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Stochastic linear systems subjected both to Markov jumps and to multiplicative white noise are considered. In order to stabilize
such type of stochastic systems, the so-called set of generalized discrete-time algebraic Riccati equations has to be solved. The LMI
approach for computing the stabilizing symmetric solution (which is in fact the equilibrium point) of this system is studied. We
construct a newmodification of the standard LMI approach, andwe showhow to apply the newmodification. Computer realizations
of all modifications are compared. Numerical experiments are givenwhere the LMImodifications are numerically compared. Based
on the experiments the main conclusion is that the new LMI modification is faster than the standard LMI approach.

1. Introduction

In this paper we investigate general stochastic algebraic Ric-
cati equations which are related to LQ control models for
stochastic linear systems with multiplicative white noise
and markovian jumping. We consider a stochastic system
described by

𝑑𝑦 (𝑡) = (𝐴
0
(𝜂 (𝑡)) 𝑦 (𝑡) + 𝐵

0
(𝜂 (𝑡)) 𝑢 (𝑡)) 𝑑𝑡

+

𝑘

∑

𝑗=1

(𝐴
𝑗
(𝜂 (𝑡)) 𝑦 (𝑡) + 𝐵

𝑗
(𝜂 (𝑡)) 𝑢 (𝑡)) 𝑑𝑊

𝑗
(𝑡)

𝑦 (0) = 𝑦
0
,

𝑧 (𝑡) = 𝐶 (𝜂 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝜂 (𝑡)) 𝑢 (𝑡) ,

(1)

where 𝑊(𝑡) = (𝑊
1
(𝑡), . . . ,𝑊

𝑘
(𝑡))
𝑇 is a 𝑘-dimensional stan-

dard Brownian motion with 𝑡 ∈ [0, +∞) and 𝑊(0) =

0, defined by a filtered probability space (Ω,F,F
𝑡
, 𝑃). In

addition, 𝜂(𝑡), 𝑡 ≥ 0 is a right continuous homogeneous
Markov chainwith the state space the set D = {1, . . . , 𝑁} and
the probability transition matrix 𝑃(𝑡) = (𝑝

𝑖𝑗
(𝑡)) = 𝑒

𝑄𝑡, 𝑡 ≥ 0,
and 𝑄 = (𝑞

𝑖𝑗
) with ∑

𝑘

𝑗=1
𝑞
𝑖𝑗

= 0, 𝑖 ∈ D, and 𝑞
𝑖𝑗

≥ 0 if
𝑖 �= 𝑗. It is assumed that the 𝑊(𝑡) and 𝜂(𝑡) are independent

stochastic processes and 𝑃{𝜂(0) = 𝑖} > 0 for all 𝑖 ∈ D. The
state vector 𝑥 is a 𝑛 × 1 real vector, 𝑢 denotes the vector of𝑚
control variables, and 𝑧 is the regulated output vector with 𝑝

components. The matrix coefficients 𝐴
𝑗
, 𝐵
𝑗
, 0 ≤ 𝑗 ≤ 𝑘, 𝐶(𝑖),

𝐷(𝑖), 𝑖 ∈ D are constant matrices of appropriate dimensions
with real elements.

The stochastic systems with multiplicative white noise
naturally arise in control problems of linear uncertain sys-
tems with stochastic uncertainty. It is important for applica-
tions to find a stabilizing controller for the above stochastic
system (for more details see [1, 2]). For this purpose it is
enough to compute the stabilizing solution to the following
stochastic generalized Riccati algebraic equations:

T
𝑖
(X) := 𝐴

0
(𝑖)
𝑇
𝑋(𝑖) + 𝑋 (𝑖) 𝐴

0
(𝑖) +

𝑘

∑

𝑗=1

𝐴
𝑗
(𝑖)
𝑇
𝑋 (𝑖) 𝐴

𝑗
(𝑖)

+ 𝑄 (𝑖) +

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
𝑋(𝑗)

− 𝑆(𝑖, 𝑋)
𝑇
[𝑅 (𝑖, 𝑋)]

−1
𝑆 (𝑖, 𝑋) = 0

with 𝑅 (𝑖, 𝑋) > 0, 𝑖 ∈ D,

(2)
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𝑅 (𝑖, 𝑋) = 𝐷(𝑖)
𝑇
𝐷 (𝑖) +

𝑘

∑

𝑗=1

𝐵
𝑗
(𝑖)
𝑇
𝑋 (𝑖) 𝐵

𝑗
(𝑖) ,

𝑄 (𝑖) = 𝐶
𝑇
(𝑖) 𝐶 (𝑖) ,

𝑆 (𝑖, 𝑋) = 𝐵
0
(𝑖)
𝑇
𝑋(𝑖) +

𝑘

∑

𝑗=1

𝐵
𝑗
(𝑖)
𝑇
𝑋 (𝑖) 𝐴

𝑗
(𝑖) + 𝐷(𝑖)

𝑇
𝐶 (𝑖) .

(3)

The concepts of stabilizing solution of the Riccati-type
equation (2) and of stabilizability for the triple (A,B, 𝑄),
where as usual A = (𝐴

0
, 𝐴
1
, . . . , 𝐴

𝑘
),B = (𝐵

0
, 𝐵
1
, . . . , 𝑏

𝑘
),

are defined in a standard way (see [1]).
Applying Theorem 4.9 of Dragan and Morozan [2]

we deduce that system (2) has a unique stabilizing
solution (𝑋(1), 𝑋(2), . . . , 𝑋(𝑁)) with [𝐷(𝑖)

𝑇
𝐷(𝑖) +

∑
𝑘

𝑗=1
𝐵
𝑗
(𝑖)
𝑇
𝑋(𝑖)𝐵

𝑗
(𝑖)] > 0. The control

𝑢 (𝑡) = −[𝑅 (𝑖, 𝑋)]
−1

𝑆 (𝑖, 𝑋) 𝑥 (𝑡) (4)

stabilizes system (1). An e1ective iterative convergent algo-
rithm to compute these stabilizing solutions is presented in
[3].

Let us consider the special case of (1) where D =

{1}. The stochastic linear quadratic model studied by Yao
et al. in [4] is obtained. In this model the special func-
tional 𝐸∫

∞

0
[𝑥(𝑡)
𝑇
𝑄𝑥(𝑡) + 𝑢(𝑡)

𝑇
𝑅𝑢(𝑡)] 𝑑𝑡 is minimized (see

equation (8) from [4]). The matrices 𝑄 and 𝑅 are so-called
cost weighting matrices. It is allowed that the cost weighting
matrices for the state and the control are singular, that is,𝑄 =

𝐶
𝑇
𝐶 and 𝑅 = 𝐷

𝑇
𝐷 are singular matrices. Such type models

belong to a wide class of indefinite SLQmodels. Applications
of the indefinite LQproblems can be found in [5] for pollution
control, [4, 6–9] in which problem appears in field of the
mathematical finance. In this case the stochastic LQ problem
can be solved via the following stochastic algebraic Riccati
equation (the symmetric matrix 𝑃 being the unknown one):

T (𝑃) := 𝐴
𝑇
𝑃 + 𝑃𝐴 + 𝑄 +

𝑘

∑

𝑗=1

𝐶
𝑗

𝑇
𝑃𝐶
𝑗

− (𝐵
𝑇
𝑃 +

𝑘

∑

𝑗=1

𝐷
𝑗

𝑇
𝑃𝐶
𝑗
)

𝑇

× [

[

𝑅 +

𝑘

∑

𝑗=1

𝐷
𝑗

𝑇
𝑃𝐷
𝑗
]

]

−1

(𝐵
𝑇
𝑃 +

𝑘

∑

𝑗=1

𝐷
𝑗

𝑇
𝑃𝐶
𝑗
) = 0

with 𝑅 +

𝑘

∑

𝑗=1

𝐷
𝑗

𝑇
𝑃𝐷
𝑗
> 0.

(5)

The coefficient matrices of (5) 𝐴, 𝐵, 𝑄, 𝑅, 𝐶
𝑗
, and

𝐷
𝑗
for 𝑗 = 1, . . . , 𝑘 are given ones of sizes 𝑛 × 𝑛, 𝑛 × 𝑝, 𝑛 × 𝑛,

𝑚×𝑚, 𝑛×𝑛, and 𝑛×𝑚, respectively, and 𝑄 denotes the state
matrix, and 𝑅 is the control matrix. For a deterministic case
(𝐶
𝑗
= 𝐷
𝑗
= 0, 𝑗 = 1 . . . , 𝑘) it is assumed that the matrix 𝑄 is

positive semidefinite and 𝑅 is a positive definite one.

Here the computation of stabilizing solution of system
(1) is explicitly expressed in terms of the solutions of some
linear matrix inequalities (LMI). The paper is devoted to
the LMI approach and its modifications. The LMI approach
is very important for the practice and real-world problems.
Very often the LMI approach is an only method for solving a
given class of problems.The application of the LMI approach
to the solution of the optimal control problems is studied
in [10–14]. We introduce a modification set of nonlinear
equations equivalent to (1) which lead us to the new convex
optimization problems.The LMI approach applied to the new
optimization problem gives a fast way to find the stabilizing
solution to (1). We will compare the numerical effectiveness
of the introduced LMI solvers. Numerical simulations are
used to demonstrate the performance of the considered
solvers.

The notations used in this note are standard. Here, 𝑋 ≥ 0

(or 𝑋 > 0); it is denoted that 𝑋 = 𝑋
𝑇 is positive semidefinite

(or positive definite) and ‖ ⋅ ‖
2
denotes the spectral matrix

norm.

2. The LMI Approach to
the Generalized Stochastic
Riccati Equations

Rami and Zhou [15] have investigated the stochastic algebraic
Riccati equation (5) in case 𝑘 = 1, where the numerical
method to compute the maximal solution to (5) with 𝑘 =

1 is derived. The method is based on the solution of a
convex optimization problem over linear matrix inequalities.
The LMI approach is considered as powerful tool in opti-
mization. Further on, the authors in [4] have developed a
computational approach to such SLQ models (𝑘 > 1) using
an LMI formulation. The LMI optimization is a successful
method for solving (5) in this case. Although we cannot
solve the stochastic algebraic Riccati equation we can still
find the optimal control law via the LMI approach. It is well
known [16] that if the stochastic system is stabilizable, in
the mean square sense, the LMI optimization method always
yields the maximal positive semidefinite solution to (5). The
problemof stability and optimality of SLQmodel (5) with 𝑘 =

1 (the case of one-dimensional Brownian motion) is treated
by [7]. Moreover, this study is continued in terms of the
multidimensional model (𝑘 > 1) by [4]. The optimization
problem associated with (5) is

max ⟨𝐼
𝑛
, 𝑃⟩

×
(
(

(

𝑄 + 𝐴
𝑇
𝑃 + 𝑃𝐴

+

𝑘

∑
𝑗=1

𝐶j
𝑇
𝑃𝐶
𝑗

(𝐵
𝑇
𝑃 +

𝑘

∑
𝑗=1

𝐷
𝑗

𝑇
𝑃𝐶
𝑗
)

𝑇

𝐵
𝑇
𝑃 +

𝑘

∑
𝑗=1

𝐷
𝑗

𝑇
𝑃𝐶
𝑗

𝑅 +

𝑘

∑
𝑗=1

𝐷
𝑗

𝑇
𝑃𝐷
𝑗

)
)

)

≥ 0
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𝑅 +

𝑘

∑

𝑗=1

𝐷
𝑗

𝑇
𝑃𝐷
𝑗
> 0

𝑃 = 𝑃
𝑇
,

(6)

with respect to the variable 𝑃 which is a symmetric matrix.
Under notations

𝑊(𝑖,𝑋) = (𝐴
0 (𝑖) + 0.5𝑞

𝑖𝑖
𝐼)
𝑇
𝑋 (𝑖)

+ 𝑋 (𝑖) (𝐴
0
(𝑖) + 0.5𝑞

𝑖𝑖
𝐼)

= 𝐴
0
(𝑖)
𝑇
𝑋 (𝑖) + 𝑋 (𝑖) 𝐴

0
(𝑖) ,

Π
1
(𝑖, 𝑋) =

𝑘

∑

𝑗=1

𝐴
𝑗
(𝑖)
𝑇
𝑋(𝑖) 𝐴

𝑗
(𝑖) + ∑

𝑗�=𝑖
𝑞
𝑖𝑗
𝑋(𝑗) ,

(7)

the optimization problem associated with the set of equations
(2) is

max
𝑁

∑

𝑖=1

⟨𝐼
𝑛
, 𝑋 (𝑖)⟩

subject to 𝑖 ∈ D

×(
𝑊(𝑖, 𝑋) + Π

1
(𝑖, 𝑋) + 𝐶(𝑖)

𝑇
𝐶 (𝑖) 𝑆(𝑖, 𝑋)

𝑇

𝑆 (𝑖, 𝑋) 𝑅 (𝑖, 𝑋)
)≥0

𝑅 (𝑖, 𝑋) > 0

𝑋 (𝑖) = 𝑋(𝑖)
𝑇
.

(8)

In this paper we investigate the numerical solvability
of the semidefinite programming problem (8) for different
types of matrices 𝐷(𝑖)

𝑇
𝐷(𝑖), 𝑖 ∈ D. However, the numerical

experiments for finding the maximal solution of (2) show
that the LMI method (8) is slowly working for different types
of matrices 𝐷(𝑖)

𝑇
𝐷(𝑖) in the case 𝑘 = 1. Here we introduce

a new modification to accelerate the LMI method for solv-
ing the optimization problem (8). In many applications of
control system theory the following fact is exploited. If any
matrix 𝑅 = 𝑅

𝑇 is singular or zero and the matrix 𝐵 has
the full rank, then there exists a symmetric matrix 𝑍 such
that 𝑅 + 𝐵

𝑇
𝑍𝐵 is a positive definite one. In our investigation

the matrices 𝐵(𝑖) = (

𝐵
1
(𝑖)

𝐵
2
(𝑖)

...
𝐵
𝑘
(𝑖)

) have the full rank. Thus, we

replace 𝑋(𝑖) = 𝑍(𝑖) + 𝑌(𝑖) in 𝑅(𝑖, 𝑋). It is obtained

𝑅 (𝑖, 𝑍 + 𝑌) = 𝐷(𝑖)
𝑇
𝐷 (𝑖) +

𝑘

∑

𝑗=1

𝐵
𝑗(𝑖)
𝑇
(𝑍 (𝑖) + 𝑌 (𝑖)) 𝐵𝑗 (𝑖)

= �̃� (𝑖) +

𝑘

∑

𝑗=1

𝐵
𝑗
(𝑖)
𝑇
𝑌 (𝑖) 𝐵

𝑗
(𝑖) ,

(9)

where 𝑌(𝑖) is the new unknown matrix. We apply this
conclusion to set of equations (2). We construct the
matrices 𝑍(1), . . . , 𝑍(𝑁) such that all matrices

�̃� (𝑖) = 𝐷(𝑖)
𝑇
𝐷 (𝑖) +

𝑘

∑

𝑗=1

𝐵
𝑗(𝑖)
𝑇
𝑍 (𝑖) 𝐵𝑗 (𝑖) (10)

are positive definite ones for 𝑖 ∈ D. Then, the following set of
Riccati equations is obtained regarding 𝑌(1), . . . , 𝑌(𝑁):

W
𝑖
(Y) := 𝑊 (𝑖, 𝑌) + 𝑄 (𝑖) − 𝑆(𝑖, 𝑌)

𝑇
[�̃� (𝑖, 𝑌)]

−1

× 𝑆 (𝑖, 𝑌) = 0, 𝑖 ∈ D,

(11)

where

𝑄 (𝑖) = 𝐶(𝑖)
𝑇
𝐶 (𝑖) + 𝐴

0
(𝑖)
𝑇
𝑍 (𝑖) + 𝑍 (𝑖) 𝐴

0
(𝑖)

+

𝑘

∑

𝑗=1

𝐴
𝑗(𝑖)
𝑇
𝑍 (𝑖) 𝐴𝑗 (𝑖) + ∑

𝑗�=𝑖
𝑞
𝑖𝑗
𝑍 (𝑗)

�̃� (𝑖, 𝑌) = �̃� (𝑖) +

𝑘

∑

𝑗=1

𝐵
𝑗(𝑖)
𝑇
𝑌 (𝑖) 𝐵𝑗 (𝑖)

𝑆 (𝑖, 𝑌) = 𝐵
0
(𝑖)
𝑇
𝑌 (𝑖) +

𝑘

∑

𝑗=1

𝐵
𝑗
(𝑖)
𝑇
𝑌 (𝑖) 𝐴

𝑗
(𝑖) + �̃� (𝑖) ,

�̃� (𝑖) = 𝐵
0
(𝑖)
𝑇
𝑍 (𝑖) +

𝑘

∑

𝑗=1

𝐵
𝑗
(𝑖)
𝑇
𝑍 (𝑖) 𝐴

𝑗
(𝑖) + 𝐷(𝑖)

𝑇
𝐶 (𝑖) .

(12)

Thus, the new optimization problem over LMI conditions
related to (11) is derived:

max
𝑁

∑

𝑖=1

⟨𝐼
𝑛
, 𝑌 (𝑖)⟩

subject to 𝑖 ∈ D

× (

𝑊(𝑖, 𝑌) + Π
1
(𝑖, 𝑌) + 𝑄 (𝑖) 𝑆(𝑖, 𝑌)

𝑇

𝑆 (𝑖, 𝑌) �̃� (𝑖, 𝑌)

) ≥ 0

�̃� (𝑖, 𝑌) > 0

𝑌 (𝑖) = 𝑌(𝑖)
𝑇
.

(13)

Our experience on computations with LMI approach
shows that there are examples where 𝑌(1), . . . , 𝑌(𝑁) are
not positive semidefinite, but the matrices �̃�(𝑖, 𝑌) are still
positive definite. In this reason we can consider a practical
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implementation of (13) where the constrain �̃�(𝑖, 𝑌) > 0 is
omitted. This leads us to the following problem:

max
𝑁

∑

𝑖=1

⟨𝐼
𝑛
, 𝑌 (𝑖)⟩

subject to 𝑖 ∈ D

× (
𝑊(𝑖, 𝑌) + Π

1
(𝑖, 𝑌) + 𝑄 (𝑖) 𝑆 (𝑖, 𝑌)

𝑇

𝑆 (𝑖, 𝑌) �̃� (𝑖, 𝑌)
) ≥ 0

𝑌 (𝑖) = 𝑌(𝑖)
𝑇
.

(14)

3. Numerical Experiments

We carry out numerical simulations to present the numerical
behaviour of introduced methods. In our experiments we
apply three semidefinite programming problems (8), (13), and
(14) for solving the stochastic algebraic Riccati equations (2).
Our experiments are executed in MATLAB on an 2,16GHz
Intel(R) Dual CPU computer. The solutions of above opti-
mization problems are obtained under the MATLAB lmi
solverswhich are executed with relative accuracy tol = 1.0 𝑒−

9.
For all examples we take 𝑄(1) = 𝑄(2) = 𝑄(3) to be diag-

onalmatrices with entries (1, 1, . . . , 1, 0, 0).We have executed
a set of examples with different values of 𝑛 and constant
weighting matrices 𝑅(1) = 𝑅(2) = 𝑅(3) = zeros (3, 3). We
compare all iterations introducing the following parameters:
“m It”—the biggest number of iterations, “av It”— the average
number of iterations. To determine the numbers “m It” and
“av It” we count those examples of each size for which the
corresponding iteration converges.

We consider a family of examples in case 𝑁 = 3,
𝑘 = 2, and 𝑛 = 8, . . . , 12, 15, 20, where the coefficient real
matrices are given as follows: 𝐴

0
(𝑖),𝐴
1
(𝑖),𝐴
2
(𝑖), 𝐵
0
(𝑖), 𝐵
1
(𝑖),

𝐵
2
(𝑖), 𝐿(𝑖), 𝑖 = 1, 2, 3 were constructed using the MATLAB

notations

𝐴
0
(1) =

randn (𝑛, 𝑛)

10
− eye (𝑛, 𝑛) ;

𝐴
0
(2) =

randn (𝑛, 𝑛)

10
− eye (𝑛, 𝑛) ;

𝐴
0
(3) =

randn (𝑛, 𝑛)

10
− eye (𝑛, 𝑛) ;

𝐴
1 (1) =

randn (𝑛, 𝑛)

10
;

𝐴
1
(2) =

randn (𝑛, 𝑛)

10
;

𝐴
1
(3) =

randn (𝑛, 𝑛)

10
;

𝐴
2 (1) =

randn (𝑛, 𝑛)

10
;

𝐴
2
(2) =

randn (𝑛, 𝑛)

10
;

𝐴
2
(3) =

randn (𝑛, 𝑛)

10
;

𝐵
0 (1) = 2 ∗ rand (𝑛, 3) ;

𝐵
0
(2) = 2 ∗ rand (𝑛, 3) ;

𝐵
0
(3) = 2 ∗ rand (𝑛, 3) ;

𝐵
1
(1) =

randn (𝑛, 3)

100
;

𝐵
1 (2) =

randn (𝑛, 3)

100
;

𝐵
1 (3) =

randn (𝑛, 3)

100
;

𝐵
2
(1) =

randn (𝑛, 3)

100
;

𝐵
2
(2) =

randn (𝑛, 3)

100
;

𝐵
2 (3) =

randn (𝑛, 3)

100
;

𝐿 (1) = zeros (𝑛, 3) ;

𝐿 (2) = zeros (𝑛, 3) ;

𝐿 (3) = zeros (𝑛, 3) .
(15)

In our definitions the functions randn(p,k) and rand(p,k)
return a p-by-k matrix of pseudorandom scalar values (for
more information see theMATLAB description).The follow-
ing transition probability matrix (see [3])

(𝑞
𝑖𝑗
) = (

0.333 0.6 0.6

0.333 0.3 0.1

0.333 0.1 0.3

) (16)

is applied for all examples.
For our purpose we have executed hundred examples of

each value of 𝑛 for the test.Themaximal number of iterations
“m It” and average number of iterations “av It” of each size
for all examples needed for achieving the relative accuracy
are reported in the table. There are three columns where
the maximal errors 𝐸

𝑇
= max

1,...,100
max
𝑖=1,2,3

‖T
𝑖
(X̃)‖
2
and

𝐸
𝑊

= max
1,...,100

max
𝑖=1,2,3

‖W
𝑖
(Ỹ)‖
2
for each 𝑛 for the test

are presented. Here X̃ = (𝑋(1), 𝑋(2), 𝑋(3)) is a computed
solution to (2) via (8), and Ỹ = (𝑌(1), 𝑌(2), 𝑌(3)) is a
computed solution to (11) via (13) and (14). In addition, the
time of execution for each method in cases 𝑛 = 15 and 𝑛 =

20 is reported. Results from experiments are given in Table 1.

4. Conclusion

We have made numerical experiments for computing this
solution, and we have compared the numerical results. Our
numerical experiments confirm the effectiveness of the pro-
posed new transformations which lead us to the equivalent
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Table 1: Results from 100 runs for each value of 𝑛. 𝑍(1) = 𝑍(2) = 𝑍(3) = 0.6𝐼
𝑛
.

𝑛
LMI: (8) LMI: (13) LMI: (14)

m It av It 𝐸
𝑇

m It av It 𝐸
𝑊

m It av It 𝐸
𝑊

8 62 31.0 3.1274𝑒 − 08 62 31.5 6.9395𝑒 − 08 42 32.5 6.9395𝑒 − 08

9 54 34.5 2.7652𝑒 − 08 56 35.5 1.6774𝑒 − 08 41 31.3 6.7014𝑒 − 09

10 49 32.7 1.6131𝑒 − 08 51 34.2 2.0807𝑒 − 09 40 32.7 1.1040𝑒 − 09

11 57 34.5 1.6131𝑒 − 08 59 36.7 1.4413𝑒 − 09 46 35.7 8.7308𝑒 − 10

12 51 33.3 2.2023𝑒 − 08 53 34.9 4.2220𝑒 − 09 46 35.7 1.0796𝑒 − 09

15 47 37.7 2.4223𝑒 − 08 48 39.1 6.0639𝑒 − 09 47 34.5 6.0639𝑒 − 09

20 46 35.3 6.1281𝑒 − 08 47 35.5 4.9302𝑒 − 08 36 33.1 4.6979𝑒 − 08

CPU time for executing for 10 runs
15 59.8 s 61.2 s 39.5 s
20 170.19 s 172.6 s 117.5 s

semidefinite programming problem. We have compared the
results from the experiments in regard to number of iterations
andCPU time for executing the above optimization problems
for 𝑛 = 15, 𝑛 = 20.The solution of the optimization problems
achieves the same accuracy for different number of iterations.
The executed examples have demonstrated that the LMI
problem performances (8) and (13) require the same average
numbers of iterations (see the corresponding columns “av It”
for all tests). In addition, the LMI performance (14) requires
less number of iterations than the remaining approaches,
and it is faster than the others—see the CPU time for
execution fromTable 1.This property of (14) follows from the
structure of problem (14)—there is one inequality less than
(13). However, this property is not valid in all cases.
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