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We study the sharp large deviation for the energy of 𝛼-Brownian bridge. The full expansion of the tail probability for energy is
obtained by the change of measure.

1. Introduction

We consider the following 𝛼-Brownian bridge:

𝑑𝑋
𝑡
= −

𝛼

𝑇 − 𝑡

𝑋
𝑡
𝑑𝑡 + 𝑑𝑊

𝑡
, 𝑋
0
= 0, (1)

where 𝑊 is a standard Brownian motion, 𝑡 ∈ [0, 𝑇), 𝑇 ∈

(0,∞), and the constant 𝛼 > 1/2. Let 𝑃
𝛼
denote the probabil-

ity distribution of the solution {𝑋
𝑡
, 𝑡 ∈ [0, 𝑇)} of (1). The

𝛼-Brownian bridge is first used to study the arbitrage profit
associatedwith a given future contract in the absence of trans-
action costs by Brennan and Schwartz [1].
𝛼-Brownian bridge is a time inhomogeneous diffusion

process which has been studied by Barczy and Pap [2, 3], Jiang
and Zhao [4], and Zhao and Liu [5]. They studied the central
limit theorem and the large deviations for parameter estima-
tors and hypothesis testing problem of 𝛼-Brownian bridge.
While the large deviation is not so helpful in some statistics
problems since it only gives a logarithmic equivalent for the
deviation probability, Bahadur and Ranga Rao [6] overcame
this difficulty by the sharp large deviation principle for the
empirical mean. Recently, the sharp large deviation prin-
ciple is widely used in the study of Gaussian quadratic
forms, Ornstein-Uhlenbeck model, and fractional Ornstein-
Uhlenbeck (cf. Bercu and Rouault [7], Bercu et al. [8], and
Bercu et al. [9, 10]).

In this paper we consider the sharp large deviation prin-
ciple (SLDP) of energy 𝑆

𝑡
, where

𝑆
𝑡
= ∫

𝑡

0

𝑋
2

𝑠

(𝑠 − 𝑇)
2
𝑑𝑠. (2)

Our main results are the following.

Theorem 1. Let {𝑋
𝑡
, 𝑡 ∈ [0, 𝑇)} be the process given by the

stochastic differential equation (1). Then {𝑆
𝑡
/𝜆
𝑡
, 𝑡 ∈ [0, 𝑇)} sat-

isfies the large deviation principle with speed 𝜆
𝑡
and good rate

function 𝐼(⋅) defined by the following:

𝐼 (𝑥) =

{

{

{

1

8𝑥

((2𝛼
0
− 1) 𝑥 − 1)

2

, if 𝑥 > 0;
+∞, if 𝑥 ≤ 0,

(3)

where 𝜆
𝑡
= log(𝑇/(𝑇 − 𝑡)).

Theorem 2. {𝑆
𝑡
/𝜆
𝑡
, 𝑡 ∈ [0, 𝑇)} satisfies SLDP; that is, for any

𝑐 > 1/(2𝛼 − 1), there exists a sequence 𝑏
𝑐,𝑘

such that, for any
𝑝 > 0, when 𝑡 approaches 𝑇 enough,

𝑃 (𝑆
𝑡
≥ 𝑐𝜆
𝑡
) =

exp {−𝐼 (𝑐) 𝜆
𝑡
+ 𝐻 (𝑎

𝑐
)}

√2𝜋𝑎
𝑐
𝛽
𝑡

× (1 +

𝑝

∑

𝑘=1

𝑏
𝑐,𝑘

𝜆
𝑡

+ 𝑂(

1

𝜆
𝑝+1

𝑡

)) ,

(4)
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where

𝜎
2

𝑐
= 4𝑐
2
, 𝛽

𝑡
= 𝜎
𝑐
√𝜆
𝑡
,

𝑎
𝑐
=

(1 − 2𝛼)
2
𝑐
2
− 1

8𝑐
2

,

𝐻 (𝑎
𝑐
) = −

1

2

log(1 − (1 − 2𝛼) 𝑐
2

) .

(5)

The coefficients 𝑏
𝑐,𝑘

may be explicitly computed as functions of
the derivatives of 𝐿 and 𝐻 (defined in Lemma 3) at point 𝑎

𝑐
.

For example, 𝑏
𝑐,1

is given by

𝑏
𝑐,1
=

1

𝜎
2

𝑐

(−

ℎ
2

2

−

ℎ
2

1

2

+

𝑙
4

8𝜎
2

𝑐

+

𝑙
3
ℎ
1

2𝜎
2

𝑐

−

5𝑙
2

3

24𝜎
4

𝑐

+

ℎ
1

𝑎
𝑐

−

𝑙
3

2𝑎
𝑐
𝜎
2

𝑐

−

1

𝑎
2

𝑐

) ,

(6)

with 𝑙
𝑘
= 𝐿
(𝑘)
(𝑎
𝑐
), and ℎ

𝑘
= 𝐻
(𝑘)
(𝑎
𝑐
).

2. Large Deviation for Energy

Given 𝛼 > 1/2, we first consider the following logarithmic
moment generating function of 𝑆

𝑡
; that is,

𝐿
𝑡
(𝑢) := logE

𝛼
exp{𝑢∫

𝑡

0

𝑋
2

𝑠

(𝑠 − 𝑇)
2
𝑑𝑠} , ∀𝜆 ∈ R. (7)

And let

D
𝐿
𝑡

:= {𝑢 ∈ R, 𝐿
𝑡
(𝑢) < +∞} (8)

be the effective domain of 𝐿
𝑡
. By the samemethod as in Zhao

and Liu [5], we have the following lemma.

Lemma 3. LetD
𝐿
be the effective domain of the limit 𝐿 of 𝐿

𝑡
;

then for all 𝑢 ∈ D
𝐿
, one has

𝐿
𝑡
(𝑢)

𝜆
𝑡

= 𝐿 (𝑢) +

𝐻 (𝑢)

𝜆
𝑡

+

𝑅 (𝑢)

𝜆
𝑡

, (9)

with

𝐿 (𝑢) = −

1 − 2𝛼 − 𝜑 (𝑢)

4

,

𝐻 (𝜆) = −

1

2

log {1
2

(1 + ℎ (𝑢))} ,

𝑅 (𝑢) = −

1

2

log{1 + 1 − ℎ (𝑢)
1 + ℎ (𝑢)

exp {2𝜑 (𝑢) 𝜆
𝑡
}} ,

(10)

where 𝜑(𝑢) = −√(1 − 2𝛼)2 − 8𝑢 and ℎ(𝑢) = (1 − 2𝛼)/𝜑(𝑢).
Furthermore, the remainder 𝑅(𝑢) satisfies

𝑅 (𝑢) = 𝑂
𝑡→𝑇

(exp {2𝜑 (𝑢) 𝜆
𝑡
}) . (11)

Proof. By Itô’s formula andGirsanov’s formula (see Jacob and
Shiryaev [11]), for all 𝑢 ∈ D

𝐿
and 𝑡 ∈ [0, 𝑇),

log
𝑑𝑃
𝛼

𝑑𝑃
𝛽

|
[0,𝑡]

= (𝛼 − 𝛽)∫

𝑡

0

𝑋
𝑠

𝑠 − 𝑇

𝑑𝑋
𝑠
−

𝛼
2
− 𝛽
2

2

∫

𝑡

0

𝑋
2

𝑠

(𝑠 − 𝑇)
2
𝑑𝑠,

∫

𝑡

0

𝑋
𝑠

𝑠 − 𝑇

𝑑𝑋
𝑠

=

1

2

(

𝑋
2

𝑡

(𝑡 − 𝑇)

+ ∫

𝑡

0

𝑋
2

𝑠

(𝑠 − 𝑇)
2
𝑑𝑠 − log(1 − 𝑡

𝑇

)) .

(12)

Therefore,

𝐿
𝑡
(𝑢) = logE

𝛽
(exp{𝑢∫

𝑡

0

𝑋
2

𝑠

(𝑠 − 𝑇)
2
𝑑𝑠}

𝑑𝑃
𝛼

𝑑𝑃
𝛽

|
[0,𝑡]
)

= logE
𝛽
exp{

𝛼 − 𝛽

2 (𝑡 − 𝑇)

𝑋
2

𝑡
−

𝛼 − 𝛽

2

log(1 − 𝑡
𝑇

)

+

1

2

(𝛽
2
− 𝛼
2
+ 𝛼 − 𝛽 + 2𝑢)

×∫

𝑡

0

𝑋
2

𝑠

(𝑠 − 𝑇)
2
𝑑𝑠} .

(13)

If 4𝑢 ≤ (1 − 2𝛼)2, we can choose 𝛽 such that (𝛽 − 1/2)2 − (𝛼 −
1/2)
2
+ 2𝑢 = 0. Then

𝐿
𝑡
(𝑢) = −

1 − 2𝛼 − 𝜑 (𝜆)

4

𝜆
𝑡

−

1

2

log {1
2

(1 + ℎ (𝑢))}

−

1

2

log{1 + 1 − ℎ (𝑢)
1 + ℎ (𝑢)

exp {2𝜑 (𝑢) 𝜆
𝑡
}} ,

(14)

where 𝜑(𝑢) = −√(1 − 2𝛼)2 − 8𝑢, and ℎ(𝑢) = (1 − 2𝛼)/𝜑(𝑢).
Therefore,

𝐿
𝑡
(𝑢)

𝜆
𝑡

= −

1 − 2𝛼 − 𝜑 (𝑢)

4

−

1

2𝜆
𝑡

log {1
2

(1 + ℎ (𝑢))}

−

1

2𝜆
𝑡

log{1 + 1 − ℎ (𝑢)
1 + ℎ (𝑢)

exp {2𝜑 (𝑢) 𝜆
𝑡
}}

= 𝐿 (𝑢) +

𝐻 (𝑢)

𝜆
𝑡

+

𝑅 (𝑢)

𝜆
𝑡

.

(15)

Proof of Theorem 1. From Lemma 3, we have

𝐿 (𝑢) = lim
𝑡→𝑇

𝐿
𝑡
(𝑢)

𝜆
𝑡

=

1 − 2𝛼 − 𝜑 (𝑢)

4

, (16)
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and 𝐿(⋅) is steep; by the Gärtner-Ellis theorem (Dembo and
Zeitouni [12]), 𝑆

𝑡
/𝜆
𝑡
satisfies the large deviation principle

with speed 𝜆
𝑡
and good rate function 𝐼(⋅) defined by the

following:

𝐼 (𝑥) =

{

{

{

1

8𝑥

((2𝛼 − 1) 𝑥 − 1)
2
, if 𝑥 > 0;

+∞, if + 𝑥 ≤ 0.
(17)

Remark 4. Theorem 1 can also be obtained by using
Theorem 1 in Zhao and Liu [5].

3. Sharp Large Deviation for Energy

For 𝑐 > 1/(2𝛼 − 1), let

𝑎
𝑐
=

(1 − 2𝛼)
2
𝑐
2
− 1

8𝑐
2

, 𝜎
2

𝑐
= 𝐿

(𝑎
𝑐
) = 4𝑐

3
,

𝐻 (𝑎
𝑐
) = −

1

2

log (1 − (1 − 2𝛼) 𝑐) .
(18)

Then

𝑃 (𝑆
𝑡
≥ 𝑐𝜆
𝑡
)

= ∫

𝑆
𝑡
≥𝑐𝜆
𝑡

exp {𝐿 (𝑎
𝑐
) − 𝑐𝑎

𝑐
𝜆
𝑡
+𝑐𝑎
𝑐
𝜆
𝑡
− 𝑎
𝑐
𝑆
𝑡
} 𝑑𝑄
𝑡

= exp {𝐿 (𝑎
𝑐
) − 𝑐𝑎

𝑐
𝜆
𝑡
}E
𝑄
exp {−𝑎

𝑐
𝛽
𝑡
𝑈
𝑡
𝐼
{𝑈
𝑡
≥0}
} = 𝐴

𝑡
𝐵
𝑡
,

(19)

where E
𝑄
is the expectation after the change of measure

𝑑𝑄
𝑡

𝑑𝑃

= exp {𝑎
𝑐
𝑆
𝑡
− 𝐿
𝑡
(𝑎
𝑐
)} ,

𝑈
𝑡
=

𝑆
𝑡
− 𝑐𝜆
𝑡

𝛽
𝑡

, 𝛽
𝑡
= 𝜎
𝑐
√𝜆
𝑡
.

(20)

By Lemma 3, we have the following expression of 𝐴
𝑡
.

Lemma5. For all 𝑐 > 1/(2𝛼−1), when 𝑡 approaches𝑇 enough,

𝐴
𝑡
= exp {−𝐼 (𝑐) 𝜆

𝑡
+ 𝐻 (𝑎

𝑐
)} (1 + 𝑂 ((𝑇 − 𝑡)

𝑐
)) . (21)

For 𝐵
𝑡
, one gets the following.

Lemma 6. For all 𝑐 > 1/(2𝛼 − 1), the distribution of 𝑈
𝑡
under

𝑄
𝑡
converges to𝑁(0, 1) distribution. Furthermore, there exists

a sequence 𝜓
𝑘
such that, for any 𝑝 > 0 when 𝑡 approaches 𝑇

enough,

𝐵
𝑡
=

1

𝑎
𝑐
𝜎
𝑐
√2𝜋𝜆

𝑡

(1 +

𝑝

∑

𝑘=1

𝜓
𝑘

𝜆
𝑘

𝑡

+ 𝑂 (𝜆
−(𝑝+1)

𝑡
)) . (22)

Proof of Theorem 2. The theorem follows from Lemma 5 and
Lemma 6.

It only remains to prove Lemma 6. Let Φ
𝑡
(⋅) be the

characteristic function of 𝑈
𝑡
under 𝑄

𝑡
; then we have the

following.

Lemma 7. When 𝑡 approaches 𝑇, Φ
𝑡
belongs to 𝐿2(R) and,

for all 𝑢 ∈ R,

Φ
𝑡
(𝑢) = exp{−

𝑖𝑢√𝜆
𝑡
𝑐

𝜎
𝑐

}

× exp{(𝐿
𝑡
(𝑎
𝑐
+

𝑖𝑢

𝛽
𝑡

) − 𝐿
𝑡
(𝑎
𝑐
))} .

(23)

Moreover,

𝐵
𝑡
= E
𝑄
exp {−𝑎

𝑐
𝛽
𝑡
𝑈
𝑡
𝐼
{𝑈
𝑡
≥0}
} = 𝐶

𝑡
+ 𝐷
𝑡
, (24)

with

𝐶
𝑡
=

1

2𝜋𝑎
𝑐
𝛽
𝑡

∫

|𝑢|≤𝑠
𝑡

(1 +

𝑖𝑢

𝑎
𝑐
𝛽
𝑡

)

−1

Φ
𝑡
(𝑢) 𝑑𝑢,

𝐷
𝑡
=

1

2𝜋𝑎
𝑐
𝛽
𝑡

∫

|𝑢|>𝑠
𝑡

(1 +

𝑖𝑢

𝑎
𝑐
𝛽
𝑡

)

−1

Φ
𝑡
(𝑢) 𝑑𝑢,





𝐷
𝑡





= 𝑂 (exp {−𝐷𝜆1/3

𝑡
}) ,

(25)

where

𝑠
𝑡
= 𝑠(log( 𝑇

𝑇 − 𝑡

))

1/6

, (26)

for some positive constant 𝑠, and 𝐷 is some positive constant.

Proof. For any 𝑢 ∈ R,

Φ
𝑡
(𝑢) = E (exp {𝑖𝑢𝑈

𝑡
} exp {𝑎

𝑐
𝑆
𝑡
− 𝐿
𝑡
(𝑎
𝑐
)})

= exp{−
𝑖𝑢√𝜆
𝑡
𝑐

𝜎
𝑐

}

× exp{(𝐿
𝑡
(𝑎
𝑐
+

𝑖𝑢

𝛽
𝑡

) − 𝐿
𝑡
(𝑎
𝑐
))} .

(27)

By the same method as in the proof of Lemma 2.2 in [7]
by Bercu and Rouault, there exist two positive constants 𝜏
and 𝜅 such that





Φ
𝑡
(𝑢)





2

≤ (1 +

𝜏𝑢
2

𝜆
𝑡

)

−(𝜅/2)𝜆
𝑡

; (28)

therefore, Φ
𝑡
(⋅) belongs to 𝐿2(R), and by Parseval’s formula,

for some positive constant 𝑠, let

𝑠
𝑡
= 𝑠(log( 𝑇

𝑇 − 𝑡

))

1/6

; (29)

we get

𝐵
𝑡
=

1

2𝜋𝑎
𝑐
𝛽
𝑡

∫

|𝑢|≤𝑠
𝑡

(1 +

𝑖𝑢

𝑎
𝑐
𝛽
𝑡

)

−1

Φ
𝑡
(𝑢) 𝑑𝑢 +

1

2𝜋𝑎
𝑐
𝛽
𝑡

× ∫

|𝑢|>𝑠
𝑡

(1 +

𝑖𝑢

𝑎
𝑐
𝛽
𝑡

)

−1

Φ
𝑡
(𝑢) 𝑑𝑢

(30)

= : 𝐶
𝑡
+ 𝐷
𝑡
, (31)





𝐷
𝑡





= 𝑂 (exp {−𝐷𝜆1/3

𝑡
}) , (32)

where 𝐷 is some positive constant.
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Proof of Lemma 6. By Lemma 3, we have

𝐿
(𝑘)

𝑡
(𝑎
𝑐
)

𝜆
𝑡

= 𝐿
(𝑘)
(𝑎
𝑐
) +

𝐻
(𝑘)
(𝑎
𝑐
)

𝜆
𝑡

+

𝑂 (𝜆
𝑘

𝑡
(𝑇 − 𝑡)

−2𝑐
)

𝜆
𝑡

. (33)

Noting that 𝐿(𝑎
𝑐
) = 0, 𝐿(𝑎

𝑐
) = 𝜎
2

𝑐
and

𝐿

(𝑎
𝑐
)

2

(

𝑖𝑢

𝛽
𝑡

)

2

𝜆
𝑡
= −

𝑢
2

2

, (34)

for any 𝑝 > 0, by Taylor expansion, we obtain

logΦ
𝑡
(𝑢) = −

𝑢
2

2

+ 𝜆
𝑡

2𝑝+3

∑

𝑘=3

(

𝑖𝑢

𝛽
𝑡

)

𝑘
𝐿
(𝑘)
(𝑎
𝑐
)

𝑘!

+

2𝑝+1

∑

𝑘=1

(

𝑖𝑢

𝛽
𝑡

)

𝑘
𝐻
(𝑘)
(𝑎
𝑐
)

𝑘!

+ 𝑂(

max (1, |𝑢|2𝑝+4)

𝜆
𝑝+1

𝑡

) ;

(35)

therefore, there exist integers 𝑞(𝑝), 𝑟(𝑝) and a sequence 𝜑
𝑘,𝑙

independent of𝑝; when 𝑡 approaches 𝑇, we get

Φ
𝑡
(𝑢) = exp{−𝑢

2

2

}(1 +

1

√𝜆
𝑡

2𝑝

∑

𝑘=0

𝑞(𝑝)

∑

𝑙=𝑘+1

𝜑
𝑘,𝑙
𝑢
𝑙

𝜆
𝑘/2

𝑡

+ 𝑂(

max (1, |𝑢|𝑟(𝑝))

𝜆
𝑝+1

𝑡

)) ,

(36)

where 𝑂 is uniform as soon as |𝑢| ≤ 𝑠
𝑡
.

Finally, we get the proof of Lemma 6 by Lemma 7
together with standard calculations on the 𝑁(0, 1) distri-
bution.
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