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Previous experimental and theoretical studies suggest that predator’s interference in predator-prey relationship provides better
descriptions of predator’s feeding over a range of predator-prey abundances. Also biological delays and environmental stochasticity
play an important role to describe the system and its values. In this present study, I consider a Gaussian white-noise induced
stochastic predator-prey model with the Beddington-DeAngelis functional response and gestation delay. Stochastic stability is
measured by second order moment terms by calculating the nonequilibrium fluctuation of the nondelayed system and Fourier
transform technique depicts the fluctuation of stochastic stability by introducing time lag. Different dynamical behaviors for both
situations have been illustrated numerically also.The biological implications of my analytical and numerical findings are discussed
critically.

1. Introduction

In ecology, predation describes a biological interaction where
a predator (an organism that is hunting) feeds on its prey (the
organism that is attacked). Predatorsmay ormay not kill their
prey prior to feeding on them, but the act of predation often
results in the death of its prey and the eventual absorption
of the prey’s tissue through consumption. Predators can have
profound impacts on the dynamics of their prey that depend
on how predator consumption is affected by prey density
(the predators functional response). Understanding the prey-
predator relationship is the central goal in ecology and a very
significant component of this is the predators rate of feeding
upon prey.The simplification of the foodweb structure due to
predator interference allows qualitative predictions concern-
ing the response of a food web to an external perturbation
[1–5]. Ginzburg and Akcakaya [6] demonstrated a positive
relationship between the abundances of all trophic levels
and concluded that the ratio-dependent models provide a
better representation of predator-prey interactions than prey-
dependent models. Predators functional response, defined as
the amount of prey catch per predator per unit of time, is
affected by the structure of prey habitat and predators hunting

ability [7, 8]. Predator’s functional response is defined as the
amount of prey catch per predator per unit of time. After the
pioneering studies of [9], that is, linear, only prey-dependent
and ratio-dependent functional response, response functions
of predators which depends on both prey and predator
abundances, can provide better descriptions of predator
feeding over a range of predator-prey abundances because
of predator interference. More recent theoretical work has
demonstrated that the mathematical form of the feeding rate
can influence the distribution of predators through space
[10], the stability of enriched predator-prey systems [11, 12]
correlations between nutrient enrichment and the biomass
of higher trophic levels [11], and the length of food chains
[13]. So, a prey-predator model with Beddington-DeAngelis
functional response is represented by

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝑎𝑥𝑦

1 + 𝛽𝑦 + 𝛼𝑥
,

𝑑𝑦

𝑑𝑡
=

𝑒𝑎𝑥𝑦

1 + 𝛽𝑦 + 𝛼𝑥
− 𝜇𝑦,

(1)

where 𝑟, 𝑘, 𝑎, 𝛼, 𝛽, 𝑒, and 𝜇 are assumed to be positive here.
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Delay is frequently used in a predator-preymodel tomake
the model biologically more realistic. Recently, researchers
are using more than one delay to study the effect of past
history of the system populations [14–18], as in reality time
delays occur in almost every biological situation [19] and
are assumed to be one of the reasons of regular fluctuations
in population density [20]. Delay is frequently introduced
in a biologically realistic predator-prey model. In a review
paper of predator-prey models with discrete delay, Ruan
[21] discussed different types of delays and the dynamics of
the corresponding models. Reproduction of predator after
consuming prey is not instantaneous but mediated by some
time lag required for gestation. So, time lag between capturing
prey and its corresponding contribution to predator’s growth
is an important factor tomodel formulation and its biological
clarification [21]. So, themodel system (1)with gestation delay
𝜏 is represented by

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝑎𝑥𝑦

1 + 𝛽𝑦 + 𝛼𝑥
,

𝑑𝑦

𝑑𝑡
=

𝑒𝑎𝑥 (𝑡 − 𝜏) 𝑦

1 + 𝛽𝑦 (𝑡 − 𝜏) + 𝛼𝑥 (𝑡 − 𝜏)
− 𝜇𝑦

(2)

and this model is extensively studied by [2].
Deterministic model in ecology does not usually incor-

porate environmental fluctuation; they are often justified by
the implicit assumption that, in large populations, stochastic
deviations are small enough to be ignored. Deterministic
model will prove ecologically useful only if the dynamical
patterns they reveal are still in evidence when stochastic
effects are introduced. For terrestrial system, the environ-
mental variability is large at both short and long time periods
and could be expected to develop internal mechanisms to
the system which would cope with short term variability
and minimize the effects of long term variations; hence
analysis of the system with white noise gives better results.
Uncertain growth of populations is usually considered as an
effect of environmental stochasticity. Reproduction of species
depends on various factors, such as temperature, humidity,
parasites and pathogens, and environmental pollution [22].
Since physical and biological environments of populations are
not totally predictable, the growth of populations should be
considered as a stochastic process rather than a deterministic
one [23]. In spite of some shortcomings, Gaussian white
noise has been proved extremely useful to model rapidly
fluctuating phenomena [24, 25]. The basic mechanism and
factors of population growth like the resources and vital rates
birth, death, and so forth change nondeterministically due
to random environment and they are the main parameters
subject to coupling of the system with its environment [25–
35]. Here we assume that fluctuations in the environment
will manifest themselves mainly as fluctuations in the growth
coefficients of the prey and predator since these are the
main parameters subject to coupling of a prey-predator pair
with its environment [34, 35]. So, growth terms of both
prey and predator are perturbed by additive white noise
[25, 33]. Therefore, model system (2) by introducing the

environmental stochasticity in the form of Gaussian white
noise is represented by

𝑑𝑥

𝑑𝑡
= 𝑥 [𝑟 (1 −

𝑥

𝑘
) + 𝜂
1
(𝑡)] −

𝑎𝑥𝑦

1 + 𝛽𝑦 + 𝛼𝑥
,

𝑑𝑦

𝑑𝑡
= 𝑦 [−𝜇 + 𝜂

2
(𝑡)] +

𝑒𝑎𝑥 (𝑡 − 𝜏) 𝑦

1 + 𝛽𝑦 (𝑡 − 𝜏) + 𝛼𝑥 (𝑡 − 𝜏)
,

(3)

where the perturbed terms 𝜂
1
(𝑡) and 𝜂

2
(𝑡) are assumed to be

the independent Gaussian white noise.
In the next section, we perform the stochastic scenario

of nondelayed system of the model system (1). We perform
the stochastic scenario of delayed system (3) of the model
system in Section 3. Numerical computation is performed
in Section 4 and the paper ends with a brief discussion in
Section 5.

2. Stochastic Scenario of Nondelayed System

I have so far considered an exact deterministic representation
for the external force which derives the birth and death rates.
In this section, I introduce the environmental stochasticity
in the form of Gaussian white noise in the growth terms
of both prey and predator equations. The model system (1),
in this case, will be represented by the following stochastic
differential equations:

𝑑𝑥

𝑑𝑡
= 𝑥 [𝑟 (1 −

𝑥

𝑘
) + 𝜂
1
(𝑡)] −

𝑎𝑥𝑦

1 + 𝛽𝑦 + 𝛼𝑥
,

𝑑𝑦

𝑑𝑡
= 𝑦 [−𝜇 + 𝜂

2
(𝑡)] +

𝑒𝑎𝑥𝑦

1 + 𝛽𝑦 + 𝛼𝑥
,

(4)

where the perturbed terms 𝜂
1
(𝑡) and 𝜂

2
(𝑡) are assumed

to be the independent Gaussian white noise satisfying the
conditions

⟨𝜂
𝑗
(𝑡)⟩ = 0, ⟨𝜂

𝑗
(𝑡
1
) 𝜂
𝑗
(𝑡
2
)⟩ = 𝜖

𝑗
𝛿 (𝑡
1
− 𝑡
2
)

for 𝑗 = 1, 2.
(5)

Here 𝜖
𝑗
> 0 (𝑗 = 1, 2) are the intensities or strengths of the

random perturbations, 𝛿 is the Dirac delta function defined
by

𝛿 (𝑡) = {
1, for 𝑡

1
= 𝑡
2
,

0, otherwise,
(6)

and ⟨⋅⟩ represents the ensemble average of the stochastic
process.

To study the behavior of the system (4) about the steady
state 𝐸∗, we give the transformation 𝑥󸀠 = ln𝑥, 𝑦󸀠 = ln𝑦;
𝑥 = 𝑢 + 𝑥

∗
, 𝑦 = V + 𝑦∗ and then the system (4) reduces to the

following Itô type stochastic differential equations in terms of
deviation variables (𝑢, V):

𝑑𝑢

𝑑𝑡
= 𝑎
1
𝑢 + 𝑏
1
𝑢
2
+ 𝑐
1
V + 𝑑
1
V2 + 𝑒

1
𝑢V + 𝜂

1
(𝑡) ,

𝑑V
𝑑𝑡

= 𝑎
2
𝑢 + 𝑏
2
𝑢
2
+ 𝑐
2
V + 𝑑
2
V2 + 𝑒

2
𝑢V + 𝜂

2
(𝑡) ,

(7)
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where

𝑎
1
= −

𝑟𝑥
∗

𝑘
+

𝑎𝛼𝑥
∗
𝑦
∗

(1 + 𝛽𝑦∗ + 𝛼𝑥∗)
2
,

𝑏
1
= −

𝑟

𝑘
+

𝑎𝛼𝑦
∗
(1 + 𝛽𝑦

∗
)

(1 + 𝛽𝑦∗ + 𝛼𝑥∗)
3
, 𝑐

1
= −

𝑎𝑥
∗
(1 + 𝛼𝑥

∗
)

(1 + 𝛽𝑦∗ + 𝛼𝑥∗)
2
,

𝑑
1
=

𝑎𝛽𝑥
∗
(1 + 𝛼𝑥

∗
)

(1 + 𝛽𝑦∗ + 𝛼𝑥∗)
3
,

𝑒
1
= −

𝑎 (1 + 𝛼𝑥
∗
+ 𝛽𝑦
∗
+ 2𝛼𝛽𝑥

∗
𝑦
∗
)

(1 + 𝛽𝑦∗ + 𝛼𝑥∗)
3

,

𝑎
2
=

𝑒𝑎𝑦
∗
(1 + 𝛽𝑦

∗
)

(1 + 𝛽𝑦∗ + 𝛼𝑥∗)
2
, 𝑏

2
= −

𝑒𝑎𝛼𝑦
∗
(1 + 𝛽𝑦

∗
)

(1 + 𝛽𝑦∗ + 𝛼𝑥∗)
3
,

𝑐
2
= −

𝑒𝑎𝛽𝑥
∗
𝑦
∗

(1 + 𝛽𝑦∗ + 𝛼𝑥∗)
2
, 𝑑

2
= −

𝑒𝑎𝛽𝑥
∗
(1 + 𝛼𝑥

∗
)

(1 + 𝛽𝑦∗ + 𝛼𝑥∗)
3
,

𝑒
2
=
𝑒𝑎 (1 + 𝛼𝑥

∗
+ 𝛽𝑦
∗
+ 2𝛼𝛽𝑥

∗
𝑦
∗
)

(1 + 𝛽𝑦∗ + 𝛼𝑥∗)
3

.

(8)

The solutions {𝑢(𝑡), V(𝑡)} of (7) subject to known initial values
{𝑢(𝑡
0
), V(𝑡
0
)} determine the statistical behavior of the model

system (4) near the steady state 𝐸∗ at time 𝑡 > 𝑡
0
.

2.1. Statistical Linearization: Moment Equations. A method
[24, 36, 37] for estimating the dynamical statistical properties
of the solutions of nonlinear stochastic differential equations
is presented in this section. The nonlinear stochastic differ-
ential equation is linearized within a small interval of the
independent variable and statistical properties are expressed
analytically within the interval. Long term behavior of the
solution process is obtained by appropriately matching the
approximate solutions at the boundaries between intervals.
The method is applied to this model for which the exact
time-dependent moments can be obtained by numerical
methods. The calculations demonstrate that the method
represents a significant improvement over the method of
statistical linearization in time regimes far from equilibrium.
The statistical linearization of the system (7) is represented by
the following system of linear equations:

𝑑𝑢

𝑑𝑡
= 𝛼
1
𝑢 + 𝛽
1
V + 𝑓
1
+ 𝜂
1
(𝑡) ,

𝑑V
𝑑𝑡

= 𝛼
2
𝑢 + 𝛽
2
V + 𝑓
2
+ 𝜂
2
(𝑡) ,

(9)

where the errors in the above linearization are given by

𝑒
1
= 𝑎
1
𝑢 + 𝑏
1
𝑢
2
+ 𝑐
1
V + 𝑑
1
V2 + 𝑒

1
𝑢V − 𝛼

1
𝑢 − 𝛽
1
V − 𝑓
1
,

𝑒
2
= 𝑎
2
𝑢 + 𝑏
2
𝑢
2
+ 𝑐
2
V + 𝑑
2
V2 + 𝑒

2
𝑢V − 𝛼

2
𝑢 − 𝛽
2
V − 𝑓
2
.

(10)

The unknown coefficients 𝛼
𝑖
, 𝛽
𝑖
, and 𝑓

𝑖
(𝑖 = 1, 2) of (9) are

to be determined from the minimization of the averages of

the squares of errors in (10). We determine the unknown
coefficients [24, 26, 27] by demanding that

𝜕

𝜕𝛼
𝑖

⟨𝑒
2

𝑖
⟩ =

𝜕

𝜕𝛽
𝑖

⟨𝑒
2

𝑖
⟩ =

𝜕

𝜕𝑓
𝑖

⟨𝑒
2

𝑖
⟩ = 0, 𝑖 = 1, 2. (11)

Also, I use the following expressions [24]: I now express
⟨𝑢
3
⟩, ⟨𝑢
4
⟩, ⟨𝑢
2V⟩, ⟨𝑢V2⟩, ⟨𝑢2V2⟩, and ⟨𝑢3V⟩ in terms of the first

two moments of each of the variables and the correlation
coefficient using a bivariate Gaussian distribution. Since I am
interested only in the first few moments, it is convenient to
use the characteristic function

𝜒 (]
1
, ]
2
) = exp [𝑖 ⟨𝑢⟩ ]1 + 𝑖 ⟨V⟩ ]2

−
1

2
{𝜎
2

1
]2
1
+ 𝜎
2

2
]2
2
+ 2𝜌
12
𝜎
1
𝜎
2
]
1
]
2
}] ,

𝜎
2

1
= ⟨𝑢
2
⟩ − ⟨𝑢⟩

2
,

𝜎
2

2
= ⟨V2⟩ − ⟨V⟩2,

𝜌
12
=
⟨𝑢V⟩ − ⟨𝑢⟩ ⟨V⟩

𝜎
1
𝜎
2

,

(12)

using

⟨𝑢
𝑛V𝑚⟩ = (−1)𝑛+𝑚

𝜕
𝑛+𝑚

𝜕]𝑛
1
𝜕]𝑚
2

[𝜒 (]
1
, ]
2
)]
󵄨󵄨󵄨󵄨]
1
=]
2
=0
. (13)

I get

⟨𝑢
4
⟩ = 3⟨𝑢

2
⟩
2

− 2⟨𝑢⟩
4
,

⟨𝑢
2V2⟩ = ⟨𝑢

2
⟩ ⟨V2⟩ + 2⟨𝑢V⟩2 − 2⟨𝑢⟩2⟨V⟩2,

⟨𝑢
3V⟩ = 3 ⟨𝑢2⟩ ⟨𝑢V⟩ − 2⟨𝑢⟩3 ⟨V⟩ ,

⟨𝑢
3
⟩ = 3 ⟨𝑢⟩ ⟨𝑢

2
⟩ − 2⟨𝑢⟩

3
,

⟨V3⟩ = 3 ⟨V⟩ ⟨V2⟩ − 2⟨V⟩3,

⟨𝑢
2V⟩ = 2 ⟨𝑢⟩ ⟨𝑢V⟩ − 2⟨𝑢⟩2 ⟨V⟩ + ⟨𝑢2⟩ ⟨V⟩ ,

⟨𝑢V2⟩ = 2 ⟨𝑢⟩ ⟨𝑢V⟩ − 2 ⟨𝑢⟩ ⟨V⟩2 + ⟨𝑢⟩ ⟨V2⟩ .

(14)

Then expressions for 𝛼
𝑖
, 𝛽
𝑖
, and 𝑓

𝑖
(𝑖 = 1, 2) are given by

𝛼
𝑖
= 𝑎
𝑖
+ 2𝑏
𝑖 ⟨𝑢⟩ + 𝑒𝑖 ⟨V⟩ , 𝛽

𝑖
= 𝑐
𝑖
+ 2𝑑
𝑖 ⟨V⟩ + 𝑒𝑖 ⟨𝑢⟩ ,

𝑓
𝑖
= 𝑏
𝑖
(⟨𝑢
2
⟩ − 2⟨𝑢⟩

2
)

+ 𝑑
𝑖
(⟨V2⟩ − 2⟨V⟩2) + 𝑒𝑖 (⟨𝑢V⟩ − 2 ⟨𝑢⟩ ⟨V⟩) .

(15)

The coefficients are the functions of the parameters involved
with the model system and also of the different moments
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involving 𝑢 and V. After some algebraic manipulations, I
obtain the following system of first two moments:

𝑑 ⟨𝑢⟩

𝑑𝑡
= 𝑎
1 ⟨𝑢⟩ + 𝑏1 ⟨𝑢

2
⟩ + 𝑐
1 ⟨V⟩ + 𝑑1 ⟨V

2
⟩ + 𝑒
1 ⟨𝑢V⟩ ,

𝑑 ⟨V⟩
𝑑𝑡

= 𝑎
2 ⟨𝑢⟩ + 𝑏2 ⟨𝑢

2
⟩ + 𝑐
2 ⟨V⟩ + 𝑑2 ⟨V

2
⟩ + 𝑒
2 ⟨𝑢V⟩ ,

𝑑 ⟨𝑢
2
⟩

𝑑𝑡
= 2 [𝑎

1
⟨𝑢
2
⟩ + 𝑏
1
⟨𝑢
3
⟩ + 𝑐
1 ⟨𝑢V⟩

+ 𝑑
1
⟨𝑢V2⟩ + 𝑒

1
⟨𝑢
2V⟩] + 2𝜖

1
,

𝑑 ⟨V2⟩

𝑑𝑡
= 2 [𝑎

2 ⟨𝑢V⟩ + 𝑏2 ⟨𝑢
2V⟩ + 𝑐

2
⟨V2⟩

+𝑑
2
⟨V3⟩ + 𝑒

2
⟨𝑢V2⟩] + 2𝜖

2
,

𝑑 ⟨𝑢V⟩
𝑑𝑡

= 𝑎
1 ⟨𝑢V⟩ + 𝑏1 ⟨𝑢

2V⟩ + 𝑐
1
⟨V2⟩

+ 𝑑
1
⟨V3⟩ + 𝑒

1
⟨𝑢V2⟩ + 𝑎

2
⟨𝑢
2
⟩

+ 𝑏
2
⟨𝑢
3
⟩ + 𝑐
2 ⟨𝑢V⟩ + 𝑑2 ⟨𝑢V

2
⟩ + 𝑒
2
⟨𝑢
2V⟩ ,

(16)

where I have used the relations

⟨𝑢𝜂
1
⟩ = 𝜖
1
, ⟨𝑢𝜂

2
⟩ = ⟨V𝜂

1
⟩ = 0, ⟨V𝜂

2
⟩ = 𝜖
2
. (17)

Let me now assume that the system size expansion is valid
such that the correlations 𝜖

𝑖
(𝑖 = 1, 2) given by (17) decrease

with the increase of the population size and they are assumed
to be of the order of the inverse of the population size𝑁 [24,
27, 28]:

𝜖
𝑖
∝ 𝑜[

1

𝑁
] , 𝑖 = 1, 2. (18)

Therefore, using the expressions (14) and (17) and keeping the
lowest order terms and replacing the averages ⟨𝑢⟩ and ⟨V⟩ by
their steady state values ⟨𝑢⟩ = ⟨V⟩ = 0 [29], I get the following
reduced equations for second order moments:

[𝐷 − 2𝑎
1
] ⟨𝑢
2
⟩ = 2𝑐

1 ⟨𝑢V⟩ ,

[𝐷 − 2𝑐
2
] ⟨V2⟩ = 2𝑎

2 ⟨𝑢V⟩ ,

[𝐷 − 𝑎
1
− 𝑐
2
] ⟨𝑢V⟩ = 𝑎2 ⟨𝑢

2
⟩ + 𝑐
1
⟨V2⟩ ,

(19)

where𝐷 stands for the operator 𝑑/𝑑𝑡.

2.2. Nonequilibrium Fluctuation and Stability Analysis. Elim-
inating ⟨𝑢2⟩ and ⟨V2⟩ from the equations of (19), I get the
following third order linear ordinary differential equation in
⟨𝑢V⟩:

[𝐷
3
+ 3𝐴𝐷

2
+ 3𝐵𝐷 + 𝐶] ⟨𝑢V⟩ = 0. (20)

Let ⟨𝑢V⟩ = 𝑒
𝑚𝑡 be a trial solution of (20) and the auxiliary

equation is given by

𝑚
3
+ 3𝐴𝑚

2
+ 3𝐵𝑚 + 𝐶 = 0, (21)

where

𝐴 = − (𝑎
1
+ 𝑐
2
) , 𝐵 =

2

3
{(𝑎
1
+ 𝑐
2
)
2

+ 2 (𝑎
1
𝑐
2
− 𝑎
2
𝑐
1
)} ,

𝐶 = −4 (𝑎
1
+ 𝑐
2
) (𝑎
1
𝑐
2
− 𝑎
2
𝑐
1
) .

(22)

Let 𝐻 = 𝐴
2
− 𝐵. Then the nature and structure of the roots

of (21) will solely be determined by the quantities 𝐴 and𝐻. I
discuss the following two cases.

Case 1 (𝐻 < 0). In this case, roots of (21) are given by

𝑚
1
= −𝐴, 𝑚

2,3
= −𝐴 ± 𝑖√3𝐻

0
,

where 𝐻
0
= −𝐻 (> 0) .

(23)

The solutions of the linear system (20) are then given by

⟨𝑢V⟩ = 𝐴1𝑒
−𝐴𝑡

+ 𝑒
−𝐴𝑡

[𝐴
2
cos(√3𝐻

0
𝑡)

+𝐴
3
sin(√3𝐻

0
𝑡)] ,

⟨V2⟩ = 𝐵
1
𝑒
−𝐴𝑡

+ 𝑒
−𝐴𝑡

[𝐵
2
cos(√3𝐻

0
𝑡)

+ 𝐵
3
sin(√3𝐻

0
𝑡)] + 𝑃

1
𝑒
2𝑎
1
𝑡
,

⟨𝑢
2
⟩ = 𝐶

1
𝑒
−𝐴𝑡

+ 𝑒
−𝐴𝑡

[𝐶
2
cos(√3𝐻

0
𝑡)

+ 𝐶
3
sin(√3𝐻

0
𝑡)] + 𝑃

2
𝑒
2𝑐
2
𝑡
,

(24)

where 𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, (𝑖 = 1, 2, 3), 𝑃

1
, and 𝑃

2
are constants.

Thus, each of ⟨𝑢V⟩, ⟨𝑢2⟩, ⟨V2⟩, given by (24), converges with
increasing time if 𝐴 > 0, that is, if 𝑎

1
+ 𝑐
2
< 0, depicting the

stochastically stable situation of the system (4) in the sense of
second order moments [38]. On the other hand, if 𝑎

1
+𝑐
2
> 0,

then 𝐴 < 0 and the system is stochastically unstable.

Case 2 (𝐻 > 0). In this case, roots of (21) are given by

𝑚
1
= −𝐴, 𝑚

2,3
= −𝐴 ± √3𝐻. (25)

The solutions of the linear system (20) are then given by

⟨𝑢V⟩ = 𝐹1𝑒
−𝐴𝑡

+ 𝐹
2
𝑒
(−𝐴+√3𝐻)𝑡

+ 𝐹
3
𝑒
(−𝐴−√3𝐻)𝑡

,

⟨V2⟩ = 𝐺
1
𝑒
−𝐴𝑡

+ 𝐺
2
𝑒
(−𝐴+√3𝐻)𝑡

+ 𝐺
3
𝑒
(−𝐴−√3𝐻)𝑡

+ 𝑄
1
𝑒
2𝑎
1
𝑡
,

⟨𝑢
2
⟩ = 𝐾

1
𝑒
−𝐴𝑡

+ 𝐾
2
𝑒
(−𝐴+√3𝐻)𝑡

+ 𝐾
3
𝑒
(−𝐴−√3𝐻)𝑡

+ 𝑄
2
𝑒
2𝑐
2
𝑡
,

(26)

where 𝐹
𝑖
, 𝐺
𝑖
,𝐾
𝑖
, (𝑖 = 1, 2, 3),𝑄

1
, and𝑄

2
are constants. In this

case, we observe that each of ⟨𝑢V⟩, ⟨𝑢2⟩, ⟨V2⟩, given by (26),
converges with increasing time when 𝐴 > 0 (i.e., 𝑎

1
+ 𝑐
2
<

0) and √3𝐻 < 𝐴 hold simultaneously and, then system will
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Figure 1: Behavior of the model system (4) in the sense of second order moments: (a) stable behavior for 𝑎 = 0.8 and (b) unstable behavior
for 𝑎 = 0.1. Other parameters are as in text.
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Figure 2: (a)-(c) and (b)-(d) depict, respectively, the time evolution and corresponding phase trajectory of the stochasticmodel system (4) for
𝑎 = 0.8 and 𝑎 = 0.1. (a-b) describes the stable behavior and (c-d) describes the unstable behavior of the system (4).The rest of the parameters
are as in text.
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Figure 3: Behavior of the model system (4) in the sense of second order moments: (a) stable behavior for 𝜇 = 0.2, 𝛽 = 1.5, and 𝑎 = 0.8 and
(b) unstable behavior for 𝜇 = 0.2, 𝛽 = 0.5, and 𝑎 = 0.1. Other parameters are as in text.

said to be stochastically stable in the sense of second order
moment.The system, on the other hand, is unstable when 𝑎

1
+

𝑐
2
> 0 or √3𝐻 < 𝐴 or both of them hold. Thus, exchange of

stability occurs when 𝑎
1
+ 𝑐
2
= 0 and√3𝐻 = 𝐴.

3. Stochastic Scenario of Delayed System

Consider
𝑑𝑥

𝑑𝑡
= 𝑥 [𝑟 (1 −

𝑥

𝑘
) + 𝜂
1
(𝑡)] −

𝑎𝑥𝑦

1 + 𝛽𝑦 + 𝛼𝑥
,

𝑑𝑦

𝑑𝑡
= 𝑦 [−𝜇 + 𝜂

2
(𝑡)] +

𝑒𝑎𝑥 (𝑡 − 𝜏) 𝑦

1 + 𝛽𝑦 (𝑡 − 𝜏) + 𝛼𝑥 (𝑡 − 𝜏)
.

(27)

Again using the transformations 𝑥󸀠 = ln𝑥, 𝑦󸀠 = ln𝑦, and
𝑥 = 𝑢+𝑥

∗
, 𝑦 = V+𝑦∗ and assuming the delay to be very small,

the system (27) (to a first approximation) can be written as
𝑑𝑢

𝑑𝑡
= 𝑎
1
𝑢 + 𝑐
1
V + 𝜂
1
,

𝑑V
𝑑𝑡

= 𝑎
2
𝑢 (𝑡 − 𝜏) + 𝑐

2
V (𝑡 − 𝜏) + 𝜂

2
,

(28)

where 𝑎
𝑖
and 𝑐
𝑖
(𝑖 = 1, 2) are given by (8).

3.1. Fourier Transforms: Spectral Density. Taking Fourier
transform of both sides of each of the equations in (28) and
following [20, 26], I obtain

̄𝜂
1
(𝑠) = 𝑖𝑠𝑢̄ (𝑠) − 𝑎

1
𝑢̄ (𝑠) − 𝑐

1
V̄ (𝑠) ,

̄𝜂
2
(𝑠) = 𝑖𝑠V̄ (𝑠) − 𝑎

2
𝑢̄ (𝑠) 𝑒

−𝑖𝑠𝜏
− 𝑐
2
V̄ (𝑠) 𝑒−𝑖𝑠𝜏,

(29)

where ̄𝑛(𝑠) = ∫
+∞

−∞
𝑛(𝑡)𝑒
−𝑖𝑠𝑡
𝑑𝑡.

The system of equations (29) can be written in matrix
form as

𝐴𝑋 = 𝐵, (30)

where

𝐴 = (
−𝑎
1
+ 𝑖𝑠 −𝑐

1

−𝑎
2
𝑒
−𝑖𝑠𝜏

−𝑐
2
𝑒
−𝑖𝑠𝜏

+ 𝑖𝑠
) , 𝑋 = (

𝑢̄ (𝑠)

V̄ (𝑠)) ,

𝐵 = (
̄𝜂
1

̄𝜂
2

) .

(31)

Now

𝑀 = det𝐴

= {(𝑎
1
𝑐
2
− 𝑎
2
𝑐
1
) cos (𝑠𝜏) −𝑠𝑐

2
sin (𝑠𝜏) − 𝑠2}

− 𝑖 {(𝑎
1
𝑐
2
− 𝑎
2
𝑐
1
) sin (𝑠𝜏) + 𝑠𝑐

2
cos (𝑠𝜏) + 𝑎

1
𝑠} .

(32)

I assume that 𝐴−1 exists. Then I have 𝐴−1 = (𝑎
𝑖𝑗
)
2×2

, where

𝑎
11
=
−𝑐
2
cos (𝑠𝜏) + 𝑖 {𝑠 + 𝑐

2
sin (𝑠𝜏)}

𝑀
, 𝑎

12
=
𝑐
1

𝑀
,

𝑎
21
=
𝑎
2
(cos (𝑠𝜏) − 𝑖 sin (𝑠𝜏))

𝑀
, 𝑎

22
=
−𝑎
1
+ i𝑠
𝑀

.

(33)

Then the solution of (30) can be written as

𝑢̄ (𝑠) =

2

∑

𝑗=1

𝑎
1𝑗
𝜂
𝑗
, V̄ (𝑠) =

2

∑

𝑗=1

𝑎
1𝑗
𝜂
𝑗
. (34)
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Figure 4: (a)-(c) and (b)-(d) depict, respectively, the time evolution and corresponding phase trajectory of the stochastic model system (4)
for 𝜇 = 0.2, 𝛽 = 1.5, and 𝑎 = 0.8 and 𝜇 = 0.2, 𝛽 = 0.5, and 𝑎 = 0.1. (a-b) describes the stable behavior and (c-d) describes the unstable
behavior of the system (4). The rest of the parameters are as in text.

Now following [20, 26] and using (34), the spectral density of
𝑢 is given by

𝑆
𝑢
(𝜔)

= lim
𝑇→∞

1

𝑇
∬

𝑇/2

−𝑇/2

⟨𝑢 (𝑡) 𝑢 (𝑡
󸀠
)⟩ exp {𝑖𝜔 (𝑡󸀠 − 𝑡)} 𝑑𝑡 𝑑𝑡󸀠

=

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
1𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑆
𝜂
𝑗
(𝜔) .

(35)

Similarly the spectral density of V is given by

𝑆V =

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
2𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑆
𝜂
𝑗
(𝜔) . (36)

Therefore the fluctuation intensity (variance) of 𝑢 is given by

𝜎
2

𝑢
=

1

2𝜋
∫

+∞

−∞

𝑆
𝑢
(𝜔) 𝑑𝜔

=
1

2𝜋
∫

+∞

−∞

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
1𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑆
𝜂
𝑗
(𝜔) 𝑑𝜔

=
1

2𝜋
∫

+∞

−∞

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
1𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜔,

(37)

since 𝑆
𝜂
𝑗

(𝜔) = 1.
Similarly the fluctuation intensity of V is given by

𝜎
2

V =
1

2𝜋
∫

+∞

−∞

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
2𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜔. (38)

Let 𝜏 be very small and the following two conditions hold:
(i) (𝑎
1
𝑐
2
−𝑎
2
𝑐
1
) < min{(𝑐2

1
+𝑐
2

2
)/(1+𝑐

2
𝜏), (1+𝑐

2
𝜏)(𝑎
2

1
+𝑎
2

2
)},

(ii) 4(1 + 𝑐
2
𝜏)(𝑎
1
𝑐
2
− 𝑎
2
𝑐
1
) < {(𝑎

1
𝑐
2
− 𝑎
2
𝑐
1
)𝜏 − 𝑎

1
− 𝑐
2
},
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where (𝑎
1
𝑐
2
− 𝑎
2
𝑐
1
) = (𝑒𝑎𝑥

∗
𝑦
∗
/(1 + 𝛽𝑦

∗
+ 𝛼𝑥
∗
)
2
)[𝑟𝛽𝑥
∗
/𝐾 +

𝑎/(1 + 𝛽𝑦
∗
+ 𝛼𝑥
∗
)] > 0.

Then after some calculation, I obtain the fluctuation
intensities of 𝑢 and V as

𝜎
2

𝑢
=
𝑐
2

1
+ 𝑐
2

2
− (𝑎
1
𝑐
2
− 𝑎
2
𝑐
1
) (1 + 𝑐

2
𝜏)

2ℎ (𝑎
1
𝑐
2
− 𝑎
2
𝑐
1
)

,

𝜎
2

V =
(1 + 𝑐
2
𝜏) (𝑎
2

1
+ 𝑎
2

2
) − (𝑎

1
𝑐
2
− 𝑎
2
𝑐
1
)

2 (1 + 𝑐
2
𝜏) ℎ (𝑎

1
𝑐
2
− 𝑎
2
𝑐
1
)

,

(39)

where ℎ = [{(𝑎
1
𝑐
2
−𝑎
2
𝑐
1
)𝜏−𝑎
1
−𝑐
2
}
2
−4(1+𝑐

2
𝜏)(𝑎
1
𝑐
2
−𝑎
2
𝑐
1
)]
1/2.

Let

Ω
1
=
𝑐
2

1
+ 𝑐
2

2
− (𝑎
1
𝑐
2
− 𝑎
2
𝑐
1
) (1 + 𝑐

2
𝜏)

2 (𝑎
1
𝑐
2
− 𝑎
2
𝑐
1
)

,

Ω
2
=
(1 + 𝑐
2
𝜏) (𝑎
2

1
+ 𝑎
2

2
) − (𝑎

1
𝑐
2
− 𝑎
2
𝑐
1
)

2 (1 + 𝑐
2
𝜏) (𝑎
1
𝑐
2
− 𝑎
2
𝑐
1
)

.

(40)

Following the criteria of stability in the stochastic environ-
ment [30], it is seen that the deterministic stability criteria
are not enough to determine the stability of the system
in a rapidly fluctuating environment. ℎ ≪ Ω

𝑖
, (𝑖 =

1, 2), in rapidly fluctuating environment; then populations
exhibit abnormally large fluctuations which rapidly lead to
extinction. In the intermediate region where ℎ and Ω

𝑖
, (𝑖 =

1, 2), are commensurate, the populations are likely to undergo
significant fluctuations, even though they persist for long
time. Finally, if ℎ ≫ Ω

𝑖
, (𝑖 = 1, 2), population fluctuations

are relatively small and the environment is effectively deter-
ministic. These results are in good agreement with those of
[25, 30–33].

4. Numerical Simulation

In the numerical experiments of the stochastic system, I
consider the set of parameter values taken as 𝑟 = 0.4, 𝑘 =

5, 𝑎 = 0.8, 𝛼 = 0.2, 𝛽 = 1.5, 𝑒 = 0.6, and 𝜇 = 0.2

and approximate the solutions of the system (4) (similarly
for the Ito SDEs (7)) by Euler-Maruyama method. For 𝑐 =

0.45, we compute the values of 𝐴 and 𝐻 as 0.4222 (>0)
and −0.1801 (<0), respectively. Thus, conditions in Case 1 are
satisfied and the coexisting equilibrium point 𝐸∗ is therefore
stable in the sense of second order moment (Figure 1(a)). It
means that the second moments of the system state vectors
approach zero asymptotically. At 𝑎 = 0.1, the above quantities
become 𝐴 = −0.1475 (<0) and 𝐻 = −0.4485 (<0) and the
coexisting equilibrium point 𝐸∗ is unstable (Figure 1(b)).The
time evolutions and phase plane diagrams of the system (4)
for the above two cases are shown in Figure 2. If I choose
𝜇 = 0.2, 𝛽 = 1.5, 𝑎 = 0.8, then 𝐻 = 0.8878 (>0), 𝐴 =

1.7723 (>0), and √3𝐻 = 1.632 (>0). Thus, all conditions of
Case 2 are satisfied and the system (4) becomes stable in the
sense of second order moments (Figure 3(a)). If I consider
𝜇 = 0.2, 𝛽 = 0.5, 𝑎 = 0.1, keeping other parameter
values unchanged, then 𝐻 = 0.4284 (>0), 𝐴 = −1.2979

(<0), and √3𝐻 = 1.1336 (>0) required for the stability are

violated. Therefore, the second order moments diverge with
increasing time (Figure 3(b)) and 𝐸∗ becomes unstable. The
corresponding time evolutions and phase plane diagrams are
shown in Figure 4.

5. Discussion

Understanding the relationship between predator and prey is
central goal in ecology. Predators rate of feeding upon prey
is one of the most significant components in the study of
predator-prey relationship. Predator’s interference in prey-
predator interaction is supposed to have significant role in
the stability of their interaction. Also the time lag between
prey capture and its corresponding positive feedback to
predator’s growth rate is a very significant part to realize
the system. The purpose of this work is to observe the
extent to which predator’s interference and gestation delay
drive the population dynamics of a predator-prey interaction
under fluctuating environment. Results show that predator’s
interference plays a significant role in changing the stochastic
stability of the system. To study the effect of environmental
fluctuation on the time-delayed predator-prey system (27),
I have superimposed Gaussian white noises on (2) and
then studied nonequilibrium fluctuation and stability of the
resulting stochastic model (27) by using Fourier transform
technique. Following the criteria of stability in the stochastic
environment [30], it is seen that the environmental noises
have a destabilizing effect on the system when ℎ ≪ Ω

𝑖
(𝑖 =

1, 2). Also the deterministic system and the noise-induced
stochastic system may behave alike with respect to stability
when ℎ ≪ Ω

𝑖
(𝑖 = 1, 2). Further, in the intermediate region

where ℎ andΩ
𝑖
(𝑖 = 1, 2) are commensurate, the populations

are likely to undergo significant fluctuations, even though
they persist for long time. It is well known that natural pop-
ulations of plants and animals neither increase indefinitely
to blanket the world nor become extinct (except in some
rare cases due to some rare reasons). Hence, in practice, we
often want to keep the prey and predator population to an
acceptable level in finite time. In order to accomplish this,
we strongly suggest that, in realistic field situations (where
effect of time-delay and environmental fluctuation can never
be violated), the parameters of the system should be regulated
in such a way that 𝐸∗ is deterministically stable and ℎ ≪

Ω
𝑖
(𝑖 = 1, 2).
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