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ABSTRACT

The effects of quant]zat]on of quickly osdllating functions are
considered. An asymptotical classification of a|]asing spots is considered.
The results obtained may be used in the restoring of certain features of
initial functions.
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1. INTRODUCTION

Consider a smooth function F = F(x, y), where (z, y) E P = I-- 2. To make a qualitative

description of the function F the following method is convenient. Fix a number m E I- and

multiply the value of F in each point (z,y) by m. If the integer approximation of mF(x,y) is

odd (even) then the point (x,y) is painted by white (black). So the plane P, painted black and

white, graphically describes the behavior of the function F.

Now consider the restriction of this picture on the rectangular lattice P C_ P. For

example, the computer monitor may be considered as a part of such a lattice. Of course, the

quantization sharply changes the qualitative pictures and new structures appear.

Such structures are well known in the computer graphics: the quantization of oscillating

objects may generate such parasite artifacts (aliasiug). This problem was studied in recent years

not only in special monographs [4] and [5] but also in popular magazines like [1-3]. The

classification and description of the aliasing structures seem to be important not only for

computer graphics but also for information transmission problems, etc. The analysis of such

structures may be also useful in order to extract information on the quantization lattice and the

initial function F.
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2. BASIC DEFINITIONS

Fix a smooth function F = F(x,y) defined on the plane P = R:.
the following level set of the function F:

Denote by L(n; F, #)

L(n;F,#) = {(x,y) E P such that n- 1/2 < #F(x,y) < n + 1/2},

where p ! JR, n . For any q ! define the sets

where u = 0,1,..., q- 1.

Lq(u; F, #) = U L(k;F,#),
k =_ umodq

Consider a rectangular lattice P(h,a)C_ P with small steps

and htt = ha-1 along the axes z and y, where the positive number a is fixed. The aim of the

paper is to describe the quantized level sets

Lq(u; F, h, a, p) = Lq(u; F, #) P(h,

For each node (z0, Yo) of the lattice P(h,a) define the rectangle

Uo) = u) P: ,ol < u- Uol <

For each subset M C_ P(h,a) define the set

Q(M) = U
(x, y) e MQ(x, y)

Deflation 1: Let X >_ 0. The measurable set M C_ P with finite positive Lebesgue

measure men is said to be x-representable by the set M C._ P if

mesA(Q(M),M)
<X,men(M)

where A denotes the symmetric difference of sets.

If h--,0 while # = const, then the sets Lq(v;F,p) are x-representable by the sets

Lq(v; F, h, a, p) with X--*0. But this is not true if # increases rapidly while h vanishes.

Furthermore, the ca..cs

h-0, #0, where

for a fixed .--. will be considered.

Defmition 2: The sets Lq(v;F,h,a,E/h) asymptotically represent the function

G(x,y) in an open bounded f C_ P if for each small h there exist = (h) and X = x(h) such

that the sets

Lq(u; G(x, y) + (h), E/h) n 12
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are ..(:-representable by the sets

Lq(u; F,h,a,./h) O

for each n = 0,1,..., q- 1, where X--*0 while h-,0.

Fmple 1:

3. EXAMPLES

Consider the function

Fl(z, y) = y4 + z2y, where 1 _< x, y _< 1.

This function will be quantized by the lattice generated by a computer screen which consists of

641 x 321 points. So each pixel of the screen is a rectangle with sides hx = 1/320, hu = 1/160:

In Fig. 1: the set Lq(O; F, h, a, p) is drawn with white and the set Lq(1; F, h, a, p) is drawn with

black, where q = 2 and p = 900.

Example 2: The function in the previous example is the first function that the

authors considered. The function

F2(x, y) = R- v/R2’"z2 y2, where 1 <_ x, y <_ 1

corresponds to the interference picture (Newton rings) generated with a monochrome light beam

(with wave length p) and the lens of radius R which lies on the flat discrete surface P and

touches it at the zero point. The aliasing effects for p = 2000 are shown in Fig. 2; such effects

might be seen when Newton rings are visualized by the digital screen.

4. IIFULTS

Define the set

D(F,Z) = {d E P[ F’(d) = (iqZ- 1) 1, F’(d) = (jqH- 1)a, i, j, e .}.

For each point d = (d:,du) D(F,Z) define the function

Gd(Z y) = F(z, y) F’=(d)(z d) F’(y du).

Theorem 1: For each point

asymptotically represent the function Gd(Z,y).

d D(F,.--.) the sets Ll(;F,h,o,/h)
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Proof: Let

da: = Nzh: + cx’ z = (Nx + nz)hx,

dt = Nuhu + , V = (Nu + nu)h,
where Nz, Nu, nx, nt E Z and

O < % < h:, O < % < hu.

Suppose also that

F’(d) = (iqZ 1 )ct 1, F,u(d) = (jqE 1)a,

where i, j E Z. Then the difference p V F between the functions pF and pGd takes the form

Hence,

p V F = q(inx + jnu) q(ieh" 1 + jeu/h 1)

=_ -q(ieh: + jeuhu)mod q.

Now the statement of the theorem follows from Definition 2 with

(h) = -q(ieh"1 + jeuh 1).

Coronary 1: Let the matrix F"(d) be invertible at a point d = (dz, du) D(F,E).
Then there exists a positive r such that the sets Lq(v;F,h,a, Eh -1) asymptotically represent the

bilinear function

H(z, y) = (F"(d)(z d:, y du), (z dx, y du)

in the circle

Br(d = {(z, V) e P dx)2 + (v du)21 <

Proof follows from Theorem 1 and the Taylor expansion of F in Br(d).

Hence, the forms of the main aliasing spots are defined by the signature of the matrix

F"(d). Each point of D(F,E) coincides with the center of the main aliasing spot (the error is

less than a pixel).

Suppose that in a sufficiently large domain fl the matrix F"(z, y) is invertible and varies
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slowly:

where is small. Then the alia.sing spots form a curved lattice which is generated by the curves

Cx(i, F) = {(x, y) E P F’x(x, y) = (iqE 1)a 1, }

C(j, F) = {(a:, y) e P F’u(r,, Y) = (JqE 1)a; }-

The set D(F,E) is generated by the intersections d(i, j; F,) of the curves C:r(i, F) and Cu(j, F).
Define the vector steps X, Y of this lattice as

Xij = (xixJ, XiuJ = d(i + 1,j;F,E)-d(i,j;F,E)

yij
__

(yixj, yiuj = d(i, j + 1; F,-:)-d(i,j;F,E).

Note that since the points d(i,j;F,E) do not change as h--.0, the vectors X and Y also do not

change.

Theorem 2:

lira o = 1..-.,o

Proof: Consider the Taylor expansion of the functions Fz and Fu in the

neighborhood f of the point d* = d(i, j; F, E). Then the definitions of X,Y and d(i,j;F,E)

imply the relations

)x == 0

here
_

denotes the first order of approximation as h0 and 0. Hence

()q(F,,(d.))
1

,"/’,
0

()q(F,,(d.)) 1
0

_yo
1

Since the matrix (F"(d*))-1 is symmetric, the relation
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holds. This relation implies the statement of the theorem.

C,orollary 2: Let d* D(F; .). Then the

as h--,O and

EF"(d*) -1
qaYx qaYy

Proof follows from the relations on X and Y stated in the proof of Theorem 2.

Theorem 2 may be used if both function F and parameter a are not known but the

lattice of points d(i,j;F,E) are clearly visible. In this case, one can define the vectors X and Y

and use Theorem 2 to estimate a.

Now we study the aliasing structure when the matrix F"(x,y) is invertible at its center

(x,y). For each point d D(F,E) the number of sets L(n;Gd,) which intersect with the circle

Br(d) is denoted by Rad(d,r).

Theorem 3: Let d* D(f;E). Ttiea

Proof:

lira lira :/!:F (d )11 ..I. rl
2 d rv/nd( " "-) =

Let z = d- d*. Then

pF(z)
_

H(z) = (F"(d*)z,z)
in the circle B (d*) as h--*0. The number of sets L(n;H,p) which intersect with the circle

B /7.(d*) is equal to the integer part of the maximal value of the function

pF(z) hh(F"(d*)z,z) on this circle. Since the matrix F"(d*) is symmetric, its norm is equal

to its maximal eigenvalue and the theorem is proved.

Corollary 3:

the formula

as h---,O and

Let d* D(f;.). Then the step h may be approximately defined by

2qRad(d*,R)

5. DISCUSSION

The results considered above may be useful for describing and explaining the effects

which are observed as aliasing structures for bounded values E > 1. In particular, rather simple

modifications of Theorems 1 and 2 may describe the "bleak" aliasing structures which are visible
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in Figures 1 and 2. If q = 2, then their centers coincide with intersections of the curves

F’zCz y) = i/(aE(2m + 1)) and F’Cz, y) = ja/CZC2m + 1)), where i, j, m $ Z.

if E >> 1 then another kind of structure may be observed. The structures described

above become very small and they are localized in the small domains in the chaotically painted

plane P; on the other hand, new regular structures appear which are separated by the chaotic

colors. A typical example is displayed in Fig. 3 where the quantized level sets for the function

Fz(z, y) = R- v/R2’’ Z2 Ly2 are painted for p = 400000. Note this kind of structure changes

slowly as parameter p varies. For some values of the parameter p other ("carpet") structures

appear. One can see an example for Fl(z,y) = -y4+ z2y in Figure 4 where # = 576000. The

"carpet" structures are very sensitive to the variation of the parameter ft. The strict analysis of

quantized pictures for E >> 1 is not yet completed. In particular, the following problems may be

of interest for further research.

Problem 1: Construct a mathematical description of aliasing effects for Figures 3 and

Problem 2: Use the asymptotical structures of aliasing pictures for restoring the

features of the initial function.
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Figure



Asymptotic Classi][cation ofAliasing Stmcttres 201

Figure 2
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Figure 3
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Figure 4


