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The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability
of N coupled stochastic variables with the Dirichlet distribution as its asymptotic solution. To ensure a bounded sample space, a
couplednonlinear diffusionprocess is required: theWiener processes in the equivalent systemof stochastic differential equations are
multiplicative with coefficients dependent on all the stochastic variables. Individual samples of a discrete ensemble, obtained from
the stochastic process, satisfy a unit-sum constraint at all times. The process may be used to represent realizations of a fluctuating
ensemble of N variables subject to a conservation principle. Similar to the multivariate Wright-Fisher process, whose invariant is
also Dirichlet, the univariate case yields a process whose invariant is the beta distribution. As a test of the results, Monte Carlo
simulations are used to evolve numerical ensembles toward the invariant Dirichlet distribution.

1. Objective

We develop a Fokker-Planck equation whose statistically
stationary solution is the Dirichlet distribution [1–3]. The
system of stochastic differential equations (SDE), equivalent
to the Fokker-Planck equation, yields a Markov process
that allows a Monte Carlo method to numerically evolve
an ensemble of fluctuating variables that satisfy a unit-sum
requirement. A Monte Carlo solution is used to verify that
the invariant distribution is Dirichlet.

The Dirichlet distribution is a statistical representation of
nonnegative variables subject to a unit-sum requirement.The
properties of such variables have been of interest in a variety
of fields, including evolutionary theory [4], Bayesian statistics
[5], geology [6, 7], forensics [8], econometrics [9], turbulent
combustion [10], and population biology [11].

2. Preview of Results

The Dirichlet distribution [1–3] for a set of scalars 0 ≤ 𝑌
𝛼
,

𝛼 = 1, . . . , 𝑁 − 1, ∑𝑁−1
𝛼=1

𝑌
𝛼
≤ 1, is given by

D (Y,𝜔) =
Γ (∑
𝑁

𝛼=1
𝜔
𝛼
)

∏
𝑁

𝛼=1
Γ (𝜔
𝛼
)

𝑁

∏

𝛼=1

𝑌
𝜔
𝛼
−1

𝛼
, (1)

where 𝜔
𝛼
> 0 are parameters, 𝑌

𝑁
= 1 − ∑

𝑁−1

𝛽=1
𝑌
𝛽
, and Γ(⋅)

denotes the gamma function. We derive the stochastic diffu-
sion process, governing the scalars, 𝑌

𝛼
,

d𝑌
𝛼
(𝑡) =

𝑏
𝛼

2
[𝑆
𝛼
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(2)

where d𝑊
𝛼
(𝑡) is an isotropic vector-valued Wiener process

[12], and 𝑏
𝛼
> 0, 𝜅

𝛼
> 0, and 0 < 𝑆

𝛼
< 1 are coefficients.

We show that the statistically stationary solution of (2) is the
Dirichlet distribution, (1), provided that the SDE coefficients
satisfy

𝑏
1

𝜅
1
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) = ⋅ ⋅ ⋅ =
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The restrictions imposed on the SDE coefficients, 𝑏
𝛼
, 𝜅
𝛼
, and

𝑆
𝛼
, ensure reflection towards the interior of the sample space,

which is a generalized triangle or tetrahedron (more precisely,
a simplex) in𝑁−1 dimensions.The restrictions together with
the specification of theNth scalar as𝑌

𝑁
= 1−∑

𝑁−1

𝛽=1
𝑌
𝛽
ensure
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Indeed, inspection of (2) shows that, for example, when 𝑌
1
=

0, the diffusion is zero and the drift is strictly positive, while
if𝑌
1
= 1, the diffusion is zero (𝑌

𝑁
= 0) and the drift is strictly

negative.

3. Development of the Diffusion Process

The diffusion process (2) is developed by the method of pot-
ential solutions.

We start from the Itô diffusion process [12] for the
stochastic vector, 𝑌

𝛼
,

d𝑌
𝛼
(𝑡) = 𝑎

𝛼
(Y) d𝑡 + 𝑏
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(5)

with drift, 𝑎
𝛼
(Y), diffusion, 𝑏

𝛼𝛽
(Y), and the isotropic vector-

valuedWiener process, d𝑊
𝛽
(𝑡), where summation is implied

for repeated indices. Using standard methods given in [12],
the equivalent Fokker-Planck equation governing the joint
probability,F(Y, 𝑡), derived from (5), is

𝜕F

𝜕𝑡
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with diffusion 𝐵
𝛼𝛽

= 𝑏
𝛼𝛾
𝑏
𝛾𝛽
. Since the drift and diffusion

coefficients are time homogeneous, 𝑎
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(Y) and
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𝛼𝛽
(Y, 𝑡) = 𝐵
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(Y), (5) is a statistically stationary process

and the solution of (6) converges to a stationary distribution,
[12, Sec. 6.2.2]. Our task is to specify the functional forms
of 𝑎
𝛼
(Y) and 𝑏

𝛼𝛽
(Y) so that the stationary solution of (6) is

D(Y), defined by (1).
A potential solution of (6) exists if
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(7)

is satisfied, [12, Sec. 6.2.2]. Since the left-hand side of (7) is a
gradient, the expression on the right must also be a gradient
and can therefore be obtained from a scalar potential denoted
by 𝜙(Y). This puts a constraint on the possible choices of 𝑎

𝛼

and 𝐵
𝛼𝛽

and on the potential, as 𝜙,
𝛼𝛽

= 𝜙,
𝛽𝛼

must also be
satisfied. The potential solution is

F (Y) = exp [−𝜙 (Y)] . (8)

Now functional forms of 𝑎
𝛼
(Y) and 𝐵

𝛼𝛽
(Y) that satisfy (7)

withF(Y) ≡ D(Y) are sought.Themathematical constraints
on the specification of 𝑎

𝛼
and 𝐵

𝛼𝛽
are as follows.

(1) 𝐵
𝛼𝛽

must be symmetric positive semidefinite. This is
to ensure the following.

(i) The square-root of 𝐵
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(e.g., the Cholesky-
decomposition, 𝑏

𝛼𝛽
) exists, required by the cor-

respondence of the SDE (5) and the Fokker-
Planck equation (6).

(ii) Equation (5) represents a diffusion.
(iii) det(𝐵

𝛼𝛽
) ̸= 0, required by the existence of the

inverse in (7).

(2) For a potential solution to exist (7) must be satisfied.

With F(Y) ≡ D(Y) (8) shows that the scalar potential must
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It is straightforward to verify that the specifications
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satisfy the above mathematical constraints, (1) and (2). Here
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is not implied for (9)–(11).
Substituting (9)–(11) into (7) yields a system with the

same functions on both sides with different coefficients,
yielding the correspondence between the𝑁 coefficients of the
Dirichlet distribution, (1), and the Fokker-Planck equation
(6) with (10)-(11) as
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The system in (7) then becomes
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which shows that by specifying the parameters, 𝜔
𝛼
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Dirichlet distribution as

𝜔
1
=
𝑏
1

𝜅
1

𝑆
1
, (15)

𝜔
2
=
𝑏
2

𝜅
2

𝑆
2
, (16)

𝜔
3
=
𝑏
1

𝜅
1

(1 − 𝑆
1
) =

𝑏
2

𝜅
2

(1 − 𝑆
2
) , (17)



International Journal of Stochastic Analysis 3

1

0.75

0.5

0.25

0

𝑌
2

𝑡 = 0

𝑌1

10.750.50.250

(a)

1

0.75

0.5

0.25

0

𝑌
2

𝑡 = 10

𝑌1

10.750.50.250

(b)

1

0.75

0.5

0.25

0

𝑌
2

𝑡 = 20

𝑌1

10.750.50.250

(c)

1

0.75

0.5

0.25

0

𝑌
2

𝑡 = 140

𝜔1 = 5
𝜔2 = 2

𝜔3 = 3

𝑆1 = 5/8
𝑆2 = 2/5

𝑏1 = 1/10
𝑏2 = 3/2
𝜅1 = 1/80
𝜅2 = 3/10

𝑌1

10.750.50.250

(d)

Figure 1: Time evolution of the joint probability, F(𝑌
1
, 𝑌
2
), extracted from the numerical solution of (18)–(20). The initial condition is a

triple-delta distribution, with unequal peaks at the three corners of the sample space. At the end of the simulation, 𝑡 = 140, the solid lines
are those of the distribution extracted from the numerical ensemble, and the dashed lines are those of a Dirichlet distribution to which the
solution converges in the statistically stationary state, implied by the constant SDE coefficients, sampled at the same heights.

the stationary solution of the Fokker-Planck equation (6)
with drift (10) and diffusion (11) is D(Y,𝜔) for 𝑁 = 3. The
above development generalizes to 𝑁 variables, yielding (12)
and reduces to the beta distribution, a univariate specializa-
tion of D for 𝑁 = 2, where 𝑌

1
= 𝑌 and 𝑌

2
= 1 − 𝑌, see

[13].
If (12) hold, the stationary solution of the Fokker-Planck

equation (6) with drift (10) and diffusion (11) is the Dirichlet
distribution, (1). Note that (10)-(11) are one possible way of
specifying a drift and a diffusion to arrive at a Dirichlet

distribution; other functional forms may be possible. The
specifications in (10)-(11) are a generalization of the results
for a univariate diffusion process, discussed in [13, 14], whose
invariant distribution is beta.

The shape of the Dirichlet distribution, (1), is determined
by the 𝑁 coefficients, 𝜔

𝛼
. Equation (12) shows that in the

stochastic system, different combinations of 𝑏
𝛼
, 𝑆
𝛼
, and 𝜅

𝛼

may yield the same 𝜔
𝛼
and that not all of 𝑏

𝛼
, 𝑆
𝛼
, and

𝜅
𝛼

may be chosen independently to keep the invariant
Dirichlet.
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Figure 2: Time evolution of the joint probability,F(𝑌
1
, 𝑌
2
), extracted from the numerical solution of (18)–(20).The initial condition is a box

with diffused sides. By 𝑡 = 160, the distribution converges to the same Dirichlet distribution as in Figure 1.

4. Corroborating That the Invariant
Distribution Is Dirichlet

For any multivariate Fokker-Planck equation there is an
equivalent system of Itô diffusion processes, such as the pair
of (5)-(6) [12]. Therefore, a way of computing the (discrete)
numerical solution of (6) is to integrate (5) in a Monte
Carlo fashion for an ensemble [15]. Using a Monte Carlo
simulationwe show that the statistically stationary solution of
the Fokker-Planck equation (6) with drift and diffusion (10)-
(11) is a Dirichlet distribution, (1).

The time evolution of an ensemble of particles, each with
𝑁 = 3 variables (𝑌

1
, 𝑌
2
, 𝑌
3
), is numerically computed by

integrating the system in (5), with drift and diffusion (10)-(11),
for𝑁 = 3 as

d𝑌(𝑖)
1
=
𝑏
1

2
[𝑆
1
𝑌
(𝑖)

3
− (1 − 𝑆

1
) 𝑌
(𝑖)

1
] d𝑡 + √𝜅

1
𝑌
(𝑖)

1
𝑌
(𝑖)

3
d𝑊(𝑖)
1
,

(18)

d𝑌(𝑖)
2
=
𝑏
2

2
[𝑆
2
𝑌
(𝑖)

3
− (1 − 𝑆

2
) 𝑌
(𝑖)

2
] d𝑡 + √𝜅

2
𝑌
(𝑖)

2
𝑌
(𝑖)

3
d𝑊(𝑖)
2
,

(19)

𝑌
(𝑖)

3
= 1 − 𝑌

(𝑖)

1
− 𝑌
(𝑖)

2
, (20)

for each particle 𝑖. In (18)-(19) d𝑊
1
and d𝑊

2
are independent

Wiener processes, sampled fromGaussian streams of random
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Table 1: Initial and final states of the Monte Carlo simulation
starting from a triple delta. The coefficients, 𝑏

1
, 𝑏
2
, 𝑆
1
, 𝑆
2
, 𝜅
1
, 𝜅
2
, of

the system of SDEs (18)–(20) determine the distribution to which
the system converges. The Dirichlet parameters, implied by the
SDE coefficients via (15)–(17), are in brackets. The corresponding
statistics are determined by the well-known formulae of Dirichlet
distributions [2].

Initial state:
triple delta,
see Figure 1

SDE coefficients and the statistics of
their implied Dirichlet distribution in
the statistically stationary state

𝑏
1
= 1/10 𝑏

2
= 3/2 (𝜔

1
= 5)

𝑆
1
= 5/8 𝑆

2
= 2/5 (𝜔

2
= 2)

𝜅
1
= 1/80 𝜅

2
= 3/10 (𝜔

3
= 3)

⟨𝑌
1
⟩
0
≈ 0.05 ⟨𝑌

1
⟩
𝑠
= 1/2

⟨𝑌
2
⟩
0
≈ 0.42 ⟨𝑌

2
⟩
𝑠
= 1/5

⟨𝑌
3
⟩
0
≈ 0.53 ⟨𝑌

3
⟩
𝑠
= 3/10

⟨𝑦
2

1
⟩
0
≈ 0.03 ⟨𝑦

2

1
⟩
𝑠
= 1/44

⟨𝑦
2

2
⟩
0
≈ 0.125 ⟨𝑦

2

2
⟩
𝑠
= 4/275

⟨𝑦
2

3
⟩
0
≈ 0.13 ⟨𝑦

2

3
⟩
𝑠
= 21/1100

⟨𝑦
1
𝑦
2
⟩
0
≈ −0.012 ⟨𝑦

1
𝑦
2
⟩
𝑠
= −1/110

⟨𝑦
1
𝑦
3
⟩
0
≈ −0.017 ⟨𝑦

1
𝑦
3
⟩
𝑠
= −3/220

⟨𝑦
2
𝑦
3
⟩
0
≈ −0.114 ⟨𝑦

2
𝑦
3
⟩
𝑠
= −3/550

numbers with mean ⟨d𝑊
𝛼
⟩ = 0 and covariance ⟨d𝑊

𝛼
d𝑊
𝛽
⟩ =

𝛿
𝛼𝛽
d𝑡. 400,000 particle triplets, (𝑌

1
, 𝑌
2
, 𝑌
3
), are generated

with two different initial distributions, displayed in Figures
1(a) and 2(a), a triple-delta and a box, respectively. Each
member of both initial ensembles satisfy ∑3

𝛼=1
𝑌
𝛼
= 1.

Equations (18)–(20) are advanced in time with the Euler-
Maruyama scheme [16] with time step Δ𝑡 = 0.05. Table 1
shows the coefficients of the stochastic system (18)–(20), the
corresponding parameters of the final Dirichlet distribution,
and the first two moments at the initial times for the triple-
delta initial condition case. The final state of the ensembles
is determined by the SDE coefficients, constant for these
exercises, also given in Table 1, the same for both simulations,
satisfying (17).

The time evolutions of the joint probabilities are extracted
from both calculations and displayed at different times in
Figures 1 and 2. At the end of the simulations two distribu-
tions are plotted in Figures 1(d) and 2(d): the one extracted
from the numerical ensemble and the Dirichlet distribution
determined analytically using the SDE coefficients—in excel-
lent agreement in both figures. The statistically stationary
solution of the developed stochastic system is the Dirichlet
distribution.

For a more quantitative evaluation, the time evolutions of
the first two moments,

𝜇
𝛼
= ⟨𝑌
𝛼
⟩ = ∫

1

0

∫

1

0

𝑌
𝛼
F (𝑌
1
, 𝑌
2
) d𝑌
1
d𝑌
2
, (21)

⟨𝑦
𝛼
𝑦
𝛽
⟩ = ⟨(𝑌

𝛼
− ⟨𝑌
𝛼
⟩) (𝑌
𝛽
− ⟨𝑌
𝛽
⟩)⟩ , (22)

are also extracted from the numerical simulation with the
triple-delta-peak initial condition as ensemble averages and
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Figure 3: Time evolution of the means, extracted from the numer-
ically integrated system (18)–(20), starting from the triple-delta
initial condition. Dotted-solid lines: numerical solution, dashed
lines: statistics of the Dirichlet distribution determined analytically
using the constant coefficients of the SDE, see Table 1.

displayed in Figures 3 and 4. The figures show that the
statistics converge to the precise state given by the Dirichlet
distribution that is prescribed by the SDE coefficients, see
Table 1.

The solution approaches a Dirichlet distribution, with
nonpositive covariances [2], in the statistically stationary
limit, Figure 4(b). Note that during the evolution of the
process, 0 < 𝑡 ≲ 80, the solution is not necessarily Dirichlet,
but the stochastic variables sum to one at all times. The point
(𝑌
1
, 𝑌
2
), governed by (18)-(19), can never leave the (𝑁 − 1)-

dimensional (here𝑁 = 3) convex polytope and by definition
𝑌
3
= 1 − 𝑌

1
− 𝑌
2
. The rate at which the numerical solution

converges to a Dirichlet distribution is determined by the
vectors 𝑏

𝛼
and 𝜅
𝛼
.

The above numerical results confirm that starting from
arbitrary realizable ensembles, the solution of the stochastic
system converges to aDirichlet distribution in the statistically
stationary state, specified by the SDE coefficients.

5. Relation to Other Diffusion Processes

It is useful to relate the Dirichlet diffusion process, (2), to
other multivariate stochastic diffusion processes with linear
drift and quadratic diffusion.

A close relative of (2) is the multivariate Wright-Fisher
(WF) process [11], used extensively in population and genetic
biology,

d𝑌
𝛼
(𝑡) =

1

2
(𝜔
𝛼
− 𝜔𝑌
𝛼
) d𝑡 +

𝑁−1

∑

𝛽=1

√𝑌
𝛼
(𝛿
𝛼𝛽
− 𝑌
𝛽
)d𝑊
𝛼𝛽
(𝑡) ,

𝛼 = 1, . . . , 𝑁 − 1,

(23)

where 𝛿
𝛼𝛽

is Kronecker’s delta, 𝜔 = ∑𝑁
𝛽=1

𝜔
𝛽
with 𝜔

𝛼
defined

in (1), and 𝑌
𝑁
= 1 − ∑

𝑁−1

𝛽=1
𝑌
𝛽
. Similar to (2), the statistically
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Figure 4: Time evolution of the second central moments, extracted from the numerically integrated system (18)–(20), starting from the
triple-delta initial condition. The legend is the same as in Figure 3.

stationary solution of (23) is the Dirichlet distribution [17].
It is straightforward to verify that its drift and diffusion also
satisfy (7) with F ≡ D; that is, WF is a process whose
invariant is Dirichlet and this solution is potential. A notable
difference between (2) and (23), other than the coefficients, is
that the diffusion matrix of the Dirichlet diffusion process is
diagonal, while that of the WF process is full.

Another process similar to (2) and (23) is themultivariate
Jacobi process, used in econometrics,

d𝑌
𝛼
(𝑡) = 𝑎 (𝑌

𝛼
− 𝜋
𝛼
) d𝑡 + √𝑐𝑌

𝛼
d𝑊
𝛼
(𝑡)

−

𝑁−1

∑

𝛽=1

𝑌
𝛼
√𝑐𝑌
𝛽
d𝑊
𝛽
(𝑡) , 𝛼=1, . . . , 𝑁

(24)

of Gourieroux and Jasiak [9] with 𝑎 < 0, 𝑐 > 0, 𝜋
𝛼
> 0, and

∑
𝑁

𝛽=1
𝜋
𝛽
= 1.

In the univariate case, the Dirichlet, WF, and Jacobi
diffusions reduce to

d𝑌 (𝑡) = 𝑏
2
(𝑆 − 𝑌) d𝑡 + √𝜅𝑌 (1 − 𝑌)d𝑊(𝑡) , (25)

see also [13], whose invariant is the beta distribution, which
belongs to the family of Pearson diffusions, discussed in detail
by Forman and Sørensen [14].

6. Summary

The method of potential solutions of Fokker-Planck equa-
tions has been used to derive a transport equation for the
joint distribution of 𝑁 fluctuating variables. The equivalent
stochastic process, governing the set of random variables,
0 ≤ 𝑌
𝛼
, 𝛼 = 1, . . . , 𝑁 − 1, ∑𝑁−1

𝛼=1
𝑌
𝛼
≤ 1, reads as
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𝑁
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𝛼
(𝑡) ,

𝛼 = 1, . . . , 𝑁 − 1,

(26)

where 𝑌
𝑁
= 1 − ∑

𝑁−1

𝛽=1
𝑌
𝛽
and 𝑏
𝛼
, 𝜅
𝛼
, and 𝑆

𝛼
are parameters,

while d𝑊
𝛼
(𝑡) is an isotropic Wiener process with indepen-

dent increments. Restricting the coefficients to 𝑏
𝛼
> 0,

𝜅
𝛼
> 0, and 0 < 𝑆

𝛼
< 1 and defining 𝑌

𝑁
as above

ensure ∑𝑁
𝛼=1

𝑌
𝛼
= 1 and that individual realizations of (𝑌

1
,

𝑌
2
, . . . , 𝑌

𝑁
) are confined to the (𝑁 − 1)-dimensional convex

polytope of the sample space. Equation (26) can therefore
be used to numerically evolve the joint distribution of 𝑁
fluctuating variables required to satisfy a conservation prin-
ciple. Equation (26) a coupled system of nonlinear stochastic
differential equationswhose statistically stationary solution is
the Dirichlet distribution, (1), provided that the coefficients
satisfy

𝑏
1

𝜅
1

(1 − 𝑆
1
) = ⋅ ⋅ ⋅ =

𝑏
𝑁−1

𝜅
𝑁−1

(1 − 𝑆
𝑁−1

) . (27)

In stochastic modeling, one typically begins with a phys-
ical problem, perhaps discrete, then derives the stochastic
differential equations whose solution yields a distribution. In
this paper we reversed the process: we assumed a desired
stationary distribution and derived the stochastic differential
equations that converge to the assumed distribution. A
potential solution form of the Fokker-Planck equation was
posited, from which we obtained the stochastic differential
equations for the diffusion process whose statistically sta-
tionary solution is the Dirichlet distribution. We have also
made connections to other stochastic processes, such as the
Wright-Fisher diffusions of population biology and the Jacobi
diffusions in econometrics, whose invariant distributions
possess similar properties but whose stochastic differential
equations are different.
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