuming an unnecessarily large Q will lead to faster
convergence but larger persistent errors of the filter due
to process noise. Next, the measurement noise problem is
considered.

4.4. The Measurement Noise Problem. For the measurement
noise problem, the quantity of interest is given by (36). Since
this is a scalar equation, the trace can be taken without
changing the value

Γ
V
𝑘
= Tr {ΓV

𝑘
} = Tr {𝐸 [v𝑇

𝑘
K𝑇
𝑘
P−1
𝑘
K𝑘v𝑘]} . (54)

Using the trace property ofmultiplication reordering [31] and
removing the deterministic terms from the expectation yield

Γ
V
𝑘
= Tr {K𝑇

𝑘
P−1
𝑘
K𝑘𝐸 [v𝑘v

𝑇

𝑘
]} . (55)

Using the second equation for the Kalman gain yields

Γ
V
𝑘
= Tr {R−1

𝑘
H𝑘P𝑘H

𝑇

𝑘
R−1
𝑘
𝐸 [v𝑘v

𝑇

𝑘
]} . (56)

Inserting the covariance update equation from (2) gives the
relationship in terms of the a priori covariance

Γ
V
𝑘
= Tr {R−1

𝑘
H𝑘(P
−1

𝑘|𝑘−1
+H𝑇
𝑘
R−1
𝑘
H𝑘)
−1

H𝑇
𝑘
R−1
𝑘
𝐸 [v𝑘v

𝑇

𝑘
]} .

(57)

Using the matrix inversion lemma [32], this term can be
rewritten as

Γ
V
𝑘
= Tr {[R−1

𝑘
− (R𝑘 +H𝑘P𝑘|𝑘−1H

𝑇

𝑘
)
−1

] 𝐸 [v𝑘v
𝑇

𝑘
]} . (58)

Similarly as for the process noise, the assumed measurement
noise covariance matrix is selected as an upper bound on
the actual measurement noise covariance, as in (26), which
determines the bound for the measurement noise term

Γ
V
𝑘
≤ Tr {[R−1

𝑘
− (R𝑘 +H𝑘P𝑘|𝑘−1H

𝑇

𝑘
)
−1

]R𝑘} . (59)

This inequality can be simplified to the following form:

Γ
V
𝑘
≤ Tr {(R𝑘 +H𝑘P𝑘|𝑘−1H

𝑇

𝑘
)
−1

H𝑘P𝑘|𝑘−1H
𝑇

𝑘
} . (60)

From here, it is shown that increasing the assumed mea-
surement noise covariance matrix, R, will in fact lead to a
smaller bound on the estimation error due to measurement
noise. Now that each part of the problem has been considered
separately, the results are combined and Lemma 3 is applied.

4.5. Final Result from theModified Stochastic Stability Lemma.
Combining the results from the previous sections gives the
following inequality:

𝐸 [𝑉 (x̃𝑘) | x̃𝑘−1]

≤ (1 − 𝛼𝑘−1) 𝑉 (x̃𝑘−1)

+ Tr {(P𝑘|𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1)

−1

Q𝑘−1}

+ Tr {(R𝑘 +H𝑘P𝑘|𝑘−1H
𝑇

𝑘
)
−1

H𝑘P𝑘|𝑘−1H
𝑇

𝑘
} ,

(61)

which is equivalent to (12) with

𝜇𝑘−1 = Tr {(P𝑘|𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1)

−1

Q𝑘−1}

+ Tr {(R𝑘 +H𝑘P𝑘|𝑘−1H
𝑇

𝑘
)
−1

H𝑘P𝑘|𝑘−1H
𝑇

𝑘
} .

(62)

This term can be simplified further. First the trace property
of multiplication reordering [31] is used to obtain

𝜇𝑘−1 = Tr {(P𝑘|𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1)

−1

Q𝑘−1

+H𝑇
𝑘
(R𝑘 +H𝑘P𝑘|𝑘−1H

𝑇

𝑘
)
−1

H𝑘P𝑘|𝑘−1} .
(63)
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Then, applying the matrix inversion lemma [32] gives

𝜇𝑘−1 = Tr {(P𝑘|𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1)

−1

Q𝑘−1

+ [P−1
𝑘|𝑘−1

− P−1
𝑘|𝑘−1

×(P−1
𝑘|𝑘−1

+H𝑇
𝑘
R−1
𝑘
H𝑘)
−1

P−1
𝑘|𝑘−1

]P𝑘|𝑘−1} .
(64)

Further simplification yields

𝜇𝑘−1 = Tr {(P𝑘|𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1)

−1

Q𝑘−1

+I − (P𝑘|𝑘−1 + P𝑘|𝑘−1H
𝑇

𝑘
R−1
𝑘
H𝑘P𝑘|𝑘−1)

−1

P𝑘|𝑘−1} .
(65)

Then, combining the terms gives (29).Thus, the inequality in
(12) has been satisfied.

In order to apply Lemma 3, the inequalities (10) and (11)
also need to be satisfied.These inequalities are guaranteed by
the assumptions (23) and (24) in Theorem 5. Thus, the nec-
essary conditions for Lemma 3 have been satisfied; therefore
the estimation error of the LKF is bounded in mean square
with probability one, and the bound is given by (27). This
completes the proof of Theorem 5. In the following section,
a LKF example is provided to illustrate the usefulness of
Theorem 5 for LKF convergence analysis.

5. An Illustrative Example

To demonstrate the convergence analysis method from
Section 4, a simple LKF example is presented. This example
problem was adapted from Example 5.1 in [27] to include
process noise. The system equations are defined in the form
of (1) with system matrices defined by

F𝑘 = F =
[
[
[
[

[

1 𝑇
𝑇
2

2

0 1 𝑇

0 0 1

]
]
]
]

]

,

H𝑘 = H = [1 0 0]

(66)

and the true process and measurement noise covariance
matrices are given by

𝐸 [w𝑘w
𝑇

𝑘
] = 10

−8I,

𝐸 [v𝑘v
𝑇

𝑘
] = 10

−8
,

(67)

where 𝑇 is the sampling time, which for this example is
considered to be 0.02. The initial conditions are assumed to
be

x̂0 = [1.5 1.5 −0.3]
𝑇
,

P0 = I,
(68)

Table 1: Assumed covariance matrices.

Case number Q R
1 𝐸 [w

𝑘
w𝑇
𝑘
] 𝐸 [v

𝑘
v𝑇
𝑘
]

2 100𝐸 [w𝑘w𝑇𝑘 ] 𝐸 [v𝑘v𝑇𝑘 ]
3 𝐸 [w𝑘w𝑇𝑘 ] 100𝐸 [v𝑘v𝑇𝑘 ]
4 100𝐸 [w

𝑘
w𝑇
𝑘
] 100𝐸 [v

𝑘
v𝑇
𝑘
]

while the true initial state for the system is actually

x0 = [1 0.5 0.2]
𝑇
. (69)

Note that this considers a case of reasonably large initializa-
tion error.

In order to apply Theorem 5, certain assumptions need
to be satisfied. From the definition of F, it is clear that this
matrix is invertible. Four different cases of assumed process
and measurement covariance matrices were considered, as
summarized in Table 1.

It is shown in Table 1 that (25) and (26) are satisfied.
Note that these cases vary the assumed noise properties,
not the actual noise. The true noise covariance matrices are
given by (67) for all cases. The value for the initial Lyapunov
function upper bound, V0, is calculated from the assumed
initial covariance matrix with (23). Additionally, the values
for the time-varying convergence rate, 𝛼𝑘, noise parameter,
𝜇𝑘, and Lyapunov function bound 𝑏𝑘 are defined using (28),
(29), and (24), respectively.These values are calculated online
at each time step of the filter. Using these equations, the
convergence properties can be calculated online with (27).

For the given example, the presented convergence analy-
sis technique is applied, and the results are given as follows.
Since the initial covariance is the identity matrix, V0 = 1. The
time-varying convergence and error parameters are shown in
Figure 1 for each of the considered cases of assumed process
and measurement noise covariance.

The parameter 𝛼𝑘 represents the convergence rate of the
stochastic process, 𝜇𝑘 represents the persistent error of the
stochastic process, and 𝑏𝑘 represents the convergence of the
error covariance. From these time-varying parameters, the
bound on the expected value of the norm of the estimation
error squared can be determined from (27). This bound is
verified with respect to the actual estimation error which was
determined from simulation as shown in Figure 2.

It is shown in Figure 2 that the estimation error does
not exceed the theoretical bounds. The online bounds are
relatively close to the estimation error, thus providing a
reasonable guide to the convergence and steady-state error
of the filter performance. This is useful because a reference
truth is not available to evaluate the performance of a filter in
most practical applications.This method provides a means of
calculating an upper bound on the performance of the filter
using only known values from the filtering process.

There are some interesting observations to make from
Figures 1 and 2 regarding the different noise covariance
assumptions. Case 1, which represents perfect knowledge of
the simulated noise properties, offers a very good approxima-
tion to the convergence and persistent error of the example
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Figure 1: LKF example: time-varying convergence and error param-
eters.
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Figure 2: LKF example: estimation error with bounds.

filter. Increasing the assumption on the process noise (Case
2) leads to an increase in 𝛼𝑘, but also an increase in 𝜇𝑘, as
predicted. However, this increase in assumed process noise
significantly increased the parameter 𝑏𝑘, thus leading to a
slowly converging, loose bound on the estimation error. A
similar performance bound was seen for Case 4 due to the
dominant effect of the parameter 𝑏𝑘; however the parameters
𝛼𝑘 and 𝜇𝑘 were similar to Case 1. This makes sense because
the ratio between the assumed Q and R remained the same
for Cases 1 and 4. For Case 3, increasing the assumed
measurement noise decreased the parameters 𝛼𝑘 and 𝜇𝑘
as expected, but the parameter 𝑏𝑘 also decreased, further
decreasing the convergence of the estimation error. This lead

Online
Offline

Simulation
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1010

‖x
er

r‖
2

Discrete-time, k
100 101 102 103

Figure 3: LKF example: online versus offline estimation error
bounds.

to a slower converging bound, but a tighter bound on the
persistent error. This demonstrates a tradeoff in the selection
of the measurement noise covariance, which could be used
for filter tuning depending on the application and desired
convergence properties.

The predicted estimation error bound from Offline anal-
ysis [23, 26] using Lemma 2 is also provided as a reference
to demonstrate the effectiveness of using this new online
method. To relate the time-varying parameters to previous
Offline work using Lemma 2 [23, 26], the following relations
are used:

𝛼 = min (𝛼𝑘) ,

𝜇 = max (𝜇𝑘) ,

V1 = min (𝑏𝑘) .

(70)

The bound from Case 1 is used for this comparison, as shown
in Figure 3.

While the Offline estimation error bound is valid, it is
extremely loose and does not provide a realistic portrayal
of the convergence of the estimation error. This shows that
the presented online method is useful for more closely
determining the convergence and persistent error of the LKF
but is limited in that it cannot predict these bounds prior to
the filtering process and it cannot be used for Offline stability
analysis.

6. Conclusions

This paper presented a modified stochastic stability lemma
and a Kalman filter convergence theorem, which are new
tools that can be used to quantify the performance of
Kalman filters online. Through an example, it was shown
that this new convergence analysis method is effective in
determining an upper bound on the performance of the
LKF. Also, useful information about the convergence of the
particular LKF algorithm can be calculated. This analysis
is applied during the filtering process, thus providing the
capability for real-time convergence and performance moni-
toring. Different cases of noise covariance assumptions were
considered, showing that increasing the assumed process
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noise tends to significantly slow the convergence of the filter
and increase the persistent error bound, while increasing the
assumed measurement noise tends to slow the convergence
but decreases the persistent error bound. Future work will
involve extending this technique to nonlinear systems.
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