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ABSTRACT

The aim of this paper is to give a theorem about the existence
of a classical solution of a Fourier third nonlocal quasilinear parabolic
problem. To prove this theorem, Schauder’s theorem is used. The paper
is a continuation of papers [1}-[8] and the generalizations of some results
from [9]-[11]. The theorem established in this paper can be applied to
describe some phenomena in the theories of diffusion and heat conduction
with better effects than the analogous classical theorem about the
existence of a solution of the Fourier third quasilinear parabolic problem.
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1. INTRODUCTION

In paper [7], the author studied the uniqueness of solutions of parabolic semilinear
nonlocal-boundary problems in the cylindrical domain. The coefficients of the nonlocal
conditions had values belonging to the interval [-1,1] and, therefore, the problems considered
were more general than the analogous parabolic initial-boundary and periodic-boundary
problems. In this paper we study in the cylindrical domain, the existence of a classical solution
of a Fourier third nonlocal quasilinear parabolic problem, which possesses tangent derivatives
in the boundary condition. The coefficients of the nonlocal condition from this paper can
belong not only to the interval [-1,1] but also to intervals containing the interval [-1,1].

Therefore, a larger class of physical phenomena can be described by the results of this paper
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than by the results of paper [7]. Moreover, this fundamental theorem of the paper, about the
existence of the solution of the nonlocal problem, can be applied in the theories of diffusion and
heat conduction with better effects than the analogous classical theorem. To prove this

fundamental theorem, Schauder’s theorem is used.

This paper is a continuation not only of paper [7] but also of papers [1]-[6] and [8].
The main result of the paper is the generalization of the Pogorzelski’s result (see [11], Section

22.11), and generalizations of Chabrowski (see [9]) and Friedman (see [10], Section 7.4) results.

2. PRELIMINARIF.

The notation, assumptions and definitions from this section are valid throughout this

paper.

Let n be any integer greater than 2. Given two points, z = (z,...,2,) € R" and
¥ = (¥1,-.+Y,) € R", the symbol |z —y| means the Euclidian distance between z and y. The
Euclidian distance between two points P; and P, belonging to R" is also denoted by

P(PpPz)-

To prove a theorem about the existence of a classical solution of a Fourier’s third
nonlocal quasilinear parabolic problem, some assumptions will be used.
Assumptions:
I D: = Dy x(0,T), where 0 < T < 0o and D, is an open and bounded domain in R™ such
that the boundary 0D, satisfies the following Lyapunov conditions:
i) For each point belonging to 9D, there exists the tangent plane at this point.
i)  For each points P, and P, belonging to 8D, the angle «(n Py P2) between the

normal lines n P, and n P, to 0D, at points P, and P, satisfies the inequality

h
|&(np np,)| < const[p(Py, Py)] L,

where hj is a constant satisfying the inequalities 0 < Ay < 1.

iii)  There exists § > 0 such that for every point P belonging to 8D, each line ¢
parallel to the normal line to 0D, at point P has the property that
dDyNK(P,86)N¢, (K(P,§) is the ball of radius é centered at point P) is equal at
most to the one point.

II. For each point P belonging to D, there exist ¢ fields {t P(l)},..., {t P(Q)} (¢g<n-1)of
the tangent directions to 0D, at P such that the following inequalities
| fc(tpl(i),tp2(i)) | < const.[p(P,, P2)]h‘ (:=1,2,..,9)
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are satisfied, where ;c(tpl(i), tpz(i)) (i=1,2,...,9) denote the angles between tpl(i) and
tP2(‘) (1=1,2,...,q), respectively, P, and P, are arbitrary points belonging to 8D,
and h, is a constant satisfying the inequalities 0 < h, < 1.

The real functions a,-j(a:, t), b(z,t) (i,j=1,2,...,n), c(z,t) are defined for (z,t) € D

and satisfy the Holder conditions:

|ai,(@ 1) = ai (7T )| <const(|2=F | M+ [1=T |"2) (5,5 =1,2,...m),
| b;(z,t) —b,(F ,t)| <const.|z—TF |h1 (i=1,2,...,n),

|e(zyt)—c( T ,t)| <const.|z—TF Ihl

for all (z,t) € D,( Z,T) € D, where hy and h, are constants satisfying the inequalities
0<h; <1, 0<hy<1. Moreover, b; (i =1,2,...,n) and ¢ are continuous functions with
respect to t belonging to [0, T].

The quadratic form En: a;;(z,t)\;A; is positive defined for all (z,t) €D, ie,
f: a;j(z,t)AA; >0 "fg)r= 1every point (z,t)€D and for every real vector

h,7=1
(As-eaA,) #(0,...,0).
The real function F(z,t,2p,2,...,2,) is defined and continuous for (z,t) € Dyx (0,T]

and z; ER (i=0,1,...,n). Moreover, F satisfies the inequality

n
| F(z,t,200-22) | SMp Y || +Mp|a—Py| P70 (2.1)

1=0

for (z,t) € Dyx(0,T), z; € R (i=0,1,...,n), where in this paper P, denotes the point
belonging to 0D, such that p(zx,P,) attains the minimum, and F satisfies the Holder

condition

| F(z,t, 20500 2,) = F( T ,4,Z y.. 02 ,,) |

n ~
<Oy |z-7 |"FTHF1CpY ) |5-7,| " F (2:2)
1=0
for all (z,t), (7,t)€ Dgx(0,T), 2;, Z;€R (i=0,1,...,,n), where Df is an arbitrary
closed subdomain of Dy; Mp, Mp, Cp, h o [ F» Mpy P are constants which do not

depend on Dj and satisfy the inequalities

Mp, Mg, Cp >0, 0<hp<1, 0<7iF51, 0<pp<1,0<p<l,
and C(Dy) is a positive constant that depends on Dj.

The real function G(z,t,2p,2q,... zq) is defined and continuous for all
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(x,t) €0Dyx(0,T] and z; € R (i =0,1,...,q). Moreover, G satisfies the inequality

q
|Gt 2000 02) | SMGY |2 + Mgt~ 4G (2.3)
1=0

for (z,t) € 9Dy x(0,T], z;€ R (i=0,1,...q) and the Holder-Lipschitz condition
IG(z,t,zo,...,zq)—G( T,LZg..0% q) |
— 1 ho,—n — T; g —
SColle=7 |"Gt7 6+ 2074 G+ Y |2;-7,]] (24)
i=1
for (z,t), ( Z,t)€0Dyx(0,T),2;,Z;€R (i=0,1,...,q), where M, Mg, Cao hg
I3 ¢ and pg are constants satisfying the inequalities
Mg, Mg, Cag>0,0<hg<1,0<hg<1,0<ps<1.
The real function g¢(x,t) defined, continuous and bounded for (z,t) € dDyx(0,T]
satisfies the Holder condition
lg(z’t)_y( :D,t)l SCQI:B—:B I

for (z,t), (Z,t) € 9Dy x(0,T), where C, and h, are constants satisfying the inequalities
C,>0and0<h, <1
The real function f(z) defined and integrable for z € D, satisfies the inequality

M
| f(z) | < -I_zjx—lT for z € DO’ (25)

where M £ is a positive constant and p is a constant from Assumption V. Moreover, the
set Do of z belonging to D such that f(z) is the continuous function is nonempty.
T,,T,..,T; are arbitrary positive numbers satisfying the inequalities
0<T;<Ty<...<Ty<T; Z is the set of real functions z(z,t) defined and continuous
for (z,t) € Dyx(0,T],

for (z,t) € D, (2.6)

and K:D;x (0, 7Y% =1 x (0, T] x R*F=R is a function such that

I?(x,Tl,..., Ty, 2(2,Ty),..,2(2,T)): = A(z,0)K(2,Ty,..., T, 2(2,Tq),...,2(z, T}))
(2.7)
forzre Dy, z€2
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is integrable with respect to £ € D, for each z € Z and

/I?(y,Tl,. e T A2(y, T1) + (L= A2 (4, Ty)y. o 0 A2(y, T) + (1 = A)Z (3, T))dy
DO

= / R Ty oo T 2 Ty 2(y, Ty))dy
DO
+1=0) [ R Tye s TyT 7)1 0Ty (2:8)
DO
for all 2, Z € Z, A € (0,1). Moreover,

|K(x’le---’Tk’z(xaTl)’---’z(zaTk))| <T-—p 77 [z— P lpz IZ(Z,T ) (2'9)
1=1
forz € Dy, 2€ Z and
| K(z,Tqy.. Ty, 2(2,Ty),..n2(2,Ty)) — K(2, T4y, T, Z (2, T1)y.. % (2, Ty)) |
k
<Ok 142, T) -2 (= T))| (2.10)
i=1
for z € Dy, z, 7 € Z, where M, and C are positive constants. Finally, the set of =
belonging to Dy, such that for each z belonging to Z function
K(z,Tq,...,T,2(2,Ty),...,2(2,T}))

is continuous, is equal to set Do from Assumption VIII.

To find a solution of a Fourier’s third nonlocal quasilinear parabolic problem

considered in the paper, we shall use the space X of all the systems

(wo(zs 1), wy (2, 1), w, (2, 1), dg(ms 1))

of real functions, defined and continuous for (z,t)€ Dyx(0,T],(n,t) € 8Dyx (0,T],

respectively, and such that

sup t*+ B w(z,t)| <o (i=0,1,...,n),
(z,t) € Dy x (0,T]
sup 22 o(m )| < oo,
(’71 t) € 3D0x(01T]

where o and § are characteristic for space X arbitrary fixed constants chosen according to the

conditions
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a >0, maz(up, I‘G”gl‘(l +p))<B<lja+p<1. (2.11)

For two arbitrary systems (wg,wy,...,w,,$q), (W 0,17;1,...,17;,,,'50) belonging to X and
for each A belonging to R, the addition in X and the scalar multiplication are defined by the

formulae

~ ~
(WorWyye ey Wyy @) + (W gy Wyye ey W 1y @ ): = (W +Wgywy +Wy,ee 0w, + W, ¢0+ 6 o)

Awg, Wy, . ey Wy Gg): = (Awg, Awy, ..., Aw,, Adg).

The norm of W = (wo,wl,. .4 W, @) belonging to X is defined by the formula

P go(n, 1) |-

(2.12)

Wil =, maz sup 2B wyz,1)| + su
1=0,1,..,n (:l',t)GDO)((O,T] (r),t)eaDOX(O,T]

It is easy to see that X is the Banach space.

To find a solution of a Fourier’s third nonlocal quasilinear parabolic problem
considered in the paper, we shall also need a set E of all W = (wg,w,..., w,,¢y) belonging to

X, satisfying the inequalities

t? | wy(z,t)| <py for (z,t)€Dyx(0,T] (i=0,1,...,n), (2.13)

| wo(z,T;)| <N; for z€Dg (i =1,2,...,k), (2.14)

t? | go(mt)| < py for (n,t) € 8Dyx(0,T], (2.15)

t2| go(mt) = $o(i ,t) | <& |n—7 |7 for (n,1),(7,t) € 8Dy % (0,T] (2.16)

and such that

/Ih&(y’ Tl’- .o TK’ wo(y’ Tl)v- ) wo(y’ Tk))r(zv t, yio)dy = B(:D, t)
DO

_ (2.17)
for (z,t) € Dy x(0,T],
where p,, p,, k are arbitrary fixed positive constants, N, (i = 1,2,...,k) are positive constants
such that
N;<T; Py (i=1,2,...,k), (2.18)

7 is a fixed constant chosen according to the condition

0 <y <min{hg,h g, hg,hy,2hy,hy, hy 1~ p}, (2.19)
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and B(z,t) is a given real function defined and continuous for (z,t) € Dy x (0,T] and such that

the derivatives g%%'-t—)- (i =1,2,...,n) are continuous for (z,t) € Dyx (0,T] (i = 1,2,...,n).
Formulae (2.12) - (2.18), (2.10) and (2.8) imply the following:
Lemma 2.1: E is the closed conver subset of the Banach space X.

In this paper we shall also use the functions F and ? given by the formulae:

F’(z, 420121000 2,): = — A(, ) F (2,8, 20, 2150 1y 2,,)
(2.20)
for (z,t) € Dyx (0,T), 2; € R (i=0,1,...,n),
F (z): = A(=,0)f(z) for z € D,, (2.21)

where function A is defined by (2.6).

Moreover, we shall need the following:

Assumption:
X. For all the systems of functions (wg, wy,...,w,,d,) belonging to E functions F, f and K

satisfy the following condition:

/ BTy, T (U Ty o ig(ts T))D(®s 1,9, 0)dy = Bz, t) for (z,2) € D x (0, T},

DO
where T.
ﬁ-)o(y’ TJ): = / /f‘(ﬁ)rv wo(f’ T)7 wl(&v T)y-'-a wn(f’ r))I‘(y, Tja f’T))dde
0 D,
T,
/ ¢0(€1 T)r(ya Tj1 E’ T)dSsdT
00D,
+ [Fore.T; 604
DO
_ / B (E,T1yee 0 Tiowo(& Ty wo(& T))D(w, T, €, 0)dé
Dq

foryeDy (j=1,2,...,k),

functions ’F’,? ,K are given by formulae (2.20),(2.21) and (2.7), respectively, and T is

the fundamental solution of the homogeneous parabolic differential equation

iam(m 1) LU a +Zb(z,t) +c(:c tyu— 2 = 0.

iWg=1
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In the paper Z. denotes the set of functions w belonging to Z such that the derivatives
aw Ow

3 . 6 are continuous in D.

3. DEFINITION OF A FOURIER’S THIRD NONLOCAL
QUASILINEAR PARABOLIC PROBLEM

The Fourier’s third nonlocal quasilinear parabolic problem considered in the paper is

formulated in the form:

b,

For the given domain D satisfying Assumptions I, II and for the given functions a; b

(,7=12,..,n), ¢,F,G,g,f,K satisfying Assumptions III-X, the Fourier’s third nonlocal
quasilinear parabolic problem in D consists in finding a function u belonging to Z1, satisfying

the differential equation

S ayte gm0 "(x’t)+ pREC 252 4 ofa, 1) - 25

P52 ot
(8.1)
= F(z,t,u(z, t),a“(zlt), 3“(‘"’ t)) for (z,t) € D,
satisfying the nonlocal condition
I%'_rlzou(z, )+ K(2, Ty Ty (2, Ty),. . u(z, T))) = f(z) for z € D, (3.2)
and satisfying the boundary condition
229 4 o(e. ute. )
(3.3)

du(z,t)  du(z,
dt_,,(l) Ut ( )

= G(z,t,u(z,1), )) for (z,t) € Dy x (0, T},
where for each t € (0,T] the symbol % denotes the boundary value of the transversal
T

derivative of function u at point z and for each t € (0,T] the symbols du(x(':;) (i=1,2,..,9)
dt
T

denote the boundary values of the derivatives of function u in the tangent directions tx(i)

(:=1,2,...,9) at point z, respectively.

A function u possessing the above properties is called a solution in D of the Fourier’s

third nonlocal quasilinear parabolic problem (3.1) — (3.3).
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4. THEOREM ABOUT EXISTENCE

In this section we prove a theorem about the existence of a solution of the Fourier’s
third nonlocal quasilinear parabolic problem (3.1) —(3.3) assuming that Assumptions I-X
from Section 2 are satisfied.

For this purpose observe that, according to known theorems from the potential theory

(see [11], Sections 22.8 and 22.10), to find a solution of problem (3.1) —(3.3) it is sufficient to

find a function u belonging to Z1 and satisfying the integral equation:

u(z, 1) = / JF s, o), 20 2, )y
0 D, "

//tﬁ(y,S)I‘(z,t,y,s)dSyds
00D,

+ / ¥ (4)C(z:t,3,0)dy
D,

- / BTy Tou@ Ty u(y, Ty, 0)dy
‘DO
for (z,t) € Dy x(0,T], (4.1)

where ¢(y, s) is an unknown function considered for (y,s) € 0Dy x (0,T].

By the fact that function u satisfying equation (4.1) must satisfy boundary condition

(3.3), we get the following differential-integral equation:

~L4(z, 1)1 8(a, 1)

dI‘(:c t, Y, $)

t
/ #(y,sH{ + g(z, )1 (2, t,y,5)}dS ds

oap0

/ [Fwsu s),""“‘y’s),... ""““”){“’”” L ”’s’+g(z, )T (21,9, 5)}dyds
0 D,

/f( ){dl‘(z, ’y’o)+g(z‘,t)F(z,t,y,0)}dy
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~ [ R Toe T s T s T2 4 o, )0 1,000}y
D,
= Gz, u(s, 1), 2480 @D oy e 9D, x (0,T), (4.2)

dtz(l) e dtz(Q)

where

du(z,t) _ Ou(y,s)  Ouly,s) dl(z, ayas)
dtz(i) //F(y’sau(yys)’ 1eee ayn ) dt (.)

dI‘(a: t, y, )
oz

/.f( )dr(x’ ,y,0)

K I'(z,t,y, ly
B /K(y’Tl’”"Tk’u(y’Tl)v---au(y)Tk)) (d (!; )
DO

for (z,t) € 0Dy x (0,T] (i = 1,2,...,9). (4.3)
Then, to solve problem (3.1)—(3.3) it is enough to solve the system of the
differential-integral equations (4.1) and (4.2), where the variables u(z,t) and ¢(n,t) of this

system are defined for (z,t) € Dyx(0,T] and (n,t) € 8Dy x (0,T], respectively. For this

purpose, consider the system of n + 2 integral equations

t
u;(z,t) = / / Va (y,5,ug(y,5), ¥ (Y, 8)y -+, (¥, 8))Ti(2, ¢y, s)dyds
0 D,

+//¢(y,s)1‘,-(:c,t,y,x)dsyds
06D,

+ /? (y)ri(xi tay70)dy

DO
- / I?(y7 T]a ey Tka uo(y) T1)7~ (X2) uo(y’ Tk))ri(zv ta Y, O)dy
DO
for (z,t) € Dy x(0,T] (i = 0,1,...,n), (4.4)

~L4(z, 1) Y9(2,1)
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//¢( v,s ){dr(l‘, ’y’s)+g(z,t)[‘(:c,t,y,s)}d5yds
oaD0

//F(y’s uo(y,S),ul(y,s), Wl (y’ )){dr(xv ,y;s)

0 D,

+ g9(z,t)I(z,t,y,s)}dyds

+ [FOEEED s o0, 001001y

dl'(z,t,y,0
/ K (y’ Tls Tk’ uo(y) Tl), o uo(ya Tk)){——(_z_—y——)'

Dy

+ g(x’ t)r(za t,y, 0)}dy

= G(a,t,ug(z,1),7 4(2,t),..,T q(x,t)) for (z,t) € 0Dy x (0, T},
where
ug(z, 1), uy(x,1),. . u,(z,t),6(n, t)
are unknown functions defined for (z,t) € D% (0,T},(n,t) € 8Dy x (0, T}, respectively,

Ip=T, Ip=% (i=1,2,..,n)

61«'"
and ;
~ T'(z,t,y,
-ﬁi(xa t): = //F(y’svuo(yas)’ul(y’s)a‘-"“n(y, ))_ng:l;)d ds
0 D,
//¢( s )——d"r(“”’ as, ds
08D,
dr(x, ,y,O)
/ F o=
% r sty Y,
- /K(val’o-oaTk’uo(y’Tl)v--’uo(vak))—'(:—(!;'—)d

DO
for (z,t) € 0Dy x (0,T] (i=1,2,...,9).
System (4.4) and (4.5) will be solved in the class of

(uo(x, t)a ul(z) t)a IR un(xa t)’ ¢(77’ t)) €E,

i.e., in the class of (ug,uy,...,u,,d) belonging to X and satisfying the conditions

53

(4.5)

(4.6)

(4.7)
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B u(z,t)| <py for (z,t)€ Dyx(0,T) (i=0,1,...,n), (4.8)
|ug(z,T;)| <N, for €Dy (i=1,2,...,k), (4.9)
t°1(n,t)| < py for (m,t) € 0Dy x (0, T}, (4.10)

2| 6(n,t) = ¢(7 ,1)| <k|n—7 |7 for (n,1),(¥,t) € 8Dyx (0, T] (4.11)

and

/IA{'(y, TyyeooTiyug(y, Ty)se o o tg(y, Ti))T (2, 8, y,0)dy = B(z, t)
D
0 B (4.12)
for (z,t) € Dy x(0,T).

To solve system (4.4) and (4.5) in the class of U = (ug,uy,...,u,,¢) belonging to E

define a transformation

T:E-JE (4.13)
by the formula
JU =V, (4.14)
where
V = (v, Vy50 00V %), (4.15)

t
vi(z,t) = //T"'(y,s,'uo(y,s),ul(y,s),...,un(y,s))I‘.-(:L', t,y,s)dyds
0 D,
i
+// é(y, s)L' (=, t,y,5)dS ds
00D,

+ / F )T (2, t,9,0)dy
‘DD

- /I?(y, TyyeeTiyug(y, Ty)se oo ug(ys Te))T (2, ¢, 9, 0)dy
DO

for (z,t) € Dy x(0,T] (i = 0,1,...,n), (4.16)

~3A(, 1) " N(z,1)
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i
+ [ [ o ){——————"”” hy,5)

061)0

+ 9(z, t)['(z, t,y,s)}dSyds

/ 00015100151 i NN 2

0 D,

+ g(z,t)I'(z,t,y,s)}dyds

/ ¥ GO o0, )0 1,1 0y

dI‘(;c t, y,O)

/ K (y’ Tl’ Tk’ uo(y, T1)’ ,uo(y, Tk)){ + g(:l:, t)r(z7 Y, 0)}dy
DO
+ G(z,t,v9(x,t),u (2, 1),...,T q(:r:, t)) for (z,t) € 0Dy x (0, T}, (4.17)

and @; (i=1,2,...q) are given by formulae (4.6).

We shall find sufficient conditions that an arbitrary point U = (ug,uy,...,%,,¢)
belonging to set E might be transformed by I into the point TU =V = (vg,vqy..0 ¥y, ¥)
belonging to this set.

For this purpose introduce the functions

t
77.'(-"% t): = / / ?' (y’ S, uo(y’ 3)s ul(y’ S), oeey un(y’ s))ri(za t,y, s)dyds

/ ¢(y,5)Ti(z,t,y,2)dS ds
08D,
+ /?(y)l‘;(x,t,y,())dy for (z,¢) € Dgx (0,T] (i=0,1,...,n).

D,

It is known (see [11], p. 131) that, by (2.20), (2.1), (2.21), (2.5), (4.8), (4.10), (4.11) and
(2.11), the following inequalities

— —-B+1- -
|:(8,8) | < AfMppy+py+r+Mp)t 2T T Hep ayb 2=

_ (4.18)
for (z,t) € Dyx(0,T] (¢=0,1,...,n)
hold, where y, is an arbitrary constant satisfying the inequality
maz(1-1 by, Y14+ p) <p <1, (4.19)

hg: = min(hy,2hy,hp), (4.20)
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and A;, A, are positive constants which do not depend on functions F,¢, f,u; (i =0,1,...,n)

and constant T. It is obvious that constants A, A, do not depend also on functions G, g and
K.

Simultaneously, by (2.7), (2.6), by Assumption III and by (2.9),

| K@, Ty Thoo (9 Ty)se (9, Th)) |

M k
<sup | A(y,0) ||—-_—g—’—,—,§: | ug(y, T;) | for y € Dy (4.21)
veD, y=5 1=

From inequalities (4.21), (4.9), (2.11) and from known properties of the Poisson-
Weierstrass integral (see [11], p. 106-107, Theorem 8), we get

| / I? (y) T1) ceey Tka Uo(y, Tl)a ceey uo(y, Tk))ri(za t,y, O)dy I
DO

B (4.22)
< AgM gt~ P for (z,t) € Dy x (0,T] (i =0,1,...,n),

where A is a positive constant that does not depend on functions K,uy and constant T. It is
easy to see that constant A3 does not depend also on functions F,$,G,g,f and wu;
(i=1,2,..,n).

Combining (4.18) and (4.22), we obtain

—— - 1- -
|vi(2,t) | < Ay(Mppy+py+r+Hp)t P+ Mok (AgM g+ AM g )t =P (435)
4.
for (z,t) € Dy x(0,T] (i =0,1,...,n).

To investigate function ¥(z,t), observe that equation (4.17) has the form of the

following Volterra equation

—14(, 1) M(z,t)

dr 4 Y,
+ / / P(y, s){—-——(-%—u—g—‘Q-i- 9(z,t)I(z,¢,y,5)}dS ds
0D, :
= E(z, t, vy, ug, uy,...,u,) for (z,t) € 3Dy x (0,T], (4.24)

where

E(z, t,vg, Ugy Uy, .. Uy,)
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dI‘(:z t,y,s)

II

//F(y;s uo(y’s)7u1(y,3)’ o U (y’ )){
0 D,

+ 9(z, t)['(z, t,y,5)}dyds

/ F s bn0) ’y’°)+g(z, )L (z, t,,0)}dy

dI‘(a:, ,¥,0)

/K(y, Tla Tk’ uo(?h 1)) uo(y, Tk)){ + g(a:, t)r(z7 t,y, 0)}dy

DO
+G(z,t,v9(2, 1), 1(2,1),.. 4T ((2,1)) for (z,t) € 9Dy x (0, T}. (4.25)

It is known (see [11], p. 99, Theorem 2) that the kernel of equation (4.24) can be
estimated by

const. | 1
(t—T1)F Ix_y|n+l—2u—h0’

where g is an arbitrary number satisfying the inequalities
h
1- 7" <p<l

and number hj is defined by (4.20). Therefore, equation (4.24) has the only one solution ¢

given by the formula
Y(z,t) = —2A(z, t)E(x, t, vg, Ugy Upy. o oy U,)

-9 / / N(z,t,y,5)A(y, $)E(Y, 5, Vg Ugy Uqy - - + un)dSyds (4.26)
00D,

for (z,t) € 0Dy x (0,T],
where N denotes the solving kernel of equation (4.24).
To find an estimation for function Z, observe that analogously as in the proof of
formula (4.23), using theorems from the potential theory (see [11], Section 22.8, Theorems 5, 8

and Section 22.10, Theorem 1), we obtain, by (4.6), (2.20), (2.1), (2.21), (2.5), (2.7), (2.9)
and (4.8) — (4.11) the following inequalities

| ;(z,t) | S731(MFP1+P2+”+Mp)t_ﬁ+l—"*+§2(Mf+MK)t_ﬂ
(4.27)
for (2,t) € Dy x (0,T] (i=1,2,...q),

where constants 3 and g, satisfy inequalities (2.11), (4.19) and El, 732 are positive constants
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which do not depend on functions F,¢,G, g, f,K,u; (i =0,1,...,n) and constant T'.

Consequently, by (4.25), (2.20), (2.1), (2.3), (2.21), (2.5), (2.7), (2.9), (4.8)—(4.11),
(4.23) and (4.27), by Assumption VII and by known properties of the potentials

| E(2,t, vg, g, gy ty,) |

~-B+1-p -B+1-up,

+Bg(Mg+Mp+ My + MM+ MgMp)t~° for (z,t) €9Dyx (0,T],  (4.28)

where constants 3 and p, satisfy inequalities (2.11), (4.19) and B; (i = 1,2,3) are positive
constants which do not depend on functions F,¢,G,g, f,K,u; (i=0,1,...,n) and constant T.

Then, by formulae (4.26), (4.28) and (2.6), by Assumption III and by known
properties of the solving kernel N, function 1 satisfies the inequality
| (=, t) |

-B+1

.<..B1(MFP1+p2+K4+MF)MGt —"*+B2(MFPI+MF)t_ﬁ+1—”*

+By(Mg+Mp+ My +MgMs+MgM )t =P for (z,t) € 9Dy x (0,T],  (4.29)

where B; (:=1,2,3) are positive constants which do not depend on functions

F,$,G,g,f,K,u; (i=0,1,...,n) and constant T.

Now, we shall find the Holder inequality for function 1. For this purpose observe that,
by (4.6), (2.20), (2.1), (2.21), (2.5), (2.7), (2.9), (4.8) —(4.11),by Assumption II and by some
properties of the potentials (see [11], Section 22.8, Theorems 6, 8 and Section 22.10, Theorem
2),

17 (2, 0) ~ T (F,0)| SC(Mppy+pp+u+Mp+Mp+ Mg)t =P |z-% |7
(4.30)
for (z,t),(Z ,t) € 9Dy x (0,T] (i=0,1,...,n),
where C is a positive constant which does not depend on functions F,¢,G,g,f,K,u;
(i=0,1,...,n) and constant T; and B,y are constants satisfying conditions (2.11), (2.19),

respectively.

Then, from (4.24), (4.29), (4.25), (2.4), (4.16), (4.30), (2.20), (2.1), (2.21), (2.5),
(2.7), (2.9), (4.8)—(4.11), from Assumption VII and from known properties of the potential
theory (see [11], Section 8) we get that the solution ¥ of the integral equation (4.24) satisfies
the Holder inequality
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| (=, 8) —¥( %,1) |

< {C,[tz(1 - "*)(Cg +1)Mg+Cgl-(Mppy+py+6+Mp)+ Cztz(1 -

“(C,+1)- (Mpp, + M p)
+Clt! TH(Cy+ 1)+ 1) (Mg + Mg+ My + MM ; + MM )
+Cy(Mppy+ Mp+Ca+My+ Mg +CoMp+CoMht™P |z -% |7
for (z,1),( % ,1) € 8Dy x (0, T, (4.31)

where C; (i=1,2,3,4) are positive constants which do not depend on functions

F,$,G,g,f,K,u; (i=1,2,...,n) and constant T.

Comparing inequalities (4.23), (4.29) and (4.31) with inequalities (2.13), (2.15) and
(2.16), it is easy to see that if the system of the following inequalities

1

T " A (Mppy+ py+ 5+ Mp)+ AgM s+ AgM e < py, (4.32)

1- — —
T~ " [By(Mpp;y + py+ 5+ Mp)Mg+ By(M ppy + M )]

c, [Tzk(l -

= 2(1 - _

“N(C ot DM+ Cal (Mppy + py 45+ H ) + CT* ™4 (C 1) - (Mppy + W )
+C3[T" #(Cy+ 1) +1]- (Mg + M+ My + MM+ MgM)

+C4(Mpp1+MF+CG+Mf+MK+CGMf+CGMK)_<_IC (4.34)

is satisfied, then the inequalities

P v,(z,t)| <py for (z,8)€Dyx(0,T] (i=0,1,...,n), (4.35)
t?|9(n,t)| <p, for (n,t) € Dyx(0,T], (4.36)
t? | 9(n,0) —(F,8)| <wln=F |7 for (n,2),(7,t)€8Dyx(0,T] (4.37)

hold.

Moreover, if the system of the inequalities

= -B+1- - .
A(Mppy+ py+ 5+ )T, P o (UM + AM )T, " P <N, (i=1,2,..,k) (4.38)
is satisfied, then from (4.23),

|vg(2,T;)| < N;forze D, (i=1,2,...k). (4.39)
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Finally, by Assumption X and by formulae (4.7), (4.16),

/ R Ty T v Ty, 093, Te))T(2, 1,9, 0)dy = B(z, )
DO

for (z,t) € Dy x (0,T).
Consequently, from (4.35) — (4.37) and (4.39), and from the above condition,
JECE. (4.40)
Now, assuming that not only Assumptions I-X are satisfied but also inequalities
(4.32) — (4.34), (4.38) are satisfied we shall prove two lemmas:

Lemma 4.1: Transformation I defined by formulae (4.13) — (4.17) is continuous

in space X.

Proof: Let {U(m)} be a sequence of points v(m™ = (uo(m),ul(m),..., un(m), ¢(m))
belonging to E such that

I U("')_U“ = _maz sup t“‘*'ﬂl“i(m)(zvt)““i(‘”’t)l
i=0,1,..,n (:z:,t)GI_)ox(ovT]

+ 12+ 8| (™) (2, ) — (2, 1) | 20 as msoo, (4.41)

sup
(z,t) € 3Dy x (0, T]

where U = (ug, uy,...,4,,9) is a point belonging also to E.

To prove Lemma 4.1, it is sufficient to show that

[vi™ _v | =o, (4.42)

lim |
m=—»00

where V(m)=(vo("'),vl(m),...,vn(m),z,b(m)) and V= (vg,vy,..40,,%) are values of

transformation ¥ at points U (™) and U , respectively.

For this purpose consider the difference

vi(m)(z, t) —vy(z, 1)

t

= //{’f'(y’s,uo(m)(y’s)?ul(m)(yvs)v--aun(m)(yas))
0 D,

- ;‘ (ya 8, uo(y» s)v ul(y’ S), ) U,.(y, s))}rg(z’ t,y, s)dyds
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t
+ / [ 8,9 = 80 )@t 9)dS s
06D,

- / [ I’? (y’ Tp seny Tk, uo(m)(y’ Tl)’ ceny uo(m)(y» Tk))
DO

— KTy Tra (¥ Ty - - o (3 T))IT (2, 8, 9, 0)dy
for (z,¢) € Dyx (0,T] (i =0,1,...,n). (4.43)
Since {U(™} C E and U € E then, by (4.43), (2.17) and (4.12),

o™z, 1) = vy(z,t)

i
= / / {?‘ (y’ 8, uo(m)(y, 3)1 ul(m)(yr s)’ ceey “n(m)(yy 3))
0 D,

-F (¥, 8, ug(yy 8), 4y (¥, 8), - - (¥, 8) (2, t, v, s)dyds

t
4 [ [ 8™)00) - 6,0 (213,08 s
08D,

for (z,t) € Dux(0,T] (i=0,1,...,n). (4.44)

Consequently, using the argumentation from Section 22.11 from [11] we conclude, by

(4.44) and (2.2), by known properties of the potentials and by (4.41), that

lim sup e t8) vi(m)(z, t) —vy(z,t)| =0. 4.45)
M0 (2,t) € Dgx (0,T] )=l (

Now, consider the difference
™z, 1) - (2, 1)

= —2A4(z,t)[=(z, ¢, vo(m), uo(m), ul(m), cen un(m)) — E(,t, v, Ugy Uy - o Uy,)]

- 2/ / N(z,t,y,s)A(y, s)[E(y,s,vo(m), uo(m),ul(m),. - un(m))
08D,
— Z(Yy 8, Vs Ugy Uy - o un)]dSyds for (z,t) € 0Dy x(0,T], (4.46)

where
— m m m m —
:(a:,t,vo( ),uo( )’“1( ),...,un( ))—:.(a:,t,vo,uo,ul,...,un)

t
= - / /[F'(yis’uo(m)(y,s)1u1(m)(y’s)v“)un(m‘)(y,s))
0 D,
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dI‘(z, Y 8)

— F (yy5, gy, 8), g (45 8), - o (3, ) + g(z,t)I(z,t,y,s)}dyds

+/[x’(y’T1"“’Tk’“0 )(y,Tl),...,uo(m)(y,Tk))
DO

- I’% (y7 T11 LRl Tki uO(:‘/’ Tl)’ * uo(y, Tk))]{ + g(z’ t)r(z’ t, ya 0)}dy

+G(z, 4,9 ™ (2, 8),7 (a2, 1),..,7 ™z, 1)) - G(:c, t,00(2, 1), T 1(2,1),...,T o(2,1))

dl"(:c t, y,0)

for (z,t) € 3Dy % (0,T], (4.47)
7, ™z, 1) = (m) (m)(,, snIL(E: 4, 8)
(z,t) = //F(y,s,uo (y,s),u1 (,8)s e uy " (Y, s ))——————d ds
0 D,
[ # s T s s
08D,

(z,t

+/7(}———-—drd (’3;’)
D

T m m dl’ 2y by Yy 0
- / K (yv Tp ooy Tk’ uo( )(y, Tl)’ LER) uo( )(y’ Tk))'_(dzt—(_g—_)d
x

DO
for (z,t) € 0Dy x (0,T] (i=1,2,...,9) (4.48)
and functions @ ; (i = 1,2,...,¢) are given by formulae (4.6).

Since {U(™)} C E and U € E then, by (4.47), (2.17) and (4.12),

™,

=(z, ¢, vo(m), uo(m), “1( un(m)) —E(,t,vg, Ugy Upy -+ oy Uyy)

t
--//[?’(y,s,uo(m)(y,s),ul(m)(y,s),...,un(m)(y,s))
0 D,

dI‘(x, ¥y 8)

= F (y,5, 494, ), 41 (4, 8)s - e (r ) I +9(2,)T(2, 8y, 5) }dyds

+G(z, t, vo(m)(z, t),u l(m)(z, ). q("')(:c, t)) = G(z,t,v9(2, 1), T 1(2,),.. T o(2,1))
for (z,t) € 9Dy x (0,T]. (4.49)
Consequently, using the argument from Section 22.11 from [11], we obtain, by (4.46),

(4.49), (2.4), (4.44), (4.48), (4.6), (2.20), (2.2), (2.17) and (4.12), by Assumption VII, by
known properties of the potentials and by (4.41), the condition
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li 1+ 8 (M2 1) —p(z, )| = 0. 4.50
FUL (z,t)esggox(O,T] 7 ) == 1) | (430)

Then, formulae (4.45), (4.50) and (2.12) imply (4.42). Therefore, the proof of Lemma
4.1 is complete.
Lemma 4.2: TJE is precompact.
roof: Let {V(m)} be a sequence of points
yim) — (vo(m)’vl(m)w” ”n(m)’ ¢(m))

in TE. Then

810, (™(z,t)| <p, for (z,t)€Dyx(0,T] (i =0,1,..,n), (4.51)
| o™z, T,)| <N, for z€ Dy (i=12,...,k), (4.52)
| 9™ (n,8)| < py for (m1t) € 8Dyx(0,T], (4.53)

8 (™, 1) =™, 1) | <k|n=F |7 for (n,8),(,t) €ODx (0,T]  (4.54)

and

/ I?(ya T1’ ceey Tkv vo(m)(y’ Tl)a eeey vo(m)(% Tk))r(za t,y, O)dy = B(z’ t)

D,
0 B (4.55)
for (z,t) € Dyx(0,T].
Inequalities (4.51) and (4.53) imply that the sequences
{t2+ B8y (™)} and {t +Py(m)y (4.56)

are equi-bounded and equi-continuous in Dyx(0,7] and &Dyx(0,T], respectively.
Consequently, by the Ascoli-Arzela theorem, it is possible to choose uniformly convergent

subsequences

{2+ 8y ("} ana (1o + 8y (4.57)

of sequences (4.56). This uniformly convergence 'implies that subsequences (4.57) are
convergent in the sense of norm (2.12). Since functions vi(mj) (i=0,1,...,n) and z,b(mj)
satisfy conditions (4.51) —(4.55), where vi(m) (i=0,1,..,,n) and ¢("') are replaced by vi(mj)

(i=0,1,...,n) and z/)(mj), respectively, then the proof of Lemma 4.2 is complete.

Now we shall give the fundamental theorem about the existence of a solution in D of
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the Fourier’s third nonlocal quasilinear parabolic problem (3.1) — (3.3).

Theorem 4.1: If boundary 0D of domain D, satisfies Assumptions I and II, if
i 0 (,7=1,2,..,n), ¢ of equation (3.1) satisfy Assumptions III and IV, if
functions F, G, g, f and K satisfy Assumptions V-X, if constants T, Mp, MF’ Mg, Jl-lG,
My, Mg, Cg and C, satisfy inequalities (4.32)—(4.34),(4.38) and if constants T;, N,

coefficients a.

(i=1,2,...,k) satisfy inequalities (2.18), then the Fourier’s third nonlocal quasilinear parabolic
problem (3.1) — (3.3) has a solution in D.

Proof: From Lemma 2.1, from formula (4.40) and from Lemmas 4.1 and 4.2, it is
easy to see that all the assumptions of the Schauder’s theorem (see [10], p. 189) are satisfied.

Therefore, there exists a point

U* = (ug,uls...,un,¢*) EE
which is invariable with respect to the transformation given by (4.13) — (4.17). This point is a

solution of the integral equations (4.4) and (4.5). From known properties of the potentials (see

[11], Section 22.8) and from equations (4.4), (4.5) we get

3u0(:c, t)

i

ui(z,t) = —5—

Then functions uj and ¢* satisfy the system of the functional-differential equations (4.1) and

(:=1,2,...,n) for (z,t)€D.

(4.2). It is obvious that function uj satisfies the boundary condition (3.3) and the nonlocal
condition (3.2). Moreover, by (2.20), (2.6), by Assumption III, by (2.2), (4.4), (2.20), (2.21),
(2.6), (2.1), (2.9), (2.13)—(2.16), (2.11) and by some properties of the potentials (see [11],
Section 22.8, Theorems 1, 6, 8), the function

O(z,t): = F (2, t,u(=, 1), ul(z, 1),..., uii(2, 1), (2,8) € DEx(0,T]
satisfies the Holder condition

| &(z,t) - @(%,1) | <

C.(D; =
*iﬂ 0 |z—% |7 for (z,t),(%,t) € D5x(0,T],

where C,(Dg) is a positive constant which depends on Dj and 7:=min{y,h F,Tz F}

Consequently, by theorems from the potential theory (see [11], Section 22.8, Theorems 7 and 8)

function uj satisfies equation (3.1) in domain D. Therefore, this function is a solution in D of

the Fourier’s third nonlocal quasilinear parabolic problem (3.1) — (3.3).

5. REMARK

If K(z,Ty,...,Ty,2(2,Ty),..,2(z,T})) is defined by the formula
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k
K(z,Ty,...,Ty2(2,Tq),..,2(2,T})) = Z €(z)z(2,T;) for z € Dy, z € Z, (5.1)
i=1
where £,(z) (i=1,2,...,k) are given functions defined and integrable for z € D, then
condition (2.8) holds.

Moreover, if

M
£ .
|£,(a:)| S‘T:P'—‘ﬁ fOl‘.’L‘GDO (1=1,2,...,k),
z

where M & (i =1,2,...,k) are positive constants and p is a constant from Assumption V, then

condition (2.9) is satisfied, where the constant M i is given by the formula

Mpyg: = maa:{Mel,...,Mf }.

k

Additionally, if
I E‘(E) I S Cei for z € DO (i = 1,2,...,’0),

where C £ (i =1,2,...,k) are positive constants such that
%

M
&
C£i<

—m for zGDo (i=1,2,...,k),
T

then condition (2.10) holds, where the constant Cj is defined by the formula

CK: = max{C£1,...,C€ }-

k

It is easy to see that if {,(z) =0 for z€ D, (i=1,2,...,k), then the Fourier’s third
nonlocal quasilinear parabolic problem (3.1) —(3.3), where function K is given by formula
(5.1), is reduced to the classical initial-boundary problem. Moreover, if k=1, T, =T,
&(z)= —1 for z€ Dy, f(z) =0 for € Dy and Cfl > 1, then problem (3.1) —(3.3), where
function K is given by formula (5.1), contains the periodic problem, i.e., the Fourier’s third
nonlocal quasilinear parabolic problem (3.1) —(3.3), where condition (3.2) is replaced by the

condition
lgznmu(x, t) = u(z, T) for z € D,

It is obvious, from the above considerations, that it is sensible to consider the Fourier’s
third nonlocal quasilinear parabolic problem (3.1) —(3.3) since this problem is always more
general than the analogous classical Fourier’s third quasilinear parabolic problem and,
additionally, if k = 1,
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f(z)=0for z € D,

and

M
1<C; <1 for z € D,,

- "4a- |z-P,|?
where p is a constant from Assumption V, then this problem is also more general than the

analogous Fourier’s third periodic quasilinear parabolic problem.

If u(z,t) is, for example, interpreted as the temperature of a physical substance then
Theorem 4.1 can be applied for all the physical phenomena from the theory of the heat

conduction, where the temperatures

u(z,0),u(Tq,z),..,u(T,z),u(T,z) (5.2)

satisfy condition (3.2) in the general sense or maybe in a particular sense considered in this

section.

It is obvious, that to use Theorem 4.1 it is not necessary to know quantities (5.2). It is
only necessary to know relations between these quantities. = Therefore, the physical
interpretations of nonlocal problems are significant and the author is of the opinion that, in
general, nonlocal problems possess deep physical and philosophical meanings. It is the reason
for which, in the opinion of the author, nonlocal problems should be developed and applied in
the near future.
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