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ABSTICT

An algorithm is presented for finding the pseudo-nverse of a
rectangular matrix. Using this algorithm as a to01 existence and
uniqueness of solutions to two point boundary value problems associated
with general first order matrix dfferential equat}ons are established.
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1. INTRODUION

In this paper we consider the general first order matrix differential equation of the

Ly -- P(t)y’ + Q(t)y = f(t), a <_ <_ b, (1.1)

where P,Q E [Lp(a,b)]mn and f E [Lp(a,b)]n for some p satisfying the condition 1 < p < c.

We seek a solution of (1.1) satisfying the boundary condition

By My(a)+ Ny(b) d. (1.2)

(In case of multipoint By =_ Miy(ti) d, a = 1 < 2 < < tn = b and the matrices
i=1

M E Rn x m), where M, N Rn x m and d Rn.
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In the case m = n, the boundary value problem (1.1) and (1.2) is said to be invertible

if the homogeneous BVP (1.1) and (1.2) with f =0 and d =0 has only the trivial solution

y = 0. Equivalently, the BVP (1.1), (1.2) has a unique solution y if and only if the

characteristic matrix D = MY(a) + NY(b) is non-singular (where Y is a fundamental matrix of

Ly = 0). In this case one can formally write the solution as

b

y(t) = Y(t)D- d + / G(t,s)f(s)ds.
a

Here G is the Green’s matrix for the homogeneous BVP and is given by

Y(t)D- MY(a)Y l(s)P- (s), a

_
s _< t _< b

(1.4)G(t,s)
Y(t)D- NY(b)Y- (s)P- (s), a

_ _
s

_
b.

In the non-invertible case we develop a method to compute the generalized inverse of a

matrix and using this technique we establish a unique solution of the two point BVP (1.1) and

(1.2). This technique is substantially new and includes the existing results as a particular case.

2. PI’ELIMINAR/ES

Suppose that A is (m x n) matrix of rank r. We partition A in the following manner.

A=( All A12 ). (2.1)A2 A2:

Here All is an (r x r) matrix, A12 is an (r x (n- r)) matrix, A21 is an ((m- r) x r) matrix and

A22 is an ((m-r) x(n-r)) matrix. Since the rank of A is r, the last m-r rows of A are

linear combinations of the first r rows. Therefore an ((m- r)x r) matrix K exists such that

A21 = KAll and A22- KA12.
Similarly, an (rx (n- r)) matrix L exists such that

A2 = AL and A22 = A21L. (2.3)

From (2.2) and (2.3), we get A22 KAllL. Hence, A can be written as

A = = All I
KAtt KAtL K

L ). (2.4)

We make use of the following expression given in [2] for the generalized inverse A + of A and if

we write A in the form A = BC, where B and C are both of rank r, then
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A + cT(ccT) ’(BTB)- BT. (2.s)

From (2.4), we can choose B and C as

(i)B= AlxandC=( I L ).
K

More specifically, we can associate Axx with C instead of B. In both cases, (2.5) gives

LT I+ LLT All ( I + KTK) 1( I KT) (2.6)

I + KTK) All I + LLT )-I ( I h"T). (2.7)

The equation (2.7) involves only one inversion of an (r x r) matrix.

useful to remember that

In form (2.6), it may be

I + KTK) I KT(I + KKT) K,

since I + KTK is non-singular and in fact it is positive definite,

uT(I + I(TK)u = uTu + (Ku)T(Ku) > 0 if u ://= 0

+ = ( ).
By the standard theorem on determinant of the product of rectangular matrices, if C is

an (mxn) matrix (m >0), then det(cTc)= E(detCK), where CK is an (nxn)matrix
K

obtained by selecting any n rows of A, and the sum is taken of the square of the determinant

overall such matrices.

If we apply this to (2.8), we get

det(I + KTK) >_ (detI)2 = I.

Hence (I + KTK) is a well conditioned matrix.

A useful method for finding the matrices K, L and A in (2.6) is to just make use of

Gauss-]ordan procedure. If we write

All A12 I

A21 A22 0
(2.9)
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then by using row operations as in Gaussian procedure, the matrix A can be reduced to the

unit matrix of order I and A2 can be reduced to zero matrix. The last operation is equivalent

to A2x- KA = 0. The matrix (2.9) is then reduced to

I AAx2 A
0 A22- KA12 K

If we use (2.2) and (2.3), the above matrix is equivalent to

I L A
0 0 -K

To illustrate the procedure discussed in this section, we consider

rectangular matrix

(2.10)

the following (6 x 4)

-i 0 1 2

-I 1 0 -I

0 -I 1 3

0 1 -I -3

1 -i 0 1

i 0 -i -2

We first reduce this matrix to the row echelon form and from there we see that its rank is 2.

Obviously the (2 x 2) matrix in left upper of A is non-singular. If we add a (2 x 2) unit matrix

and a (42) null matrix to the right of A to form (2.9) and perform elementary row

operations to reduce the resulting matrix to the form (2.10), we get

( 0 -1 -2 -1 0

0 -1 -3 -1 1

0 0 0 0 -1 1

0 0 0 0 1 -1

0 0 0 0 0 1

0 0 0 0 1 0
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We deduce immediately from this

-1 0 )AII= -1 1
,K=

-1 1

0 -1

-1

-i -2)and L=
-1 -3

Substituting these forms either in (2.6) or (2.7) yields

15 18 3 -3 18 15

8 13 -5 5 -13 -8

7 5 2 -2 -5 -7

6 -3 9 -9 3 -6

3. GENERALIZED TWO-POINT BOUNDARY VALUE PROBLEMS

We consider in this section the BVP (1.1) and (1.2) and assume that rank of P(t) is r.

We write P(t) in the form

Pll P12
P(t) =

P21 P22
where Pll is (r r), P12 is (r x (n x r)), P21 is ((m- r) x r) and P22 is ((m- r) x (n- r)) and

arranged (by interchanging columns and rows necessary) such that Pll is non-singular. We

apply the technique developed in Section 2, to compute the generalized inverse of P(t) which is

given by

I
P+ = I+ LLT )- p I + KTK) -1( I KT ). (3.1)

+

We further assume that Q is in the column space of P(t). By this we mean that there

exists an (n x n) matrix R such that

Q= PR and P+ PB= B (3.2)
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for any B for which the matrix P + PB is defined with these conditions. The operator LY = 0

is equivalent to

y’ = Ay, (3.3)

where A = (P + Q) E [Lp(a,b)]m x n and hence a fundamental matrix Y(t) of the system

(3.3) exists.

Lemma 3.1: Suppose Q(t) is in the column space of P and P satisfies (3.2).
Then, if Y(t) is a fundamental matrix of (3.3) and " (l) is a particular solution of (1.1), any

u(t) of (1.1) is

y(t) = Yj (t) + Y(t)C (3.4)

for some C Vn(R ).

Proof: Noting the fact that P + Py’ --y’, one can easily verify that every solution

y(t) of (1.1) is of the form given by (3.4).

Lemma 3.2:

(1.1) is of the form

Let P satisfy condition (3.2). Then a particular solution- (t) of

- (t) = Y(t) f Y l(s)P + (s)f(s)ds,
a

(3.5)

where Y(t) is a fundamental matrix of y’ = A(t)y.

Theorem 3.1: If the boundary value problem (1.1), (1.2) with f =d = 0 has a

characteristic matrix D = MY(a) + NY(b) of rank r, then its index of compatibility is n- r.

Proof: If P+ is the generalized inverse of P given by (3.1) and satisfying (3.2),
then any solution of (3.3) is of the form y(t)+ Y(t)C for some C Yn(R). This satisfies the

homogeneous end point condition if and only if

DC =0. (3.5)

If rank of D is r, then the system (3.5) has precisely (n-r) linearly independent

solutions, completing the proof of Theorem 3.1.

E:r.ample 3. I: Consider the following BVP:

Ly=_

0 2 1 1

0 1 y’+ -2 0 y= 1

0 0 2 0
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1 0 1 0

0 0 (0) + 0 0

0 1 0 0

=o.

The matrix P can be reduced to row echelon form and from that we can see that its rank is 2.

Using the formula (3.1), we get

0 -1 0 )p-i-=
2 0 0

Hence P + Py’ + P + Qy = P + f is equivalent to

Y’ = Y+ 1
-23

A fundamental matrix of this system is given by

e e2t

Y(t) =
e 2e2t

Substituting the general form of y(t)= Y(t)C in the end point condition, we get

DC = 0 where
1 +e 1 +e2

D= 0 0

1 2

Since D is a (3 x 2) matrix of rank 2, the index of capability of the BVP is zero.

Theorem 3.2: Let P satisfy the condition (3.2) and Y be a fundamental matrix of
(3.3) and let D- MY(a)+ NY(b) be a characteristic matrix of rank r < rain(re, n). Then the

BVP (1.1), (1.2) has a unique solution in the least square sense and is given by

b

y(t) = / G(t,s)f(s)ds + Y(t)D + (
a

where G is the Green’s matrix for the homogeneous TPBVP, D + is the generalized inverse of
b

D and [MY(a)+ NY(b)]C + NY(b)f Y- l(s)P + (s)f(s)ds = .
a

Proof:
the form

From Lemma 3.1 and 3.2, it follows that any solution y(t) of (1.1) is of

y(t) = Y(t)C + / Y(t)Y (s)P + (s)f(s)ds,
a
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where P + is the generalized inverse of P given by (3.1), and also P + satisfies the condition

(3.2).

Now substituting the general form of y(t) in the boundary condition matrix, we get

b

[MY(a) + NY(b)]C + NY(b) f Y- l(s)P + (s)f(s)ds = a

a

or
b

DC = NY(b) J Y (s)P + (s)f(s)ds.
a

Since D is an (mx n) matrix of rank r, using the formula similar to (2.6), we get

C-D +
b

pa NY(b) f v l(s)P + f(s)ds],
a

where D + is calculated from (2.6) and D + satisfies the condition D + DC = C.

Substituting the general form of C in (3.4), we get

y(t) = Y(t)D +
b

a Y(t)D + NY(b) / Y l(s)P + (s)f(s)ds
a

+ Y(t) / Y l(s)P + (s)f(s)ds
a

b

= J G(t,s)f(s)ds + Y(t)D +
a

where

=
[Y(t)Y-l(s)- Y(t)D + NY(b)Y-l(s)]P + (s), a g s < t _< b

Y(t)D + NY(b)Y- i(s)P + (s), a <_ < s <_ b.

It is easy to generalize these results to multipoint BVP’s.

The characteristic matrix for the multipoint boundary value problem is defined as

D = E MiY(ti) (3.6)
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and if D + is the generalized inverse of D given by (3.1) and satisfying (3.2), we have the

following analogous result, of Theorem 3.2. As the proof is similar to the proof for 3.2, we omit

the proof of this theorem.

Theorem .?: Let Y be a fundamental matrix, of (3.3) and D be the characteristic

matriz of the multipoint BVP with rank r < rain(re, n). Then the multipoint BVP has a

unique solution given by
b

u(t) = / G(t,s)y(s)ds + Y(t)D- lot.

Eample 3.: Consider the following TPBVP

1 0 0 1 2

Ly= 0 1 y’+ 1 0 y= 1

0 1 0 0 1

1 1 0 --1 0

0 I y(0)+ I -I y(1)= 0

0 0 0 0 0

Using the formula (3.1) we get,

1 0 0 )P+=
0 1 0

and P + satisfies condition (3.2). Therefore a fundamental matrix of (3.3) is given by

e e -t

Y(t) =
e e

The characteristic matrix D is given by

2-e

2=.-ee

0

Using the form (3.1), we get
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1 0 1
e(2 -e)

1
e( -)’

0 0 1
0 1 0 1 0

(e 1)(e 3) (e 2"i’"i(e.- 3) 0

Substituting these values in (3.5) we get, G(t,s).

4. SUMMARY

In case if the BVP (1.1) and (1.2) are non invertible an algorithm is presented for

finding the pseudo-inverse of a rectangular matrix. Using these pseudo-inverses existence and

uniqueness of solutions to two point boundary value problems associated with general first

order matrix differential equations are established. Also two examples are given two explained

the above mentioned theory.
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