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ABSTRACT

The purpose of ths paper s to study a nonlinear boundary value
problem of second order when the nonlinearity s a Carathodory
function. It s shown that a generalzed upper and lower solutions
method is vald, and the monotone teratve technique for finding the
mnmal and maximal solutions s developed.
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I. INTRODUCTION

We shall, in this paper, develop the method of upper and lower solutions and the

monotone iterative technique for second order boundary value problems of the form

u"(t) = f(t, u(t)), t e = [o,

Bu(O) = co (P)

Bu(r) = c

where f is a Carathodory function, Bu(O)= aou(O)-bou’(O), and Bu(Tr)= alu(Tr

1Received: May, 1991. Revised: July, 1991.

2The authors were partially supported by DGICYT (project PS88-0054), and by Xunta de
Galicia (project XUGA 20701A90), respectively.

Printed in the U.S.A. (C) 1992 The Society of Applied Mathematics, Modeling and Simulation 157



158 JUAN J. NIETO and ALBERTO CABADA

ao, a1>_0, bo, b >0.

We first note that the classical arguments of [2] for f continuous are no longer valid

since if u is a solution of (P), then u" needs not to be continuous but only u" (5 Ll(0, Tr). Here

we extend classical and well-known results when f is continuous (see [2]) to the case when f is

a Carathodory function.

If we choose ao=a1=c0=cl=0, then the boundary

u’(0) = u’(Tr) = 0. Thus, we have the Neumann boundary value problem

conditions read

," = f(t, ,), ,’(o) = ,,’(-) = o. (N)

We shall consider in Sections 2 and 3 this simpler boundary value problem so as to

clearly bring out the ideas involved. On the other hand, there is no additional complication in

studying (P) instead of (N). We list the corresponding results for (P) in Section 4.

Finally, in Section 5 and following the ideas developed in previous sections, we present

the method of upper and lower solutions for the boundary value problem (P) when a0, a1 > 0

and bo, b >_ 0. In particular, we do so for the Dirichlet problem

,’ = l(t, ,), ,(o) = ,(-) = o. (D)

2. GENERALIZED UPPEIt AND LOWEI SOLUTIONS

Let us assume that f:IxRR is a Carathodory function, that is, f(.,u) is

measurable for every u (5 R and f(t, is continuous for a.e. t (5 I. Moreover, we suppose that

for every/ > 0 there exists a function h- hR (5 L(I) with

If(t,u) <_ h(t) for a.e. (5 I and every u --< R.

Let E = {u (5 w2’l(I) u’(0)= u’(r)= 0} with the norm of w2’l(/)and F = LI(I)
with the usual one. We shall denote by I[" I! E and I1" [I the norms in E and F, respectively.

By a solution of (N) we mean a function u (5 E satisfying the equation for a.e. t (5 I.

Now, suppose that a, fl (5 W2’1(I) are such that a(t) < fl(t), t (5 I. Then, relative to

(N) we shall consider the following modified problem

,,"(t) = a(t,,,(t)) u(t) + p(t, (t)),,,’(o) = ,,’() = o,

where
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(t) fo<
g(t, u) = f(t, p(t, u)) and p(t, u) = u for a(t) _< u < (t)

(t) for u > (t).
We note that g is a Carathodory function and that the Neumann problem (N) is

equivalent to the integral equation

t

(t) = (0)- [ (t- )y(,, ())d,
0

with

f(, ())d
0

=0. (.4)

We say that a (5 w2’l(I) is a lower solution for (N) if

-a"(t) < f(t,c(t)) for a.e. t e I

and

c’(0) > 0 > a’(Tr). (2.6)

and

Similarly, E W2’l(I) is an upper solution for (N)if

’(t) > f(t, (t)) for a.e. t I

’(0) _< 0 _</’(Tr). (2.8)

We are now in a position to prove the following result which shows that the method of

upper and lower solutions is still valid when f is a Carathodory function.

Theorem 2.1: Suppose that a, 1 e W2’1(I) are lower and upper solutions for (N),
respectively, such that a(t) < fl(t) for every I. Then there exists at least one solution u of
(N) such that a(t) < u(t) < (t) for every I.

Proof: We first note that any solution u of (N) such that a _< u _</ is also a

solution of (2.2). On the other hand, any solution u of (2.2) with c < u _</ is a solution of

(N). We shall show that any solution u of (2.2) is such that a < u _< fl on I and that (2.2) has

at least one solution.

Now, let u be a solution of (2.2). We first show that c(t) _< u(t), for every t E I. If

a(t) > u(t) for every t I, then -u"(t)=f(t,(t))-u(t)+(t) for a.e. t I. Thus we

obtain the following contradiction
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0 0 0

Thus, there exists t1 E I with a(tt)_< u(tx). Now, suppose that there exists t’E I such that

a(t’) > u(t’). Set to = a- u and let to E I, tO(to) = maz{to(t): I). We first suppose that;

to (0, r) and to < t (the case to > tt is similar). Then o’(to) = 0 and there exists t (to, t)
with o(t2)=0 and o(t)>0 for every rE[to, t2). On the other hand, we have that

o"(t) >_ o(t)> 0 for a.e. t [to, t2). This implies that o’ is increasing on [to, t2) and, in

consequence, o’(t)>_ 0, t [to, t2) since o’(to)= 0. Therefore, o is increasing on [to, t2) which

is not possible.

Now, if to = 0, then ’(0)_< 0 and we get that 9’(0)= cd(0)>_ 0 and ’(0)= 0. As

before, there exists t2 > 0 such that (t2)= 0 and (t)> 0 for every t [0,t2) and ’ is

increasing on [0, t2) which contradicts that (t2) = 0. The case to = 7r is analogous.

This shows that c(t) < u(t) for every t q I and by the same reasoning we obtain that

u(t) < (t) for every t I.

We next prove that (2.2) has at least one solution.

following Neumann boundary value problem

For A E [0,1], consider the

-,,"(t) + ,,(t) = a[a(t, u(t)) + p(t, u(t))], ,,’(o) = = o.

In order to apply the well-known theorem of Leray-Schauder, define the operators

L: E--.F and N: F---.r by Lu = u" + u and Nu = g(., u(. )) + p(-, u(. )) respectively. Note

that L is continuous, one-to-one, and onto. Thus, the Neumann problem (2.9) is equivalent to

the abstract equations

or

Lu = ANu, [O, 1], uE

u = $gNu, [O, 1], u F, (2.11)

where H = i- L- : F--F and i:EF is the canonical injection. H is continuous and compact

since w2’l(I) is compactly imbedded into LI(I).

Let 7 = min{cr(t):t I} and di = maz{(t):t e I}. if u is a solution or (2.2), then

lu(t) < R = maz{7,5} for every t e I. Taking into account this, condition (2.1), and that

a(t) < p(t, u(t)) < 3(t) for every I, we have
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II ANu II II h I! +2 = C.

In consequence, if u is a solution of (2.9) we have that !! u II E C. II H II, where C is

a constant independent of X E [0, 1] and u E F. Thus, we have proved that all the solutions of

(2.11) are bounded independent of A [0, 1] and we can conclude that (2.11) with A = 1, that is

(2.2), is solvable. This concludes the proof of the theorem.

3. Tile MONOTONE METtlOD

When f is a continuous function the following comparison result is fundamental in the

development of the monotone iterative technique.

Lemma .1: Let o C2(I) and o’(O)>_ 0 >_ o’(r). Suppose that there exists

M > 0 with o"(t) > Mo(t) for a.e. t I. Then (t) < 0 for every t I.

We now extend this result in order to cover the case when f is a Carathodory

function.

M(t) > 0 for a.e. t I such that o"(t) > M(t)o(t) for a.e. t I, then oo(t) <_ 0 for eyeful t I.

Proof: If o(t) > 0 for every t E I, then o"(t) > 0 for a.e. t I. Thus, o’ is

strictly increasing on I and o’(0) < o’(rr) which is a contradiction. Now, if there exists some

t 6 I with o(t) > 0, then choose s 6 I such that o(s)= maz{o(t):t I}. If s E (0, r), then

o’(s) = 0 and there exists t1 [0,s) (or tI (s,r] and the reasoning is analogous) with

o(tl) = 0 and 9o(t)> 0 for every t6 (tl,s). However, o"(t)> 0 for a.e. t6 (tl,S) and o’ is

increasing on (tl,S). Hence, o’(t) < 0 for 6 (tl,S) and o is decreasing on (tl, s which is not

possible. If s = 0 or s = r the argument is similar. This completes the proof.

For M E F with M(t)> 0 for a.e. I and r/6 F we shall consider the following

Neumann boundary value problem

or equivalently

u"(t) = f(t, (t))- M(t)[(t)- ,(t)], u’(0) = 0 = u’()

"(t) + (t)(t) = f(t, o(t))+ M(t)O(t), u’(O) = 0 = u’().

The operator L (defined in the proof of Theorem 2.1) is continuous, one-to-one and
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onto. Thus, by the open mapping theorem, its inverse L-1 is continuous. For cr (5 F, let

L- lr = u be the unique solution of the linear problem u" + Mu = or, u’(O) = 0 = u’(Tr).

If a, are lower and upper solutions for (N) respectively, let us introduce the

following condition in order to develop the monotone method: There exists M ( F with

M(t) >_ 0 for a.e. t ( I and we have that

f(t, u) f(t, v) >_ M(t)(u v) (3.3)

for a.e. t e I and for every u, v e R such that a(t) < u < v <_

For r/(5 F with c _< r/< fl, that is, r/( Is, fl] = {u ( F: a _< u _< fl for a.e. t e I}, let us

define the (nonlinear) operator g’[a, fl]Z by gr/= L-tr where or(t)= f(t, rl(t))+ M(t)(t),
t ( I. The operator K is monotone and its properties are summarized in the following result.

I,emma 3.3: Assume that (3.3) holds. Then the operator K has the following

properties.

and

If a < rl <_ t3 on I, then c < Ko < t3 on I

if <_ rll <_ 72 <- on I, then < Krl < Krl2 <_ t3 on I.

(3.4)

Proof: Let c < r/< on I.

= u- . Thus, for a.e. E I we have that

We shall prove that u_<fl on I. Indeed, let

o"(t) = u"(t) >_ f(t,(t))- M(t)(t) + M(t)u(t) + f(t, fl(t)) >

M(t)[13(t)- r/(t)]- M(t)o(t) + M(t)u(t) = M(t)o(t).

By Lemma 3.1 we can conclude that a(t) _< 0 for every ( I, that is, u < fl on I. The proof

that c < u is similar.

To show that validity of (3.5), let = Krh -Kr/2.
( I and, in consequence, we obtain that Krh _< Kr/2 on I.

Thus, a"(t)> M(t)a(t) for a.e.

Theorem $..l: Suppose that and fl are lower and upper solutions, respectively, of
(N) such that < 13 on I and (3.3) holds. Then, there exists monotone sequences {an} and

{/3n} with o = c, o =t3, an < flm for every n, m N and tim a_ = r, ldrnt3n = p

uniformly on I. Here, r and p are respectively the minimal and maximal solutions of (N)
between and t3 in the sense that if u is a solution with a <_ u < fl on I, then r < u <_ p on I.
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Proof: Let a0 = a and an = Ka,_ l(n = 1, 2,...). We first prove that a0 _<
Indeed, let = ao-a1. Thus, "(t) > f(t,a(t))- M(t)al(t + f(t,a(t))+
M(t)a(t) = M(t)a(t) for a.e. E i. This implies that a_< 0 on I in view of Lemma 3.2.

Taking into account property (3.5) we see that a1 = Ka0 < Kax = a2 and, by induction, that

an<an+ for every nEN. Similarly, defining o= and Dn =KDn-x we have that

/n + 1 < /n, n N. Combining properties (3.4) and (3.5) we see that a < an _< Dm -< fl for

every n, m N.

Therefore, the sequence {an} is uniformly bounded and increasing and it has a

pointwise limit, say r(t), t I. We now prove that r is a solution of (N). Choose R > 0 such

that lan(t) <_ R for every n NI, t E I. The sequence {a} is bounded in r since

-a(t) = M(t)an(t + f(t, an_ l(t))+ M(t)an l(t)

and hence, II ; II < II M II II . II / II hR I! / Ii M I! II .- x II < 2 II M II " 2r /

II ha I! = C. Here, C is a constant independent of n .
On the other hand, a(t)= f a’(s)ds, which implies that the sequence {a} is

0
bounded in L(I).

Therefore, {an} is bounded in E. This together with the montonicity of {an} implies

that {an} is uniformly convergent to r. From (3.6) we obtain that

and

..(t) = = f (,- s)[M(s)an(S f(S, an_ l(S))- M(s)an_ l(s)lds
0

f f(s, an_l(8))ds’- f M(s)[an(s)-an_l(S)]ds.
0 0

Letting n---,oo and using the uniform convergence of {an} we see that r satisfies the

integral equation (2.3) and (2.4), that is, r is a solution of (N).

Using the same integral representation for the solutions of (N) we get that {fin}
converges uniformly to a solution p of (N) and it is obvious that a < r _< p < .

Finally, if u is a solution of (N) with a_< u <_ / on I, then a _< Ku = u <_ fl. By

induction we get that an <_ u <_ fin for every n Ni which implies that r < u _< p and concludes

the proof of the theorem.
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4. NONLINEAR SECOND ORDER BOUNDARY VALUE PROBLEMS

A function v E W2’x(I) is said to be a lower solution of (P) if

--v"(t) < f(t, v(t)) for a.e. i

By(O) <_ co, By(r) <_ Cl, (4.2)

and an upper solution of (P) if the reversed inequalities hold in (4.1) and (4.2).

If we know the existence of upper and lower solutions for (P), then we can guarantee

the existence of a solution for (P).

Theorem 4.1: Assume that a and fl
respectively, such that a(t) < 3(t) for every I.

the problem (P) such that a(t) <_ u(t) <_ 13(t), t I.

are lower and upper solutions of (P)
Then there exists at least one solution u for

In order to develop the monotone method, we need the following result which is

analogous to Lemma 3.2.

Lemma 4.2: Let W2’1(I) be such that Bo(O) < 0 and Bo(r) <_ O. Assume

that there exists M L(I) such that M(t)> 0 for a.e. t I, and o"(t)> M(t)(t) for a.e.

t i. Then o(t) < 0 for every t I.

Proof: If (t) > 0 for every E I, then "(t) > 0 for a.e. t I and 9’ is strictly

increasing on I and ’(0) < ’(r). However, B(0) < 0 and B(a’) < 0 implies that ’(0) > 0

and ’(r)<_ 0 which is a contradiction. Now, reasoning as in the proof of Lemma 3.2 we see

that there is no t q I with (t) > 0.

This allows us to show the validity of the monotone iterative technique for the

boundary value problem (P).

Theorem 4.3: Let the assumptions of Theorem 4.1 hold. In addition, suppose that

there exists M L(I) and M(t) > 0 for a.e. t I, such that for a.e. t I and every u, v R

with a(t) <_ u < v < fl(t) we have

f(t, u)- f(t, v) M(t)(u-- v). (4.3)

Then there exist monotone sequences {Cn}r and {fln}tP uniformly on I.

the minimal and maximal solutions respectively, of (P) between cr and 13.

Here, r and p are

Proof: For a _< q _< fl, we solve the boundary value problem
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u"(t) + M(t)u(t) = f(t, rl(t)) + M(t)y(t), Bu(O) = Co, Bu(r) = cx

which has a unique solution u = Kr/.

The operator K has the properties (3.4) and (3.5) and then one can generate the

monotone iterates.

5. DIRICHLET PROBLEM

We say that a E w2’l(I) is a lower solution of (D) if -c"(t)_< f(t,(t)) for a.e.

t E I, c(0) _< 0, and (Tr) _< 0. Similarly, / is an upper solution if the reversed inequalities

hold.

Now, using the following result it is easy to show that the monotone method for the

Dirichlet problem (D) is also valid.

Lemma 5.1: Let w2’l(I) and suppose that there exists M LI(I), M(t) > 0

for a.e. t I, such that "(t) > M(t)(t) for a.e. t G I. If (0) < 0 and (r) < O, then

(t) < 0 for every t I.
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