Joumal of Applied Mathematics and Stochastic Analysis 5, Number 2, Summer 1992, 111-122

IMPULSIVE INTEGRAL EQUATIONS
IN BANACH SPACES AND APPLICATIONS!

DAJUN GUO

Department of Mathematics

Shandong University
Jinan, PEOPLE’S REPUBLIC OF CHINA

ABSTRACT

In this paper, we first use the fixed point theory to prove two existence
theorems of positive solutions for the impulsive Fredholm integral Equations
in Banach spaces. And then, we offer some applications to the two-point
boundary value problems for the second order impulsive differential equations
in Banach spaces.
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1. INTRODUCTION

The theory of impulsive differential equations is a new important branch of differential
equations (see [5]). Of course, impulsive integral equations and impulsive differential equations
are closely connected. Paper [3] discussed the impulsive Volterra integral equations in Banach
spaces based on the iterative monotone technique and a comparison result. Since there is no
comparison theorem for impulsive Fredholm integral equations, the method in [3] is not
available for such equations. In this paper, we first use the fixed point theory to prove two
existence theorems of positive solutions for impulsive Fredholm integral equations in Banach
spaces. And then, we offer some applications to the two-point boundary value problems for

second order impulsive differential equations in Banach spaces.

Let the real Banach space E be partially ordered by a cone P of E, i.e., z <y iff
y—z € P. P is said to be normal if there exists a positive constant N such that § <z <y
implies ||z || < N | y||, where 8 denotes the zero element of E, and N is called the normal

constant of P (see [4]). Consider the impulsive Fredholm integral equation in E:
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T
2(t) = / H(t,s,a(s)ds+ 3 Iy(aty), 1)
0 0<tk<t
where HeClIxIxP,P),J=[0,T), I, € C[P,P] (k=1,2...p) and
0<t <o <tpe..<t,<T. Assume that H(t,s,0)=6 for t,s€J and I (0)=90

(k=1,2,...,p), then z(t) = 0 is the trivial solution of equation (1). Let PC[J,E]= {z: z is a
map from J into E such that z(t) is continuous at t# ¢, left continuous at t =1, and

Iim+:z:(t) exist for k=1,2,...,p}. Evidently, PC[J,E] is a Banach space with norm

—
ttk

lzll ,=sup |lz(t)]|. Clearly, Q={z € PC[J,E]}: z(t) >0 for t € J} is a normal cone in
teJ

space PC[J,E] if P is normal. A map ¢ € PC[J,E] is called a positive solution of equation
(1) if it satisfies (1) on J and z € Q,z # 6.

2. LEMMAS
Let Jo=[0,t;],J; = (tp e dp1 =t _1stp) Jp=(tpT). For SC PCJ,E]
we denote S(t) = {z(t):x € S} C E(t € J).

Lemma 1: If S is bounded and the elements of S are equicontinuous on each

J(k=0,1,...,p), then

aS) = sup o(S(1)), 2
teJ
where o denotes the Kuratowski measure of noncompactness.

Proof: Let S(k)z{xhk: z€ S} (k=0,1,..,p). Since Iz'm+z'(t) exists, S

t—t

- - k
may be regarded as a subset of the space C[J,FE], where J, is the closure of J, i.e.,
J i = [tk _1,t;)- Hence (see [6])

o(S®y = sup o(sENt)) (k=0,1,...,p). ®)
ted,

Obviously, S(t) = S®)(t) for t € J;, k=0,1,...,p, 50
sup a(S(t)) =maz sup a(S(k)(t)). (4)
teJ kotedy
Now, we show
afS) = maz a(.S'(k)). 5)

It is evident,

a(S) < o(8) (k=0,1,...,p). (6)
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On the other hand, for any given ¢ > 0, there exists partition 5 =.'L'le‘-(k) such that
i=

diam(S; ) < o(S®)+e<b+e (i=1,2,...,n,), ©)
where b = maz a(S(k)). Let S,-(k) =51 I, and S(i,j,...h) = §1;08,;N...NS5 ,, then
S=U{S@j,...h): i=1,2,..4n5; §=1,2,..,n9..5h = l,2,...,np}, and by (7),

dim(S(4,4,..,h)) Sb+e(i=1,2,..,n;5 = 1,2,..,n95.. sh = l,2,...,np).
Hence
a(S) <b+e,
which implies, since ¢ is arbitrary, that
a(S) <b. (8)

Consequently, (5) follows from (6) and (8), and finally, (2) follows from (3), (4) and (5). The

proof is complete.

In the following, the closed balls in E and PC[J,E] are denoted by
T,={z€E:|z|| <r}and B, ={z € PC[J,E]: ||z || , <} respectively.

Consider the operator

T
Az(t) = /H(t,s,x(s))ds+ Z I (z(ty))- @)
0

0<¢ <t

Lemma 2: Let H € C[JxJxP,P] and I}, € C[P,P] (k=1,2,...,p). Suppose that,
for any r >0, H is uniformly continuous on JxJx(PNT,), I is bounded on PNT,, and
there ezist nonnegative constants L and M,.(k) with

L k
oTL, + > M, ¥ <1
k=1
such that
a(H(t,s,D)) < L.ao(D), t,seJ, DCPNT, (10)
and
a(I (D) < M, ®a(D), DcPNT,, k=1,2,...,p. (11)

Then, for any r >0, operator A is a sirict set contraction from QN B, into Q, i.c., there

ezists a constant k, with 0 < k_ < 1 such that o(A(S)) < k,a(S) for any S C QN B,.
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Proof: It is easy to see that the uniform continuity of H on JxJx(PNT,)
implies the boundedness of H on JxJx(PNT,), and so A is a bounded and continuous

operator from @ N B, into Q. By the uniform continuity of H and (10) and using [6], we have

a(H(J xJ x D)) = mag Ja(H(t,s, D))< L,a(D), DCPNT,. (12)
.8

Now, let S C QN B, be arbitrarily given. By virtue of (9), it is easy to show that the elements

of A(S) are equicontinuous on each J,(k =0,1,..., p), and so, by Lemma 1,

o(A(S)) = sup elAS@)- (13)
Using (12), (11) and the obvious formula
T
/y(s)ds € T co{y(s):s € J}, ye€ PC[J,E],
0

we find

o(A(S(1))) < Ta(eo{H(t,s,2(s)1:z € S,s € TN+ D a({I((ty)):z € S})
0< ¢t <t

P
< Ta(H(J xJ xS(J)) +k§: o(I(S(t)))
=1
<TLa(SD)+ 3 M, Pa(S(t), (14)
k=1

where S(J) = {z(s):z € S,s € J} and S(t;) = {z(t;):z € S}. For any given ¢ > 0, there exists

m
a partition § = |J S, such that
j=1

diam(S;) < a(S) +e, j=1,2,...,m. (15)

m
Since S(t,) =jL=JlSj(tk) and diam(S ;(t;)) < diam(S ;), we find by (15),

a(S(t) < a(S)+e6,k=1,2,...,p. (16)

n
k .
On the other hand, choosing z;€S5; (j=1,2,...,m) and a partition J = U Jk(')
e
(k=0,1,2,...,p) such that '

I :cj(t)—-xj(t') | <e j=1,2,....,m; t,t'GJk(i) (k=0,1,..,p;i=1,2,...,n,) (17)
we have

SW) = U{S;(7 ) i=1,20n k=0,1,.,p5 §=1,2,..,m}.
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For z(¢),Z (t') € Sj(Jk('.)) (e, 2, T €5, t, t'€ Jk(i)), we find by (17) and (15)
le(®) =F @I < Ne@)=z; 011 + N2;() =2, ()| + [12;() - @)l
Sllz=zillp+et+ llz;—2ll,
< 2diam(§ ;) + € < 2a(S) + 3¢,

which implies
a(S(J)) < 2a(S) + 3e. (18)
Since ¢ is arbitrary, it follows from (16) and (18) that
a(S(t) <a(S), k=1,2,..,p (19)
and
a(5(7)) < 2a(8). (20)

P
Finally, (13), (14), (19) and (20) imply a(A(S)) < k,a(S), where k. =2TL_+ 3 M,.(k) <1,
k=1

and the lemma is proved.

We also need the following result which is concerned with the fixed points of strict set

contractions (see [1], [2]):

Lemma 3: Let K be a cone of the real Banach space X and K, p= {z€K:
r< |lz|l <R} with R>r>0. Suppose that B:K, p—K is a strict set contraction such that
one of the following two condilions is satisfied:

a) Brfz forzeK,|z| =randBzfz forzeK,|z| =R.
b) Bz tz forreK,|z|| =randBzLz forzeK, | z|| =R.
Then B has at least one fized point in K, p.

3. MAIN THEOREMS

Let us list some conditions for convenience.
(Hy): HeC[JxJxP,P], H(t,s,6) =0 for t, s€J, I, €C[P,P], I;(6)=0 (k=1,2,...,p).
For any r >0, H is uniformly continuous on J xJx(PNT,), I, is bounded on PNT,

and there exist nonnegative constants L, and M ,.(k) with

p
oTL, + Y MM <1
k=1

such that (10) and (11) hold. There exist also ¢, <a <b <T and 0 < ¢ <1 such that
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H(t,s,z) > cH(u,s,z), t € Jy=[a,b], u,s €J, z € P. (21)

(Hy): || H(t,s,z)||/||z||—=0 as £ € P and ||z || =0 uniformly in t,s € J; || I (z)]| /|| z||—0
asz€Pand ||z|-0 (k=1,2,...,p).

(H3) || H(tys,z)||/]|z||=0 as z € P and || z || 00 uniformly in t,s € J; || I (z) || /]| = || -0
asz € Pand | z| =0 (k=1,2,...,p).

(H,): there exists a g € P* (P* denotes the dual cone of P) such that g(z) >0 for any z > 6
and g(H(t,s,z))/g(z)c0 as £ € P and || z || -0 uniformly in t,s € J,,.

(Hs): there exists a g € P* such that g(z) > 0 for any z > 6 and g(H(t,s,z))/g(z)*0 as z € P

and || z || »co uniformly in t,s € J.

Theorem 1: Let cone P be normal. Suppose that conditions (H,), (H,) and (Hy) are

satisfied. Then, equation (1) has at least one positive solution.

Proof: Let K ={z€Q:xz(t)>cz(s) for t€Jys€J}. Then K is a cone of
PC[J,E] and K C Q. For any z € Q, we have by (21): ¢t € J, and u € J simply

T
Az(t) = / Hitys2()ds+ 3 I(a(ty)
0

0<t <t

T
>e / H(ws,a(s)ds+ 3 I(z(ty)
0

o<t <t

T P
= c/H(u,s,:c(s))ds +klek(z(tk)) (since a > 1)
0 =

T
> cf / H(u,s,z(s))ds«i-o Yo Ii(x(t)} = cAz(u),
0

<t <u

hence Az € K, and so

A(K)CK. (2)
Choose
M>(b-a)~ 1 (23)
By (Hj), there exists h > 0 such that
o(H(t,5,2) 2 My(z), t, s€Jy, z€P, ||zl 2h. (24)

Now, for any
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R > Nhe ™! (N-normal constant of P), (25)

we are going to show that
AzfzforzeK, | z|,=R (26)

In fact, if there exists zy € K with ||z || , = R such that Az, < 2, then zo(t) > cz((s), and
so

Nl[zo() | 2 cllzo(s) I, t€ T s €T,
which implies by (25)
oIl 2 eN " izoll,=cN =R > h, te I, (27)
Also, we have ,
zy(t) > Azg(t) > / H(t,s,24(s))ds, 1 € . (28)
It follows from (28), (27) and (24) that ’

b b
ool 2 [ o(H(t5,20(6)ds 2 M [ ataos))ds, 1€ T,

a

and so
b b
[ staotnar 2 6 -a) [ staqs)as. (29)
It is easy to see that ’ :
b
/g(xo(t))dt > 0. (30)

a

In fact, if this integral equals to zero, then g(zy(t)) =0, and so zy(t) = 8 for any t € J,, which
implies by virtue of zj € K that zy(s) = 8 for s € J, in contradiction with ||z, || p = R. Now,
(29) and (30) imply M (b —a) < 1, which contradicts (23), and therefore (26) is true.

On the other hand, on account of (H,) and H(t,s,0) =0, I, () =0, we can find a
r >0 (r < R) such that

N H(ts2) || <mllz|l, z€ P, |lz| <r5 t,s€J (31)
and
NI ()|l <mllzl|l, z€P, ||| <m5 k=12,...,p, (32)
where
m=[2N(T +p)]~ . (33)

Now, we verify that
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ActzforzeK, |z|l,=r (34)

In fact, if there is z; € K, ||z || , = r such that Az; > z,, then

T
0 <z,(t) < / Htys,ay())ds+ S Iya,(t), ted,
() 0< tk <t

and so, by (31) and (32)

T P
IEAON SNm(/ | 21(s) || ds +k2 [ENCY
0 -1

< Nm(T+p) |21l 0 1€V,
hence,

r=|lzg |l , <Nm(T +p) |l 2, || , = Nm(T + p)r,
which contradicts (33), and therefore (34) is true.

By Lemma 2, A is a strict set contraction on K, p={z€ K:r< | z| ,<R}
Observing (22), (26) and (34) and using Lemma 3, we see that A has a fixed point in K p,

which is a positive solution of (1). The proof is complete.

Theorem 2: Let cone P be normal. Suppose that conditions (H,), (H3) and (H,) are

satisfied. Then, equation (1) has at least one positive solution.
Proof: The proof is similar. First, (22) holds. In the same way as establishing
(26) we can show: (H,) implies that there exists 7 > 0 such that
Az fzforzeK, |z|,=r. (35)
On the other hand, by (H3) there is a ¢ > 0 such that

IH(ts,2)|| <mllz|l, c€P, |lz|l 2q,t, s€J

and
(@) )| <mliz|l, z€P, ||z]l 2 ¢ k=1,2,...p,
where
m = [2N(T +p)] " 1.
Consequently,

NH(s,z)|| <m|lz|| +M, z€P, t,s€J
and
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I ()| <mllz|| + M, z€ P,

where, by (H,),

M=ma:c{ sup || H(t,s,z) ||, sup  |[Ix(2) ||, k= 1,2,...,p}<oo.
IxIx(PAT,) PAT,

Choose R > maz{r,2NM(T + p)}. Then, it is easy to show as establishing (34) that
Az pzforzeK,|z| ,=R. (36)
Hence, again Lemma 3 implies that A has a fixed point in K, p.

Remark 1:In particular case of one dimensional space, E=R, P=R_ and
P*=P=R_. In this case, (10) and (11) are satisfied automatically and we may choose

g=1in (H,) and (Hg). Hence, from Theorems 1 and 2, we get the following

Conclusion: Let H € C[JxJxR ,R ], H(t,50)=0, I, €C[R ,R_], I;(0)=0
(k=1,2,...,p) and there exist tp<a<b<Tand0<c<lsuch that

H(t,s,z) > cH(u,s,z), t€ Jy=[a,b], u,s €J, 2>0.

Suppose that one of the following two conditions is satisfied:
a) H(t,s,z)/z=0 as z-+0 uniformly in t,s€J; Iy (z)/z-0 as z—+0
(k=1,2,...,p),
and H(t,s,z)/z=+ 0o as z— + co uniformly in t,5 € J,.
b) H(t,s,z)/z=0 as z— + oo uniformly in t,s € J; I} (z)/z-0 as 2+ 00
(k=1,2,...,p), and H(t,s,z)/z= + o0 as z-+ 0 uniformly in t,s € J,.

Then, equation (1) has at least one positive solution.

4. APPLICATIONS

Consider the two-point boundary value problem for second order impulsive differential

equation in E:

-z = f(t,z), t # t, (k=1,2,...,p),
{ Az| oy = L), (k=12 p), (37)
z(0) =z'(1) =4,

where 0 <t <...<t<...<t,<1, f€ Cl[JxP,P], J=[0,1], f(t,0)=0, I,€C[P,P],
I,(0)=6 (k=1,2,..,p). Evidently, z(t)=0 is the trivial solution of (37). Let J'
= J\{t1,t3,..41,}. A map z € PC[J,E]NC?J',E] is called a positive solution of (37) if it
satisfies (37) and z € Q,z #0 (Q is defined as before, i.e., Q@ = {z € PC[J,E):z(t) > 6 for
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teJy).

We list the following conditions:
(H{): feClJxP,PLJ=[0,1),f(t,0)=06forteJ, I, €C[P,P], I, (0)=0(k=1,2,..,p)
For any r >0, f is uniformly continuous on J x (PNT,), I, is bounded on PNT,, and

there exist nonnegative constants L. and M r(k) with

2TL, + zp: M,® <1
such that =
a(f(t,D))< L,a(D), teJ, DCPNT,
and

o(I(D) <M, Pa(D), Dc PNT, k=1,2,...,p.

(H): I f(t,2)||/llz]|=0 as z € P and | z||-0 uniformly in t € J; || I;(z)]l/ ||z ]| -0 as
z€Pand ||z||-0 (k=1,2,...,p)

(H3): 1 f(t,2)|I/llz]|-0 as z € P and ||z || =00 uniformly in t € J; || Ix(2) ||/ ]|z || =0 as
z€Pand ||z||-00 (k=1,2,...p).

(Hy): there exists t,<a<b<l and g€P" such that g(z)>0 for any z>6 and
g(f(t,z))/g9(x)c0 as z € P and || z || »0 uniformly in t € Jy = [a,b].

(H;): there exists t,<a<b<l and g€P" such that g(z)>0 for any z>6 and
g(f(t,z))/g9(x)»c as z € P and || z || »oc uniformly in t € J, = [a,b].

Theorem 3: Let cone P be normal. Suppose that conditions (H;),(H}) and (Hy) are

satisfied. Then, BV P (37) has at least one positive solution.

Theorem 4: Let cone P be normal. Suppose that conditions (H}),(Hj) and (H}) are
satisfied. Then, BV P (37) has at least one positive solution.

Proof of Theorems 8 and 4: It is easy to see that z € PC[J,E)NC¥J,E] is a
positive solution of (37) if and only if z € PC[J,E] is a positive solution of the following

impulsive integral equation:

1
a(t) = / Gt f(sasds+ 3 I(z(ty), (38)
0

0<t <t

where G(t,s) is the Green function for the differential operator — z’’ under boundary condition
z(0) = z'(1) =0, i.e.,
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t,t<s;
G(t,s) = min{t,s} ={

s,t>s.
Evidently, (38) is an equation of the form (1) with T'=1 and H(t,s,z) = G(t,s)f(s,z). It is
easy to show that 0 < G(t,5) <1 (t,s € J =[0,1]), and for any t,<a<b<1,

G(t,s) > aG(u,s), t € [a,b],u, s € J.

Hence, (21) is satisfied for any t, <a <b <1 with ¢ =a. Consequently, it is clear that (H D
(Hj) and (Hy) imply (H,) , (H,) and (Hy), and (Hy), (H3) and (H}) imply (H,), (H3) and
(H4). Thus, Theorems 3 and 4 follow from Theorems 1 and 2 respectively.

Remark 2: In one dimensional case, =R, P=P*=R + and g =1, we get the

following result from Theorems 3 and 4:

Conclusion: Let feC[JxR,,R,], J=[0,1], f(t,0)=0, I,€C[R,,R ]
I,(0)=0 (k=1,2,...,p). Suppose that one of the following two conditions is satisfied:
a’) f(t,z)/z=0 as z—+0 uniformly in t€J, I (z)/z—0 as z=+0 (k=1,2,...,p)
and there exist ¢, <a <b <1 such that f(t,z)/z—+ 00 as z—+ oo uniformly in
t € [a,b].
¥)  f(t,z)/z=0 as z— + oo uniformly in t € J, I;(z)/z-0 as z—+ oo (k=1,2,...,p)
and there exist ¢, <a <b <1 such that f(¢,z)/z—+ o0 as z—+ 0 uniformly in
t € [a,b].

Then, BV P (37) has at least one positive solution.
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