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We investigate a stochastic SIR epidemic model with specific nonlinear incidence rate. The stochastic model is derived from the
deterministic epidemic model by introducing random perturbations around the endemic equilibrium state. The effect of random
perturbations on the stability behavior of endemic equilibrium is discussed. Finally, numerical simulations are presented to illustrate
our theoretical results.

1. Introduction

Many mathematical models have been developed in order to
understand disease transmissions and behavior of epidemics.
One of the earliest of these models was used by Kermack
and Mckendrick [1], by considering the total population into
three classes, namely, susceptible (𝑆) individuals, infected (𝐼)
individuals, and recovered (𝑅) individuals which is known to
us as SIR epidemic model. This SIR epidemic model is very
important in today’s analysis of diseases.

The disease transmission process is unknown in detail.
However, several authors proposed different forms of
incidences rate in order to model this disease transmission
process. In this paper, we consider the following model with
specific nonlinear incidence rate:
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where 𝐴 is the recruitment rate of the population, 𝜇 is the
natural death rate of the population, 𝑑 is the death rate due to
disease, 𝑟 is the recovery rate of the infective individuals, 𝛽 is
the infection coefficient, and 𝛽𝑆𝐼/(1+𝛼

1
𝑆+𝛼
2
𝐼+𝛼
3
𝑆𝐼) is the

incidence rate, where 𝛼
1
, 𝛼
2
, 𝛼
3
≥ 0 are constants. It is very

important to note that this incidence rate becomes the bilin-
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On the other hand, environmental fluctuations have great
influence on all aspects of real life. The aim of this work is
to study the effect of these environmental fluctuations on
the model (1). We assume that the stochastic perturbations
are of white noise type and that they are proportional to the
distances of 𝑆 and 𝐼, respectively. Then, the system (1) will
be extended to the following system of stochastic differential
equation:
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where 𝑆∗, 𝐼∗ are the positive points of equilibrium for the
corresponding deterministic system (1), 𝐵

𝑖
(𝑖 = 1, 2) are
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independent standard Brownian motions, and 𝜎2
𝑖
(𝑖 = 1, 2)

represent the intensities of 𝐵
𝑖
, respectively.

The rest of paper is organized as follows. In the next
section, we present the stability analysis of our stochastic
model (2). In Section 3, we present the numerical simulation
to illustrate our result. The conclusion of our paper is in
Section 4.

2. Stability Analysis of Stochastic Model

Clearly, the system (1) has a basic reproduction number given
by
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. (3)

Using the results presented by Hattaf et al. in [7], it is easy
to show that if 𝑅
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equilibrium is globally asymptotically stable.
The system (2) has the same equilibria as the system (1).

We assume that 𝑅
0
≤ 1, and we discuss the stability of the

endemic equilibrium 𝐸∗ of (2). The stochastic system (2) can
be centered at its interior endemic equilibrium 𝐸∗ by the
changes of the variables as follows:
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Hence, the linearized version corresponding to the stochastic
model (2) around 𝐸∗ is given by the following form:
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and the superscript “𝑇” represents transposition.
Clearly the endemic equilibrium 𝐸∗ corresponds to the

trivial solution 𝑢(𝑡) = 0 in (5).
Let 𝐶1,2([0, +∞) × R2;R+) be the family of nonnegative

functions𝑊(𝑡, 𝑢) defined on [0, +∞) ×R2 such that they are
continuously differentiable with respect to 𝑡 and twice with
respect to 𝑢. From [8], we define the differential operator 𝐿
for a function𝑊(𝑡, 𝑢) ∈ 𝐶

1,2([0, +∞) ×R2;R+) by

𝐿𝑊 (𝑡, 𝑢) =
𝜕𝑊 (𝑡, 𝑢)

𝜕𝑡
+ 𝑓
𝑇
(𝑢)

𝜕𝑊 (𝑡, 𝑢)

𝜕𝑢

+
1

2
Tr[𝑔𝑇 (𝑢) 𝜕

2𝑊(𝑡, 𝑢)

𝜕𝑢2
𝑔 (𝑢)] ,

(7)
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According to [8], we have the following theorem.

Theorem 1. Suppose that there exists a function 𝑊(𝑡, 𝑢) ∈

𝐶1,2([0, +∞) × R2;R+) satisfying the following inequalities:
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where 𝐾
𝑖
, 𝑖 = 1, 2, and 𝑝 are positive constants. Then, the

trivial solution of (5) is exponentially p-stable for 𝑡 ≥ 0.
Moreover, if 𝑝 = 2, then the trivial solution is also called
asymptotically mean square stable and it is globally asymptoti-
cally stable in probability.

From Theorem 1, we get the conditions for stochastic
asymptotic stability of trivial solution of (5) which are given
by the following theorem.
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Proof. We consider the following Lyapunov function:
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chosen later. It is easy to verify that inequality (8) holds true
with 𝑝 = 2.
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From the assumptions of the theorem, we deduce that 𝑏
𝑖𝑖
>

0, 𝑖 = 1, 2 and |𝐵| > 0. Hence, 𝐵 is a symmetric positive
definite matrix. Let 𝜆
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positive eigenvalues 𝜆
1
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2
; then, we can easily get
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According toTheorem 1, we conclude that the trivial solution
of system (5) is globally asymptotically stable.

3. Numerical Simulations

In this section, we present the numerical simulations to
illustrate our theoretical results.

We use the following parameter values: 𝐴 = 0.9, 𝜇 = 0.1,
𝛽 = 0.5, 𝑑 = 0.1, 𝑟 = 0.1, 𝛼

1
= 0.1, 𝛼

2
= 0.1, 𝛼

3
= 0.01,

𝜎
1
= 0.1, and 𝜎

2
= 0.01. In this case, we have𝑅

0
= 7.8947 > 1,

𝜎2
1
= 0.01 < 2.4539, and 𝜎2

2
= 0.0001 < 0.00033502. By

applyingTheorem 2, we deduce that the endemic equilibrium

𝐸
∗ is globally asymptotically stable. Figure 1 demonstrates the

above analysis.

4. Conclusion

Thepurpose of this work is to study the effects of the environ-
mental fluctuations on dynamical behavior of a deterministic
SIR epidemic model with specific nonlinear incidence rate by
considering thewhite noise perturbation around the endemic
equilibrium state. We have shown that our stochastic model
is globally asymptotically stable in probability when the
intensities of white noise are less than certain threshold of
parameters. However, if these intensities of white noise are
zero, which meant that there is no environmental stochastic
perturbation, then the conditions of Theorem 2 are reduced
to the condition 𝑅

0
> 1, which gives a nonlinear stability

condition for the deterministic model (1).
From our analytical and numerical results, we conclude

that the main factor that affects the stability of the stochastic
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Figure 1: Deterministic and stochastic trajectories of models (1) and
(2) with parameter values𝐴 = 0.9, 𝜇 = 0.1, 𝛽 = 0.5, 𝑑 = 0.1, 𝑟 = 0.1,
𝛼
1
= 0.1, 𝛼

2
= 0.1, 𝛼

3
= 0.01, 𝜎

1
= 0.1, and 𝜎

2
= 0.01.

model is the intensities of white noise. In addition, our main
results extend the corresponding results in paper [3] and
those in [9] when the value of the parameter 󸀠ℎ󸀠 is equal to
one into the stochastic model [9].
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