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Differential equations of the form y: =f(t,y,y) where f is not
necessarily linear in its arguments represent certain physical phenomena and
are known for quite some time. The well known Clairut’s and Chrystal’s
equations fall into this category. Earlier we established the existence of a
(unique) solution of the nonstandard initial value problem
y = f(t, y, y), y(to) = Yo under certain natural hypotheses on f. In this paper,
we studied the stability of solutions of a nonstandard first order ordinary
differential system.
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1. INTRODUON

Differential equations of the form y= f(t,y,y) where f is not necessarily linear in its

arguments represent certain physical phenomena and are known for quite some time. The well

known Clairut’s and Chrystal’s equations fall into this category [4]. A few authors, notably E.L.

Inee [5], H.T. Davis [4] et. al. have given some methods for finding solutions of equations of the

above type. Apart from these, to the authors knowledge, there does not seem to exist any

systematic study of these equations.

In our earlier paper [7], we have studied the solutions of initial value problems (IVPs)
associated with the above type of equations. The next fundamental aspect of these equations is the

study of stability of solutions. In the present paper, we shall study the stability of solutions of a

system of the first order equations of the above type.

Before proceeding to the stability theorems we shall introduce a few notations, definitions

and present a few existence results under certain usual assumptions, we shall use the following

notation:
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X = [0,oo),

denotes the n-dimensional real space equipped with the box norm given by

I =. I=1, where z = column(zl, Z2,...,zn) {5 Rn,

s = {z R"lzl <_ c}, where c is a positive constant,

D is a connected subset of Rn with the non empty interior,

A denotes the interior of a subset A of

C(J, Rn) is the set of all continuous vector valued functions defined on a subinterval J of I

with values in Rn,

and y" denote the first and second order derivatives of y, respectively, if they exist.

V1 x V2 is the Cartesian product of two non-empty sets V1 and V2, taken in that order,

f(t, y, z) = column(fl(t, y, z), f2(t, y, z),..., fn(t, y, z)) is a vector valued not necessarily

linear function defined for (t,V, z) {5 1 x D x S with values in Rn,

denotes jth(j = 1, 2,..., n) component of a function g defined on I x D x S with values in

B- 1 is the inverse matrix of the matrix B, if it exists.

Consider the nonstandard initial value problem

y’ : .f t, y, y’), (I)

(o) = o (2)

where (to, Yo) {5 1 x D. Problem (1), (2) will be denoted by NSTD IVP.

Definition 1: By a solution of NSTD IVP (1),(2) we mean a continuously differentiable

function V {5 C(J, Rn), where jr is some subinterval of I containing t0, such that

(i)

(ii)
and

(iii)

(to) = o,
(y(t), y’(t)) {5 D x S for all t {5

y’(t) = f(t,y(t),y’(t)) holds for all t {5 J.

We shall denote a solution of problem (1),(2) by y(t, to, Yo) instead of y(t).

Also, consider the (not necessarily linear) functional equation
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z(-) - f( ",YO -I- / z(s)ds, z(. )). (3)
to

Definition : By a solution of equation (3) we mean a function z C(J, Rn), where jr is

some subinterval of I containing to, such that

(ii’) (Yo + f z(s)ds, z(t)) E D x S for all t E J

to
and t

(iii’) z(t) = f(t,yo + /z(s)ds, z(t)) holds for all t J.
to

The following result can be easily verified (see [7]):

Result 1: IVP (1), (2) has a [unique] solution if equation (3) has a [unique] solution.

Delinition 3: By a solution of system (1) we mean a continuously differentiable function

y C(J, Rn), where J is some subinterval of I, such that conditions (ii) and (iii) of Definition 1 are

true for t J.

Definition 4: Let b(t) be a solution of system (1) existing on the interval I. We say that

(t) is a stable solution of system (1) if for every e > 0 and to I there exists a 5(to, e) > 0 such that

whenever 19o- (to) < , where Yo E Do, then the solution y(t, to, Yo) exists for all t >_ to and

y(t, to, Yo)- ff(t) < e for t > to.

Let y(t) be an arbitrary solution of (1) existing on the interval [0, +oo). Substituting the

transformation

y=w+

into (1) we get

w’ = g(t, w, w’) (4)

where g(t, w, wt) = f(t, w + q, w’ + ’) f(t, , t).

We note that g(t, 0, 0) = 0, and that the stability of (t) is equivalent to the stability of the

zero solution (w(t) =_ 0) of system (4). For this reason, from now on we take D = {y e Rnlyl <_ b},
where b > 0 is a constant, little later we assume that f(t, 0,0) = 0 and we study the stability of the

zero solution of (1).

Let to I and Yo DO (i.e., Y01 < b). Assume that the function f satisfies the following
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conditions:

f(t,g,z) is continuous with respect to (t,y,z) E I D S,

f(,,z) s for n (,,z) 9s

(x)

and

f(t,V,z) f(t, V2,z2) < k I y2l + k2lz z2l for all

(t, yl, Zl), (t, y2, Z2) G. I xDxS, where 1 0 and 0 2 < 1 are constants.

Then we have the following estence result:

Resu : If conditions (I)-(III) are satisfied then IVP (1), (2) h a unique mlution

esting on the interval J = It0 -a, t0 + a] I, where is any real number such that

0 < a < rain((1 k2)lkl, (b- o )/)-

by

Proof. Consider the Banaeh space C(J,Rn) equipped with the supremum norm II II given

Ii z !1 = , zCt) I, e cCa, a").
t.J

Let M be the closed subset of C(J, Rn) defined by

M = {z e C(J, n")l II II -< }-
Denote by F the map on M defined by

t

(Fz)(t) = f(t,y0 + /z(s)ds, z(t)),z . M and t e J.

to
Using conditions (I)-(III), it is easy to see that F is a contraction on M and by the

contraction mapping theorem [6], F has a unique fLxed point in M. Hence by Result 1, IVP (1), (2)
has a unique solution existing on the interval J and the proof is complete.

The following corollary is an immediate consequence of Result 2:

Corollar 1. Let 0 < e < b be a constant and let conditions (I)- (III) be satisfied. Then

for every Yo with uol <_,, 1VP (1),(2) has a unique solution ezisting on the interval

J = [to a, to + ] f’l I, where a is any real number, such that

0 < < rain((1- k2)lkl, (b--e)/c). (7)

In other words, every IVP (1),(2) with yol _< e has a unique solution existing on the common
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interval J.

The next result follows from condition (IIl) and the Gronwall’s inequality [3], and can be

easily established.

Re.salt 3: Let to E I, and let Yo,’ o DO. Suppose that conditions (I)- (III) are true. If

the solution y(t, to, Yo) and (t, to,’ o) exist on a common interval J then

k1

y(t, to, Z/o)-’ (t,t eiLkzlt-tOI-o,o)1 <-luo ol (8)

for all t E Jl"

(xv)

Now, suppose that f satisfies the following condition:

f has all continuous partial derivatives upto order p with respect to (t, y,z) I x D S,

where p > 1 is an integer, and

and 0 _< k 2 < 1 are constants.

Of17..I < 2 (J = 1,2,...,n), where

Then, it is easy to verify that condition (IV) implies conditions (I) and (III), and hence we

have the following result:

Re.sail : Suppose that conditions (II) and (IV) are satisfied. Then IVP (1),(2) has a

unique solution y existing on the interval J = [to-a,to-t-a]I, where a is given by (6) with

k = k (i = 1,2). Moreover, y is p / 1 times continuously differentiable on J and

-Ofi, I Of -Ofi)f,"=(z-Cj)-(7+(j (9)

where I is n x n identity matrix

Ofl
Ozx Oz.

Of.
Oz1

Of,
Ozn
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and \j] is defined similarly. Relation (9) follows from the quotient

y’(t + h)- yt(t) f(t -t- h, y(t + h), y"(t + h))- f(t, y(t), yt(t))

by applying the mean value theorem for vector valued functions on the right hand side function, by

making use of condition (IV) and, finally, by allowing h tend to zero.

2. STABILrI THEOREMS

Throughout this section, we assume that the function f satisfies conditions (II) and (IV)
and that f(t, O, O) = 0 for all t E I.

Consider the system

y’ = ft, y, y’). (10)

Definition 5: We say that y(t) =_ 0 is a stable solution of (10) if for every e > 0 and any

to e I there exists a 6(e, to) > 0 such that whenever [Y0[ < 6 then the solution y(t, to, Yo) exists for

all t >_ to and [y(t, to, Yo) < e for all t > t0.

Definition 6: We say that y(t) =_ 0 is a uniformly stable solution of (10) if in Definition 5

is independent of to

Definition 7: We say that y(t) = 0 is an asymptotically stable solution of (10) if

y(t) =_ 0 is stable(i)
and

(ii) there exists a 6o(to)> 0 such that whenever yol < then the solution y(t, to, Yo) tends

to zero as

(i)
and

(ii)

Definition 8: We say that y(t) -- 0 is an uniformly asymptotically stable solution of (10) if

y(t) -- 0 is uniformly stable

there exists a 60 > 0 and for every e > 0 there exists a T(e)> 0 such that whenever

Note 1: We note that uniform [asymptotic] stability always implies [asymptotic] stability of

the zero solution of (10). Below, we shall see that the converse is also true if f is either periodic in t

or autonomous.

Yo < 60 then y(t, to, Yo) < e for all t >_ to + T(e).
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Theorem 1: Let f(t,y,z) be periodic in t of period w.

[asymptotically] stable then it is uniformly [asymptotically] stable.

the zero solution of (10) is

The theorem can be proved easily, using Result 3, along the same lines as of Theorems 7.3

and 7.4. [8], and hence the proof will be omitted here.

Delinilion 9: We call a real valued function V(t,y,z), defined on I x D x S, a Lyapunov

function, if:

(i) V(t,y,z) is continuous with respect to (t,y,z) E I xDxS

and

(it) V(t, y, z) is continuously differentiable with respect to (t, y, z) E I x Do x S.
Definition l&" We define the derivative of V(t,y,z) with respect to system (10) by

(it)

Note 2: Along a solution y of system (10), we have, by (9),

(,, (t), ’(t)) = v’(t, (,), ’(,)).

Definition 11: A real valued function a(r) defined on the interval [0,b] is called positive

definite if at0) = 0 and a(r) > 0 for r E (0, b].

Now, we shall present few theorems for [uniform] stability and [uniform] asymptotic

stability of the zero solution of system (10).

Theorem (Stability o] the zero sol=ion ): Suppose that there erists a Lyapnnov function
V(t, y, z) defined on I x D x S satisfying the following conditions:

(i) V(t, O, O)= 0 for all t E I,

(it) there exists a continuous positive definite function a(r) defined on [0,b] satisfying

inequality a ( Y ) <_ v(t,y,) fo lt (t,y, ) z D x S h that z = .f(t,y,z)
and

(iii) V*(t,y,z) <_O for all (t,y,z) e lxDxS such that z = f(t,y,z).

Then the zero solution of system (10) is stable.

We note that for every (t,y) I x D, in view of conditions (II) and (IV), there exists a

unique z S such that z = f(t,y,z).
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Proof: Let be such that 0 < < b and (k I/(I- k 2))e < c. From condition ( ) and from

the continuity of V, it follows that for every to E I there exists a number 6o(to, e) > 0 such that if

uol < ao( < e) and Iol < ( x/(1 u))ao, then

V(to, Vo, Zo) < a(e). (12)

By Corollary I, the solution y(t, to, go) exists initially on the interval [to, to + a], where a is given by

(7). We have, by condition (10), that

Iience, from relation (12), we get that

V(to, V(to), v’(to)) <

Claim: IV(t, to, Vo) < e for all t

For, if possible, let there exist a tI (to, to + a] such that Iv(t, to, Yo) = e. From condition

(iii) and note 2, we get that

tt(t, y(t, to, Yo), y’(t, to, Yo)) < 0 for all t e [to, t1],

which upon integrating between t0 and t, gives that

v(, v(*, *o, ,o), v’(*, *o, Vo)) <_ V(*o, ,(*o), v’(*o)) < ,(*), (13)

for all t [to, tl]. Then from condition (ii) and inequality (13), we get that

() <_ v(t, v(t, to, Vo),V’(tx, to, Vo))

<_ V(*o, Vo, V’(*o)) <

which is a contradiction. Hence our claim is true.

Next, let us denote the solution y(t, to, Yo) by yl(t). Since Ivx(t0+a)l <e, again by

Corollary 1, the solution y(t,to +a, yl(to +a))of the following initial value problem

v’ = ’(t,v,v’),V(to +,) = v(to + )

exists on the interval [to, to + 2a]. If we denote y(t, to+a, Yl(to +c)) by y2(t), we have, by relation

(8), that

for t t Ito, to + 1,
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and it can be shown as in the above that

(t) < e for an t e [to, to + 2a].

Again, since y(t0 + 2a) < e, by Corollary 1, the solution y3(t) of the initial value problem

y’ = f(t, y,y’), y(t0 + 2a) = Y2(tO +

exists on the interval [to + a, to + 3a], and we have that

yz(t) = y2(t) for t

Y3(t) < e for all t e [to + a, to + 3a].

Proceeding in this way, indefinitely, we get a sequence of solutions {yn(t)} and if we define

,(t), t e [to, to +,1,

u(t), t e [to + ,, to + 2a],

yn(t), t e [to + (-" 1)c, 0 +

then clearly y(t) is a unique solution of system (10) with y(to)= Yo" Moreover, y(t) exists on the

entire interval [to, + oo) and ly(t) < c for all t >_ to. This shows that the zero solution of (10) is

stable and the proof is complete.

Theorem $ (Uniform stability a the Nero solution): Let condition (ii) in Theorem 2 be

replaced by the condition:

(ii’) a(lYl ) _< W(t,y,z) < b(lYl) for art (t,y,z) I O S such that z = y(t,y,z), were a(r)
and b(r) are continuous, positive definite functions ad o [0,1.

Then the zero solution of system (10) is uniformly stable.

Proof: Let e be such that 0 < e < b and (k 1/(1- k 2))e < c. Choose a ()> 0 such that

b(5) < a(e) and < e. Now, let o E I and Yol < di. By Corollary 1, the solution y(t, to, Yo) exists

initially on the interval [to, to + a], where a is given by (7).
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Claim: (t, to, o) < for an t e [to, to + ].

For, if possible, let there exist a point t2 (to, to + a] such that I9(t2,to, Yo) = e. Since

]Yol < 6 < , there exists a point t e (to, t2) such that y(t, to, Yo) = 5. Now, from condition (iii)
nd note 2, we get

(t, y(t, to, Yo), y’(t, to, Yo)) <- 0 for all t e [to, t2],

which upon integrating between tI and t2, gives that

V(t2,Y(t2,to, Yo), Yt(2,lo, Yo)) <- V(t,Y(t,to, Yo), Yt(,to, Yo))- (14)
Then from condition (itt) and inequality (14), we get that

y , o,b(S) < a() _< V(h,v(, o, Vo),

<_ v(h,y(*,*o, Vo),V’(*,*o, vo)) <_ b(),

which is a contradiction. Hence our claim is true.

Rest of the proof follows as in Theorem 2 and hence will be omitted.

Theorem (Asymptotic stability o the zero solution): Suppose that here exists a Lyapunov

function V(t, y, z) defined on I x D x S satisfying the following properties:

(i) V(t, 0, 0) = 0 for all t e I,

(it) a( V ) <_ v(t, v, z) fo tt (t, v, z) z x D x S such that z = f(t, V, z), where a(r) is a

continuous, positive definite function defined on [0,b]
and

(iii) V*(t,y,z)<_ -c(Ivl) for all (t,y,z) eIxOxS such that z=f(t,y,z), where c(r) is a

continuous, positive definite function defined on [0,hi.

Then fhe zero solution of (10) is asymptotically stable.

Stability of the zero solution of (10) follows from Theorem 2, and proof of existence of a

6o(t0) > 0 such that vol < o implies that the solution y(t, to, Yo)-,O as t---,oo can be given along

the same lines as that of Theorem 8.5 [8] and hence will be omitted.

Theorem 5 (Uniform asymptotic stability of the zero solgtion): Suppose that there eists a

Lyapunov function V(t,y,z) defined on I x D x S satisfying the following conditions:

(i) a( Y ) <_ v(t,y,z) <_ b( y for all (t,y,z) I x D x S such that z = f(t,y,z), where a(r)
and b(r) are continuous, positive definite functions defined on [0,b]
and

(it) V*(t,y,z)< -c(lYl) for art (t,y,z)IxDS such that z= f(t,y,z), where c(r) is a
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continuous, positive definite function defined on [0,b].

Then the zero solution of (10) is uniformly asymptotically stable.

Proof: By Theorem 3, the zero solution of (10) is uniformly stable. Choose r/> 0 such that

and (T 1/(1 -T 2))r/< c. Then there exists a 5o > 0 such that if to I and Yol < 6o, then

to, Yo) < r/for all t _> to. Also for a given e > 0 with < r/, there exists a 6(e) > 0 such that if

I and Yo[ < , then y(t, to, Yo) < e for all t _> to.

Let

Ma = iny{a(r) ]2 <_ r 5 b},
M2 > sup{b(r) /2 <_ r <_ b},

and

M3 = inf{c(r) 16/2 <_ r <_ b}.

Clearly M > 0,(i= 1,2,3) and, from condition (ii), we have that Mx <MR

T = (M2- M1)/M3 and note that T > 0 and depends only on e.

Now, let

Claim: For every solution y(t, to, Yo) of (I0) such that to E I and lol < ao, there exists at

least one point tI E [to, to + T] such that y(tl, to, Yo) < 6.

For, if possible, let there exist a solution y(t, to, Yo) of (10), for some to I and some Yo
with Yol < 6o, such that y(t, to, Yo)[ >- 6 for all t e [to, to + T]. Then, there exists a’ > to + T
such that y(t, to, Yo) > 5/2 for all t [to,’ ). Now, from conditions (i) and (ii) and note 2, we

get that

M1 <_ a(ly(t, to, yo) l) <_ v(t,y(t, to, Yo),y’(t, to, yo))

<- V(to, Yo, Yt(to)) M3(t to)

< b( Yo )- M3(t- to)

< M2 M3(t to)

which implies that

t to < (M2 M1)/M3 = T for all t e [to,7 ),

which is certainly a contradiction. Hence our claim is true.

Thus, we have that if to E I and yol < 60, then y(h, to, Yo) < 6 for some

[to, to + T] and consequently y(t, to, yo) < for all t >_ to + T. The proof is complete.
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The following corollary follows immediately from Theorem 5.

Corollarj : Let condition (ii) in Theorem 5 be replaced by

(iit) V*(t,y,z)_ -cV(t,u,z) for all(t,y,z) EIxDxS such thatz= f(t,y,z), where c > 0 is

a constant.

Then the zero solution of (10) is uniformly asymptotically stable.

3. EXAMPLES

1. In the study of free oscillations of positively damped systems, we encounter the following

differential equation [1]:

,, +o +,(,)3(,,) = o, (15)

where w is a nonzero constant and 0 < e < < 1.

Equation (15) is equivalent to the system

y’ = f(t,y,y’) (16)

where

and

Choose the constants b > 0 and e > 0 such that

3e < 11c4 and b < c(1- ec4)1(1 -b w2). (7)

Let D = {y E R21 yl < b} and S = {z R21 z _< }. w easily verify that fCt, y, z)
is defined on I x D x S and satisfies the following conditions:

A) y(t, 0, 0) =0,

B) f(t, y, z) e S for (t, y, z) e I x D x S,

C) f(t,y,z) is continuously differentiable with respect to (t,y,z) . I xDxS, and

Of w2 Of Of OfIb-x _< Ib-b- _< 1, Ib- _< 3ec4 and Ib- _< 2ec4.
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Thus f satisfies conditions (H) and (IV) on I xDxS with l =maz(1,w) and

2 = 34"

Now, consider the function V(t,,z) defined on IxDxS by 2"

Clearly, V is continuously differentiable on I x D x S and tisfi the followin conditions:

(0 V(, O, O)=0,

(ii) a(lul)V(t,y,z)b(]ul) for all (t,y,z) eIxDxS, where a(r)=ar2, b(r)=ar2,
a = rain(l, w2), fl = max(l, w2)
and

for (t, y, z) $ x D x S such that z = f(t, , z).

Hence, by Theorem 3, the zero solution of (16) d hence of (15) is uniformly stable.

2. Let

sin

I, 7r/2 < y

i, y < -r/2.

Clearly, g is a continuously differentiable function on R,g(O)= O, yg(y)> 0 for y :/k 0 and

g(u) < 1.

Consider the equation

y’ = (u)(o. )2, (18)

where 0 < c _< 1/2. Let

D={yeRi lYl <n’} and,.q’= {zeRI Izl

It is easy to verify that the function f(t, y, z) = -ag(y)(cos Z)2 satisfies conditions (II) and

(IV) on IxDxS and f(t,0,0) =0 for all t E I. Now, consider V(t, y, z) defined on IxDx$ by

V(t,y,z)=y2. Clearly, V is continuously differentiable on IxDxS and satisfies the following

conditions:
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(i)

(ii)
and

(iii)

a( V ) <_ V(t, V, z) _< b( Y for all (t, y, z) q I x D x S, where a(r) = b(r) = r2,
V(t, 0, 0) = 0 for all t I

v*(t,v,z) av= NS = (t, y, z) E I x D x q, where

c(r) = 2arg(r)(cosl).
Hence, by Theorem 5, the zero solution of (18) is uniformly asymptotically stable.
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