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The𝐻
∞
filtering problem for a class of discrete-time stochastic systemswith nonlinear sensor and time-varying delay is investigated.

By using the Lyapunov stability theory, sufficient conditions are proposed to guarantee the asymptotical stablity with an prescribe
𝐻
∞
performance level of the filtering error systems.These conditions are dependent on the lower and upper bounds of the discrete

time-varying delays and are obtained in terms of a linear matrix inequality (LMI). Finally, two numerical examples are provided to
illustrate the effectiveness of the proposed methods.

1. Introduction

As is well known, time delay exists commonly in many
processes due to the after-effect phenomena in their inner
dynamics, which has been recognized to be an important
source of instability and degraded performance.The presence
of time delay must be taken into account in modeling due
to the ever-increasing expectations of dynamic performance.
Therefore, time-delay systems have drawn much attention in
the last few decades, and a great number of important results
have been reported in the literature; see, for instance, [1–5]
and the references therein. For continuous-time systems, the
obtained results can be generally classified into two types:
delay-independent and delay-dependent ones. It has been
understood that the latter is generally less conservative since
the size of delays is considered, especially when time delays
are small. Compared with continuous-time systems with
time-varying delays, the discrete-time counterpart receives
relatively less attention. See, for example, [6–9] and references
therein.

In the past few years, considerable attention has been
devoted to the topic of 𝐻

∞
filtering in the past two decades,

and many significant results have been obtained [10–19]. The
exponential filtering problem is studied for discrete time-
delay stochastic systems with Markovian jump parameters
andmissingmeasurements in [20].The robust fault detection
filter problem for fuzzy Itô stochastic systems is studied
in [21]. The problem of robust 𝐻

∞
filtering for uncertain

discrete-time stochastic systems with time-varying delays is
considered in [22]. Meanwhile, in many industrial processes,
the quality and reliability of sensors often influence the per-
formance of the filters. Nonlinearity is present in almost all
real sensors in one form or another. So, the filtering problem
for a class of nonlinear discrete-time stochastic systems with
state delays is considered in [23]. The robust 𝐻

∞
filtering

problem for a class of nonlinear discrete time-delay stochastic
systems is considered in [24]. The 𝐻

∞
filtering problem for

a general class of nonlinear discrete-time stochastic systems
with randomly varying sensor delays is considered in [25].
And the filtering problem for discrete-time fuzzy stochastic
systems with sensor nonlinearities is considered in [26]. The
problem of 𝐻

∞
filtering for discrete-time Takagi-Sugeno

(T-S) fuzzy Itô stochastic systems with time-varying delay
is studied in [27]. Robust 𝐻

∞
filter design for systems
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with sector-bounded nonlinearities is considered in [28,
29]. 𝐻

∞
filtering for discrete-time systems with stochastic

incomplete measurement and mixed delays is investigated
in [30]. Recently, the 𝐻

∞
filtering problem of the time-

delayed discrete-time deterministic systems with saturation
nonlinear sensors, in which process and measurement noise
have unknown statistic characteristic but bounded energy, is
investigated in [31]. In [24, 26, 28–30], the nonlinearity for
filtering problem of systems was assumed to satisfy nonlinear
sensor, which may includes actuator saturation and sensor
saturation. It is worth mentioning that, although the system
in [31] is with nonlinear sensor, the proposed filter design
approach only considers the constant time delay, which is
not applicable to systems with time-varying delay. To the
best of the authors’ knowledge, little effort has been made
towards the 𝐻

∞
filtering of discrete-time stochastic systems

with nonlinear sensor and time-varying delay.
Motivated by the works in [20], in this paper, a delay-

dependent 𝐻
∞

performance analysis result is established for
filtering error systems. A new different Lyapunov functional
is then employed to deal with systems with nonlinear sensor
and time-varying delay. As a result, the𝐻

∞
filter is designed

in terms of linear matrix inequalities (LMIs). The resulting
filter can ensure that the error system is asymptotically
stable and the estimation error is bounded by a prescribed
level. Finally, two numerical examples are given to show the
effectiveness of the proposed method.

Throughout this paper, R𝑛 denotes the 𝑛-dimensional
Euclidean space, and R𝑛×𝑚 is the set of 𝑛 × 𝑚 real matrices.
𝐼 is the identity matrix. | ⋅ | denotes Euclidean norm for
vectors, and || ⋅ || denotes the spectral norm of matrices. 𝑁
denotes the set of all natural number, that is,𝑁 = {0, 1, 2, . . .}.
(Ω,F, {F

𝑘
}
𝑘∈𝑁

,P) is a complete probability space with a
filtration {F

𝑘
}
𝑘∈𝑁

satisfying the usual conditions.𝑀𝑇 stands
for the transpose of the matrix𝑀. For symmetric matrices𝑋
and𝑌, the notation𝑋 > 𝑌 (resp.,𝑋 ≥ 𝑌 ) means that the𝑋 −

𝑌 is positive definite (resp., positive semidefinite).∗ denotes a
block that is readily inferred by symmetry. E{⋅} stands for the
mathematical expectation operator with respect to the given
probability measureP.

2. Problem Description

Consider a class of discrete-time stochastic systems with
nonlinear sensor and time-varying delay as follows:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴
𝑑
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐵

1
V (𝑘)

+ [𝐸𝑥 (𝑘) + 𝐸
𝑑
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐵

2
V (𝑘)] 𝑤 (𝑘) ,

𝑦 (𝑘) = 𝑓 (𝐶𝑥 (𝑘)) + 𝐷V (𝑘) ,

𝑧 (𝑘) = 𝐿𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the state vector, 𝑦(𝑘) ∈ R𝑞 is the
measurable output vector, 𝑧(𝑘) ∈ R𝑟 is the state combination
to be estimated, and 𝑤(𝑘) is a real scalar process on a
probability space (Ω,F,P) relative to an increasing family
(F
𝑘
)
𝑘∈𝑁

of 𝜎-algebra F
𝑘
⊂ F generated by (𝑤(𝑘))

𝑘∈𝑁
. The

stochastic process {𝑤(𝑘)} is independent, which is assumed
to satisfy

E {𝑤 (𝑘)} = 0, E {𝑤
2

(𝑘)} = 1,

E {𝑤 (𝑖) 𝑤 (𝑗)} = 0 (𝑖 ̸= 𝑗) ,

(2)

where the stochastic variables 𝑤(0), 𝑤(1), 𝑤(2), . . . are
assumed to be mutually independent. The exogenous
disturbance signal V(𝑘) ∈ R𝑝 is assumed to belong to
𝐿
𝑒2
([0 ∞),R𝑝), 𝐴, 𝐴

𝑑
, 𝐵
1
, 𝐸, 𝐸
𝑑
, 𝐵
2
, 𝐶, 𝐷 and 𝐿 are known

real constant matrices. And the time-varying delay 𝜏(𝑘)

satisfies

𝜏
1
≤ 𝜏 (𝑘) ≤ 𝜏

2
, (3)

where 𝜏
1
and 𝜏
2
are known positive integers representing the

minimum and maximum delays, respectively.
In addition, 𝑓

𝑖
(𝜁
𝑖
) (𝑖 = 1, 2, . . . , 𝑝) are nonlinear sensor

functions. We assume that nonlinear sensor functions are
monotonically nondecreasing, bounded, and globally Lips-
chitz.That is, there exist a set of positive scalars 𝑢

𝑖
and 𝜃
𝑖
such

that [31, 32]

0 ≤
𝑓
𝑖
(𝛼) − 𝑓

𝑖
(𝛽)

𝛼 − 𝛽
≤ 𝑢
𝑖

∀𝛼, 𝛽 ∈ R, 𝑖 = 1, 2, . . . , 𝑝, (4)

−𝜃
𝑖
≤ 𝑓
𝑖
(𝜁
𝑖
) ≤ 𝜃
𝑖
, 𝑖 = 1, 2, . . . , 𝑝, (5)

where 𝑢
𝑖
is the magnification of the sensor, and 𝜃

𝑖
is the

amplitude of the sensor.
We consider the following linear discrete-time filter for

the estimation of 𝑧(𝑘):

𝑥̂ (𝑘 + 1) = 𝐴𝑥̂ (𝑘) + 𝐴
𝑑
𝑥̂ (𝑘 − 𝜏 (𝑘))

+ [𝐸𝑥̂ (𝑘) + 𝐸
𝑑
𝑥̂ (𝑘 − 𝜏 (𝑘))] 𝑤 (𝑘)

+ 𝐾 [𝑦 (𝑘) − 𝑓 (𝐶𝑥̂ (𝑘))] ,

𝑧̂ (𝑘) = 𝐿𝑥̂ (𝑘) ,

(6)

where 𝑥̂(𝑘) ∈ R𝑛 and 𝑧̂(𝑘) ∈ R𝑟 denote the estimates of 𝑥(𝑘)
and 𝑧(𝑘), respectively, and the matrix 𝐿 is constant matrix.

Remark 1. Similar to [26, 31, 32], the nonlinear sensor
satisfying (4)-(5) is also considered in this paper. It is noted
that in the previous filter, the matrix 𝐿 is assumed to be
constants in order to avoid more verbosely mathematical
derivation.

Defining 𝑒(𝑘) = 𝑥(𝑘)−𝑥̂(𝑘) and augmenting themodel (1)
to include the states of the filter (6), we obtain the following
filtering error systems:

𝑒 (𝑘 + 1) = 𝐴𝑒 (𝑘) + 𝐴
𝑑
𝑒 (𝑘 − 𝜏 (𝑘)) + 𝐵

1
V (𝑘)

+ [𝐸𝑒 (𝑘) + 𝐸
𝑑
𝑒 (𝑘 − 𝜏 (𝑘)) + 𝐵

2
V (𝑘)] 𝑤 (𝑘)

− 𝐾𝜙 (𝐶𝑒 (𝑘)) − 𝐾𝐷V (𝑘) ,

(7)

𝑧̃ (𝑘) = 𝐿𝑒 (𝑘) , (8)
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where 𝑧̃(𝑘) = 𝑧(𝑘) − 𝑧̂(𝑘), 𝜙(𝐶𝑒(𝑘)) = 𝑓(𝐶𝑥(𝑘)) − 𝑓(𝐶𝑥̂(𝑘)),
and 𝜙

𝑖
(𝐶
𝑖
𝑒(𝑘)) (𝑖 = 1, 2, . . . , 𝑝) satisfy the following condi-

tions according to (4):

0 ≤
𝜙
𝑖
(𝐶
𝑖
𝑒 (𝑘))

𝐶
𝑖
𝑒 (𝑘)

≤ 𝑢
𝑖
, (9)

where 𝐶
𝑖
is the 𝑖th row of matrix 𝐶.

The 𝐻
∞

filtering problem to be addressed in this paper
can be formulated as follows. Given discrete-time stochastic
systems (1), a prescribed level of noise attenuation 𝛾 > 0, and
any 𝑓
𝑖
(𝜁
𝑖
) (𝑖 = 1, 2, . . . , 𝑝), find a suitable filter in the form of

(6) such that the following requirements are satisfied.

(1) The filtering error systems (7)-(8) with V(𝑘) = 0 is said
to be asymptotically stable if there exists a scalar 𝑐 > 0

such that

E{

∞

∑

𝑘=0

|𝑥 (𝑘)|
2

} ≤ 𝑐E {|𝑥 (0)|
2

} , (10)

where 𝑥(𝑘) denotes the solution of stochastic systems
with initial state 𝑥(0).

(2) For the given disturbance attenuation level 𝛾 > 0

and under zero initial conditions for all V(𝑘) ∈

𝐿
𝑒2
([0 ∞),R𝑝), the performance index 𝛾 satisfies the

following inequality:

‖𝑧̃(𝑘)‖
𝑒2

< 𝛾‖V(𝑘)‖
𝑒2
. (11)

3. Main Results

3.1. Performance Analysis of𝐻
∞

Filter

Theorem 2. If there exist symmetric positive definite matrices
𝑃, 𝑄, and Υ, diagonal semipositive definite matrices 𝑇 =

diag{𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑝
} and Λ = diag{𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑝
}, a nonzero

matrix 𝐾, and a positive scalar 𝛾, such that the following LMI
is satisfied:

Γ =

[
[
[

[

Γ
11

Γ
12

Γ
13

Γ
14

∗ Γ
22

Γ
23

Γ
24

∗ ∗ Γ
33

Γ
34

∗ ∗ ∗ Γ
44

]
]
]

]

< 0, (12)

where

Γ
11

= 𝜏
21
𝑄 + Υ − 𝑃 + 𝐴

𝑇

𝑅𝐴 + 𝐸
𝑇

𝑅𝐸 + 𝐿
𝑇

𝐿,

𝜏
21

= 𝜏
2
− 𝜏
1
+ 1,

Γ
12

= 𝐴
𝑇

𝑅𝐴
𝑑
+ 𝐸
𝑇

𝑅𝐸
𝑑
,

Γ
13

= −𝐴
𝑇

𝑅𝐾 + 𝐶
𝑇

𝑈𝑇 − 𝐶
𝑇

Λ,

Γ
14

= 𝐴
𝑇

𝑅 (𝐵
1
− 𝐾𝐷) + 𝐸

𝑇

𝑅𝐵
2
,

Γ
22

= −Υ − 𝑄 + 𝐴
𝑇

𝑑
𝑅𝐴
𝑑
+ 𝐸
𝑇

𝑑
𝑅𝐸
𝑑
,

Γ
23

= −𝐴
𝑇

𝑑
𝑅𝐾,

Γ
24

= 𝐴
𝑇

𝑑
𝑅 (𝐵
1
− 𝐾𝐷) + 𝐸

𝑇

𝑑
𝑅𝐵
2
,

Γ
33

= 𝐾
𝑇

𝑅𝐾 − 2𝑇,

Γ
34

= −𝐾
𝑇

𝑅 (𝐵
1
− 𝐾𝐷) ,

Γ
44

= (𝐵
1
− 𝐾𝐷)

𝑇

𝑅 (𝐵
1
− 𝐾𝐷) + 𝐵

𝑇

2
𝑅𝐵
2
− 𝛾
2

𝐼,

(13)

and 𝑅 = 𝑃 + 2𝐶
𝑇

Λ𝑈𝐶, 𝑈 = diag{𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑝
} ≥ 0, then

the filtering error system (7) with V(𝑘) = 0 is asymptotically
stable, and the optimal 𝐻

∞
performance can be obtained by

minimizing 𝛾 over the variables 𝑃, 𝑄, Υ, 𝑇, Λ, and 𝐾, that is,

minimize 𝛾

subject to 𝑃 > 0, 𝑄 > 0, Υ > 0, 𝑇 > 0, Λ > 0.

(14)

Proof. We first establish the condition of asymptotical sta-
bility for the filtering error systems (7)-(8). Consider the
Lyapunov-Krasovskii functional candidate as follows:

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) + 𝑉

4
(𝑘) , (15)

where

𝑉
1
(𝑘) = 𝑒

𝑇

(𝑘) 𝑃𝑒 (𝑘) ,

𝑉
2
(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝜏(𝑘)

𝑒
𝑇

(𝑖) 𝑄𝑒 (𝑖) ,

𝑉
3
(𝑘) =

−𝜏
1
+1

∑

𝑗=−𝜏
2
+2

𝑘−1

∑

𝑙=𝑘+𝑗−1

𝑒
𝑇

(𝑙) 𝑄𝑒 (𝑙) ,

𝑉
4
(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝜏(𝑘)

𝑒
𝑇

(𝑖) Υ𝑒 (𝑖) ,

𝑉
5
(𝑘) = 2

𝑝

∑

𝑖=1

𝜆
𝑖
𝜙
𝑖
(𝐶
𝑖
𝑒 (𝑘)) 𝐶

𝑖
𝑒 (𝑘) .

(16)

First, we consider system (7) with V(𝑘) = 0, that is,

𝑒 (𝑘 + 1) = 𝐴𝑒 (𝑘) + 𝐴
𝑑
𝑒 (𝑘 − 𝜏 (𝑘)) − 𝐾𝜙 (𝐶𝑒 (𝑘))

+ [𝐸𝑒 (𝑘) + 𝐸
𝑑
𝑒 (𝑘 − 𝜏 (𝑘))] 𝑤 (𝑘) .

(17)
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Figure 1: The state response 𝑥(𝑘).

Calculating the difference of𝑉(𝑘) along the filtering error
system (17), we get

Δ𝑉
1
(𝑘) = 𝑒

𝑇

(𝑘 + 1) 𝑃𝑒 (𝑘 + 1) − 𝑒
𝑇

(𝑘) 𝑃𝑒 (𝑘) , (18)

Δ𝑉
2
(𝑘) =

𝑘−𝜏
1

∑

𝑖=𝑘+1−𝜏(𝑘+1)

𝑒
𝑇

(𝑖) 𝑄𝑒 (𝑖)

− 𝑒
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑄𝑒 (𝑘 − 𝜏 (𝑘)) + 𝑒
𝑇

(𝑘) 𝑄𝑒 (𝑘)

+

𝑘−1

∑

𝑖=𝑘+1−𝜏
1

𝑒
𝑇

(𝑖) 𝑄𝑒 (𝑖) −

𝑘−1

∑

𝑖=𝑘+1−𝜏(𝑘)

𝑒
𝑇

(𝑖) 𝑄𝑒 (𝑖) ,

(19)

Δ𝑉
3
(𝑘) =

−𝜏
1
+1

∑

𝑗=−𝜏
2
+2

[

[

𝑒
𝑇

(𝑘) 𝑄𝑒 (𝑘) +

𝑘−1

∑

𝑙=𝑘+𝑗

𝑒
𝑇

(𝑙) 𝑄𝑒 (𝑙)

−

𝑘−1

∑

𝑙=𝑘+𝑗−1

𝑒
𝑇

(𝑙) 𝑄𝑒 (𝑙)]

]

= (𝜏
2
− 𝜏
1
) 𝑒
𝑇

(𝑘) 𝑄𝑒 (𝑘) −

𝑘−𝜏
1

∑

𝑖=𝑘+1−𝜏
2

𝑒
𝑇

(𝑖) 𝑄𝑒 (𝑖) .

(20)

Since 𝜏
1
≤ 𝜏(𝑘) ≤ 𝜏

2
, we have

𝑘−1

∑

𝑖=𝑘+1−𝜏
1

𝑒(𝑖)
𝑇

𝑄𝑒 (𝑖) −

𝑘−1

∑

𝑖=𝑘+1−𝜏(𝑘)

𝑒(𝑖)
𝑇

𝑄𝑒 (𝑖) ≤ 0,

𝑘−𝜏
1

∑

𝑖=𝑘+1−𝜏(𝑘+1)

𝑒(𝑖)
𝑇

𝑄𝑒 (𝑖) −

𝑘−𝜏
1

∑

𝑖=𝑘+1−𝜏
2

𝑒(𝑖)
𝑇

𝑄𝑒 (𝑖) ≤ 0.

(21)

Combining (19)–(21), we have

Δ𝑉
2
(𝑘) + Δ𝑉

3
(𝑘) ≤ (𝜏

2
− 𝜏
1
+ 1) 𝑒

𝑇

(𝑘) 𝑄𝑒 (𝑘)

− 𝑒
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑄𝑒 (𝑘 − 𝜏 (𝑘)) .

(22)

Meanwhile, we have

Δ𝑉
4
(𝑘) ≤ 𝑒

𝑇

(𝑘) Υ𝑒 (𝑘) − 𝑒
𝑇

(𝑘 − 𝜏 (𝑘)) Υ𝑒 (𝑘 − 𝜏 (𝑘)) ,

(23)

Δ𝑉
5
(𝑘) = 2

𝑝

∑

𝑖=1

𝜆
𝑖
𝜙
𝑖
(𝐶
𝑖
𝑒 (𝑘 + 1)) 𝐶

𝑖
𝑒 (𝑘 + 1)

− 2𝜙
𝑇

(𝐶𝑒 (𝑘)) Λ𝐶𝑒 (𝑘) .

(24)

From condition (9), we have

2

𝑝

∑

𝑖=1

𝜆
𝑖
𝜙
𝑖
(𝐶
𝑖
𝑒 (𝑘 + 1)) 𝐶

𝑖
𝑒 (𝑘 + 1)

≤ 2

𝑝

∑

𝑖=1

𝜆
𝑖
𝑢
𝑖
𝐶
𝑖
𝑒 (𝑘 + 1) 𝐶

𝑖
𝑒 (𝑘 + 1) .

(25)

From (24)-(25), we obtain

Δ𝑉
5
(𝑘) ≤2𝑒

𝑇

(𝑘 + 1) 𝐶
𝑇

Λ𝑈𝐶𝑒 (𝑘 +1) −2𝜙
𝑇

(𝐶𝑒 (𝑘)) Λ𝐶𝑒 (𝑘) .

(26)

Combining (18), (22), (23), and (26), we have

Δ𝑉 (𝑘) = Δ𝑉
1
(𝑘) + Δ𝑉

2
(𝑘) + Δ𝑉

3
(𝑘) + Δ𝑉

4
(𝑘) + Δ𝑉

5
(𝑘)

≤ 𝑒
𝑇

(𝑘 + 1) (𝑃 + 2𝐶
𝑇

Λ𝑈𝐶) 𝑒 (𝑘 + 1)

+ 𝑒
𝑇

(𝑘) (Υ − 𝑃) 𝑒 (𝑘) + (𝜏
2
− 𝜏
1
+ 1) 𝑒

𝑇

(𝑘) 𝑄𝑒 (𝑘)

− 𝑒
𝑇

(𝑘 − 𝜏 (𝑘)) (Υ + 𝑄) 𝑒 (𝑘 − 𝜏 (𝑘))

− 2𝜙
𝑇

(𝐶𝑒 (𝑘)) Λ𝐶𝑒 (𝑘) .

(27)

From condition (9), we also have

−2𝜙
𝑖
(𝐶
𝑖
𝑒 (𝑘)) 𝑡

𝑖
[𝜙
𝑖
(𝐶
𝑖
𝑒 (𝑘)) − 𝑢

𝑖
𝐶
𝑖
𝑒 (𝑘)] ≥ 0. (28)
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Then, for 𝑇 = diag{𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑝
} ≥ 0 and 𝑈 = diag{𝑢

1
, 𝑢
2
,

. . . , 𝑢
𝑝
} ≥ 0, we get

−2𝜙
𝑇

(𝐶𝑒 (𝑘)) 𝑇𝜙
𝑇

(𝐶𝑒 (𝑘)) + 2𝜙
𝑇

(𝐶𝑒 (𝑘)) 𝑇𝑈𝐶𝑒 (𝑘) ≥ 0.

(29)

Adding the left of (29) to (27), we have

Δ𝑉 (𝑘) ≤ 𝑒
𝑇

(𝑘 + 1) (𝑃 + 2𝐶
𝑇

Λ𝑈𝐶) 𝑒 (𝑘 + 1)

+ 𝑒
𝑇

(𝑘) (Υ − 𝑃) 𝑒 (𝑘) + (𝜏
2
− 𝜏
1
+ 1) 𝑒

𝑇

(𝑘) 𝑄𝑒 (𝑘)

− 𝑒
𝑇

(𝑘−𝜏 (𝑘)) (Υ + 𝑄) 𝑒 (𝑘 − 𝜏 (𝑘))

− 2𝜙
𝑇

(𝐶𝑒 (𝑘)) Λ𝐶𝑒 (𝑘)

− 2𝜙
𝑇

(𝐶𝑒 (𝑘)) 𝑇𝜙
𝑇

(𝐶𝑒 (𝑘))

+ 2𝜙
𝑇

(𝐶𝑒 (𝑘)) 𝑇𝑈𝐶𝑒 (𝑘)

= 𝑒
𝑇

(𝑘 + 1) 𝑅𝑒 (𝑘 + 1) + 𝑒
𝑇

(𝑘) (Υ − 𝑃) 𝑒 (𝑘)

+ 𝜏
21
𝑒
𝑇

(𝑘) 𝑄𝑒 (𝑘) − 2𝜙
𝑇

(𝐶𝑒 (𝑘)) 𝑇𝜙
𝑇

(𝐶𝑒 (𝑘))

− 𝑒
𝑇

(𝑘 − 𝜏 (𝑘)) (Υ + 𝑄) 𝑒 (𝑘 − 𝜏 (𝑘))

− 2𝜙
𝑇

(𝐶𝑒 (𝑘)) Λ𝐶𝑒 (𝑘) + 2𝜙
𝑇

(𝐶𝑒 (𝑘)) 𝑇𝑈𝐶𝑒 (𝑘) .

(30)

Noting (2) and taking the mathematical expectation, we have

E {Δ𝑉 (𝑘)} ≤ E {𝑒
𝑇

(𝑘 + 1) 𝑅𝑒 (𝑘 + 1) + 𝑒
𝑇

(𝑘) (Υ − 𝑃) 𝑒 (𝑘)

+ 𝜏
21
𝑒
𝑇

(𝑘) 𝑄𝑒 (𝑘)

− 𝑒
𝑇

(𝑘 − 𝜏 (𝑘)) (Υ + 𝑄) 𝑒 (𝑘 − 𝜏 (𝑘))

− 2𝜙
𝑇

(𝐶𝑒 (𝑘)) Λ𝐶𝑒 (𝑘)

− 2𝜙
𝑇

(𝐶𝑒 (𝑘)) 𝑇𝜙
𝑇

(𝐶𝑒 (𝑘))

+2𝜙
𝑇

(𝐶𝑒 (𝑘)) 𝑇𝑈𝐶𝑒 (𝑘)}

= [𝐴𝑒 (𝑘) + 𝐴
𝑑
𝑒 (𝑘 − 𝜏 (𝑘)) − 𝐾𝜙 (𝐶𝑒 (𝑘))]

𝑇

× 𝑅 [𝐴𝑒 (𝑘) + 𝐴
𝑑
𝑒 (𝑘 − 𝜏 (𝑘)) − 𝐾𝜙 (𝐶𝑒 (𝑘))]

+ [𝐸𝑒 (𝑘) + 𝐸
𝑑
𝑒 (𝑘 − 𝜏 (𝑘))]

𝑇

× 𝑅 [𝐸𝑒 (𝑘) + 𝐸
𝑑
𝑒 (𝑘 − 𝜏 (𝑘))]

+ 𝑒
𝑇

(𝑘) (Υ − 𝑃) 𝑒 (𝑘) + 𝜏
21
𝑒
𝑇

(𝑘) 𝑄𝑒 (𝑘)

− 𝑒
𝑇

(𝑘 − 𝜏 (𝑘)) (Υ + 𝑄) 𝑒 (𝑘 − 𝜏 (𝑘))

− 2𝜙
𝑇

(𝐶𝑒 (𝑘)) Λ𝐶𝑒 (𝑘)

− 2𝜙
𝑇

(𝐶𝑒 (𝑘)) 𝑇𝜙
𝑇

(𝐶𝑒 (𝑘))

+ 2𝜙
𝑇

(𝐶𝑒 (𝑘)) 𝑇𝑈𝐶𝑒 (𝑘)

= 𝜁
𝑇

(𝑘) Γ̂𝜁 (𝑘) ,

(31)

where

𝜁
𝑇

(𝑘) = [𝑒
𝑇

(𝑘) 𝑒
𝑇

(𝑘 − 𝜏 (𝑘)) 𝜙
𝑇

(𝐶𝑒 (𝑘))] ,

Γ̂ =
[
[

[

𝜏
21
𝑄 + Υ − 𝑃 + 𝐴

𝑇

𝑅𝐴 + 𝐸
𝑇

𝑅𝐸 𝐴
𝑇

𝑅𝐴
𝑑
+ 𝐸
𝑇

𝑅𝐸
𝑑

−𝐴
𝑇

𝑅𝐾 + 𝐶
𝑇

𝑈𝑇 − 𝐶
𝑇

Λ

𝐴
𝑇

𝑑
𝑅𝐴 + 𝐸

𝑇

𝑑
𝑅𝐸 −Υ − 𝑄 + 𝐴

𝑇

𝑑
𝑅𝐴
𝑑
+ 𝐸
𝑇

𝑑
𝑅𝐸
𝑑

−𝐴
𝑇

𝑑
𝑅𝐾

−𝐾
𝑇

𝑅𝐴 + 𝑇𝑈𝐶 − Λ𝐶 −𝐾
𝑇

𝑅𝐴
𝑑

𝐾
𝑇

𝑅𝐾 − 2𝑇

]
]

]

.

(32)

Then, there exists a small scalar 𝛼 > 0 such that

Γ̂ < [

[

−𝛼𝐼 0 0

0 0 0

0 0 0

]

]

. (33)

It can be shown that LMI (12) implies that Γ̂ < 0; thus, it
follows from (33) that

E {𝑉 (𝑘 + 1)} − E {𝑉 (𝑘)} < −𝛼E {|𝑒 (𝑘)|
2

} . (34)

Hence, by summing up both sides of (34) from 0 to𝑁 for any
integer𝑁 > 1, we have

E {𝑉 (𝑁 + 1)} − E {𝑉 (0)} < −𝛼E{

𝑁

∑

𝑘=0

|𝑒 (𝑘)|
2

} (35)

which yields

E{

𝑁

∑

𝑘=0

|𝑒 (𝑘)|
2

} <
1

𝛼
[E {𝑉 (0)} − E {𝑉 (𝑁 + 1)}]

≤
1

𝛼
E {𝑉 (0)}

≤ 𝑐E {|𝑥 (0)|
2

} ,

(36)
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where 𝑐 = (1/𝛼)𝜆max(𝑃). Taking 𝑁 → ∞, it is shown
from (10) and (36) that the filtering error system (7) is
asymptotically stable for V(𝑘) = 0.

Next, we will show that the filtering error systems (7)-(8)
satisfies

‖𝑧̃(𝑘)‖
𝑒2

< 𝛾‖V(𝑘)‖
𝑒2

(37)

for all nonzero V(𝑘) ∈ 𝐿
𝑒2
([0 ∞),R𝑝). To this end, define

𝐽 (𝑁) = E{

𝑁

∑

𝑘=1

[|𝑧̃ (𝑘)|
2

< 𝛾
2

|V (𝑘)|
2

]} (38)

with any integer𝑁 > 0. Then, for any nonzero V(𝑘), we have

𝐽 (𝑁) = E{

𝑁

∑

𝑘=1

[|𝑧̃ (𝑘)|
2

− 𝛾
2

|V (𝑘)|
2

+ E {Δ𝑉 (𝑘)}]}

− E {𝑉 (𝑁 + 1)}

≤ E{

𝑁

∑

𝑘=1

[|𝑧̃ (𝑘)|
2

− 𝛾
2

|V (𝑘)|
2

+ E {Δ𝑉 (𝑘)}]}

= E {𝜁̂
𝑇

(𝑘) Γ𝜁̂ (𝑘)} ,

(39)

where

𝜁̂
𝑇

(𝑘) = [𝑒
𝑇

(𝑘) 𝑒
𝑇

(𝑘 − 𝜏 (𝑘)) 𝜙
𝑇

(𝐶𝑒 (𝑘)) V
𝑇

(𝑘)] .

(40)

It can be shown that there exist real matrices 𝑃 > 0, 𝑄 > 0,
and Υ > 0, diagonal semipositive definite matrices 𝑇 and Λ,
nonzero matrix𝐾, and scalar 𝛾 > 0 satisfying LMI (12). Since
V(𝑘) ∈ 𝐿

𝑒2
([0 ∞),R𝑝) ̸= 0, it implies that Γ < 0, and thus

𝐽(𝑁) < 0. That is, ||𝑧̃(𝑘)||
𝑒2

< 𝛾||V(𝑘)||
𝑒2
. This completes the

proof.

3.2. Design of𝐻
∞

Filter

Theorem3. Consider the discrete-time stochastic systems with
nonlinear sensor in (1), a filter of form (6), and constants 𝜏

1
and

𝜏
2
. The filtering error systems (7)-(8) is asymptotically stable

with performance 𝛾, if there exist positive definite matrices 𝑃,
Υ, and𝑄, diagonal semipositive definite matrices 𝑇 andΛ, and
matrix 𝑋 such that the following LMI is satisfied:

[
[
[
[
[
[
[
[

[

𝜏
21
𝑄 + Υ − 𝑃 + 𝐿

𝑇

𝐿 0 𝐶
𝑇

𝑈𝑇 − 𝐶
𝑇

Λ 0 𝐴
𝑇

𝑅 𝐸
𝑇

𝑅

∗ −Υ − 𝑄 0 0 𝐴
𝑇

𝑑
𝑅 𝐸

𝑇

𝑑
𝑅

∗ ∗ −2𝑇 0 −𝑋 0

∗ ∗ ∗ −𝛾
2

𝐼 𝐵
𝑇

1
𝑅 − 𝐷

𝑇

𝑋 𝐵
𝑇

2
𝑅

∗ ∗ ∗ ∗ −𝑅 0

∗ ∗ ∗ ∗ ∗ −𝑅

]
]
]
]
]
]
]
]

]

< 0. (41)

Moreover, if the previous condition is satisfied, an acceptable
state-space realization of the𝐻

∞
filter is given by

𝐾 = (𝑃 + 2𝐶
𝑇

Λ𝑈𝐶)
−𝑇

𝑋
𝑇

. (42)

Proof. By the Schur complement, LMI (12) is equivalent to

[
[
[
[
[
[
[
[
[

[

𝜏
21
𝑄 + Υ − 𝑃 + 𝐿

𝑇

𝐿 0 𝐶
𝑇

𝑈𝑇 − 𝐶
𝑇

Λ 0 𝐴
𝑇

𝑅 𝐸
𝑇

𝑅

∗ −Υ − 𝑄 0 0 𝐴
𝑇

𝑑
𝑅 𝐸

𝑇

𝑑
𝑅

∗ ∗ −2𝑇 0 −𝐾
𝑇

𝑅 0

∗ ∗ ∗ −𝛾
2

𝐼 (𝐵
1
− 𝐾𝐷)

𝑇

𝐵
𝑇

2
𝑅

∗ ∗ ∗ ∗ −𝑅 0

∗ ∗ ∗ ∗ ∗ −𝑅

]
]
]
]
]
]
]
]
]

]

< 0. (43)

By defining

𝐾
𝑇

𝑅 = 𝑋, (44)

we have LMI (41).Thefilter parameter𝐾 can be deduced from
(44). According to Theorem 2, we thus complete the proof.

Remark 4. When 𝜏
1
and 𝜏
2
are given, matrix inequality (41)

is linear matrix inequality in matrix variables 𝑃 > 0, Υ > 0,
𝑄 > 0, 𝑇 ≥ 0, Λ ≥ 0, and 𝑋, which can be efficiently solved
by the developed interior point algorithm [4]. Meanwhile, it
is easy to find the minimal attenuation level 𝛾.

In the sequel, special result for the discrete-time deter-
ministic system with nonlinear sensor and time-varying
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delay, that is to say, there is no stochastic noise:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴
𝑑
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐵

1
V (𝑘) , (45)

𝑦 (𝑘) = 𝑓 (𝐶𝑥 (𝑘)) + 𝐷V (𝑘) , (46)
𝑧 (𝑘) = 𝐿𝑥 (𝑘) . (47)

The following corollary may be obtained fromTheorem 3.

Corollary 5. Consider the discrete-time systems with nonlin-
ear sensor in (45)–(47), a filter of form (6), and constants 𝜏

1

and 𝜏
2
. The corresponding filtering error system is stable with

performance 𝛾, if there exist positive definite matrices𝑃,Υ, and
𝑄, diagonal semipositive definite matrices𝑇 andΛ, andmatrix
𝑋 such that the following LMI is satisfied:

[
[
[
[
[

[

𝜏
21
𝑄 + Υ − 𝑃 + 𝐿

𝑇

𝐿 0 𝐶
𝑇

𝑈𝑇 − 𝐶
𝑇

Λ 0 𝐴
𝑇

𝑅

∗ −Υ − 𝑄 0 0 𝐴
𝑇

𝑑
𝑅

∗ ∗ −2𝑇 0 −𝑋

∗ ∗ ∗ −𝛾
2

𝐼 𝐵
𝑇

1
𝑅 − 𝐷

𝑇

𝑋

∗ ∗ ∗ ∗ −𝑅

]
]
]
]
]

]

< 0. (48)

Moreover, if the previous condition is satisfied, an acceptable
state-space realization of the𝐻

∞
filter is given by

𝐾 = (𝑃 + 2𝐶
𝑇

Λ𝑈𝐶)
−𝑇

𝑋
𝑇

. (49)

Remark 6. When 𝜏(𝑘) = 𝜏 in system (45), this discrete-
time deterministic system model with constant time delay
has been considered in [31]. But the proposed filter design
approach only considers the constant time delay, which is not
applicable to system (45) with time-varying delay.

Remark 7. In many practical industrial processes, the quality
and reliability of sensors often influence the performance of
the filters. Nonlinearity is present in almost all real sensors in
one formor another.Therefore, in order to reduce the effect of
the sensor nonlinearity on the filter performance to the lowest
level, the nonlinear characteristics of sensors should be taken
into account when we design the filters [23, 31].

4. Numerical Example

In this section, two numerical examples are given to illustrate
the effectiveness and benefits of the proposed approach.

Example 8. Consider the following discrete-time determinis-
tic system (45)–(47) with nonlinear sensor and time-varying
delay as follows:

𝑥 (𝑘 + 1) = [

[

0.5 0.15 0.5

−0.15 −0.5 0.05

−0.05 0.1 −0.5

]

]

𝑥 (𝑘)

+ [

[

0.1 0.2 0

0.1 0.1 −0.1

0.1 0 −0.1

]

]

𝑥 (𝑘 − 𝜏 (𝑘))

+ [

[

0.5

0.5

0.5

]

]

V (𝑘) ,

𝑦 (𝑘) = 𝑓([
1 2 −1

2 −1 2
] 𝑥 (𝑘)) + [

1

1
] V (𝑘) ,

𝑧 (𝑘) = [1 1 1] 𝑥 (𝑘) ,

(50)

where the sensor nonlinear functions 𝑓
1
(⋅) and 𝑓

2
(⋅) satisfy

(4) and (5), in which 𝑢
1
= 𝑢
2
= 1, and 𝜃

1
= 𝜃
2
= 1.

This example has been considered in [31]; however, for
system (45),Theorem 2 of [31] is infeasible. Note that different
𝜏
1
and 𝜏
2
yield different 𝛾min; if we assume that 0 ≤ 𝜏(𝑘) ≤

2, then by Corollary 5, the minimal disturbance attenuation
level is 𝛾min = 1.7495, and the corresponding filter matrix is

𝐾 = [

[

0.2754 0.2172

−0.2296 0.1602

−0.0453 0.0859

]

]

. (51)

It can be seen from Example 8 that our method is much less
conservative thanTheorem 2 of [31].

Example 9. Consider the discrete-time stochastic systems (1)
with nonlinear sensor and time-varying delay as follows:

𝑥 (𝑘 + 1) = [

[

0.5 0.2 0.4

−0.2 −0.5 0.1

−0.1 0.1 −0.4

]

]

𝑥 (𝑘)

+ [

[

0.2 0.3 0

0.2 0.1 −0.1

0.1 0 −0.2

]

]

𝑥 (𝑘 − 𝜏 (𝑘)) + [

[

0.2

0.2

0.2

]

]

V (𝑘)

+ [

[

[

[

0.2 0.1 0.1

−0.1 −0.3 0.1

−0.1 0.1 −0.4

]

]

𝑥 (𝑘)

+ [

[

0.1 0.2 0.1

0.2 0.1 −0.1

0.1 0.1 −0.1

]

]

𝑥 (𝑘 − 𝜏 (𝑘))

+[

[

0.1

0.1

0.1

]

]

V (𝑘)]

]

𝑤 (𝑘) ,
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𝑥1

𝑥2

𝑥3

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

𝑡 (s)

Figure 2: The estimation of filter 𝑥̂(𝑘).

𝑒1

𝑒2

𝑒3
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𝑡 (s)

Figure 3: The error response 𝑒(𝑘).

𝑦 (𝑘) = 𝑓([
2 1 −2

1 −2 1
] 𝑥 (𝑘)) + [

1

1
] V (𝑘) ,

𝑧 (𝑘) = [0.1 0.1 0.1] 𝑥 (𝑘) ,

(52)

where the sensor nonlinear functions 𝑓
1
(⋅) and 𝑓

2
(⋅) satisfy

(4) and (5), in which 𝑢
1
= 𝑢
2
= 2, and 𝜃

1
= 𝜃
2
= 2.

Note that different 𝜏
1
and 𝜏

2
yield different 𝛾min; if we

assume that 𝜏(𝑘) satisfies 1 ≤ 𝜏(𝑘) ≤ 5, then by Theorem 3,
the minimum achievable noise attenuation level is given by

𝛾min = 0.1392, and the corresponding filter parameters are as
follows:

𝐾 = [

[

0.0693 0.1005

−0.0350 0.0702

−0.0082 0.0018

]

]

. (53)

With the initial conditions,𝑥(𝑡) and 𝑥̂(𝑡) are [1.5 −1 1]
𝑇

and [−0.5 0.5 0.5]
𝑇, respectively, for an appropriate initial

interval. We apply the previous filter parameter 𝐾 to system
(1) and obtain the simulation results as in Figures 1–3. Figure 1
shows the state response 𝑥(𝑘) under the initial condition.
Figure 2 shows the estimation of filter 𝑥̂(𝑘). Figure 3 shows
error response 𝑒(𝑘). From these simulation results, we can
see that the designed𝐻

∞
filter can stabilize the discrete-time

stochastic system (1)with nonlinear sensors and time-varying
delay.

5. Conclusions

In this paper, the𝐻
∞
filtering problem for a class of discrete-

time stochastic systems with nonlinear sensor and time-
varying delay has been developed. A new type of Lyapunov-
Krasovskii functional has been constructed to derive some
sufficient conditions for the filter in terms of LMIs, which
guarantees a prescribed 𝐻

∞
performance index for the

filtering error system. Two numerical examples have shown
the usefulness and effectiveness of the proposed filter design
method.
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