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ABSTRACT

We study the expected number of real roots of the random
equation gl cosO + g2 cos20 +... + gn cosnO = K where the coefficients

gj’s are normally distributed, but not necessarily all identical. It is
shown that although this expected number is independent of the means
of gj, j = 1,2,...,n, it will depend on their variances. The previous
works in this direction considered the identical distribution for the
coefficients.
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1. INTRODUCTION

Let gl(w),g2(w),...,gn(W) be a sequence of independent normally distributed random

variables defined on a probability space (f2,.A, P), and g(a,)_= gn, K(O,l) be the number of

real roots of the equation T(O) = K in the interval a < 0 _< fl where

T(O) =_ Tn(a, ) = E gJ(w) cosjO. (1.1)
2=1

Some years ago Dunnage [2] assumed identical distribution for gj(), (j = 1, 2,. n) and for

case of K = E(gj)- 0 showed that EN(0,27r), the mathematical expectation of N(0,27r), is

asymptotic to 2n/v. Later Farahmand [4] found the same asymptotic formula when he

considered the case of K and E(gj) = p 0 as any constants. However, the persistence of this

asymptotic formula is not typical for the other types of random polynomials. For instance, for

Ibragimov and Maslova [6] for the case K 0,the algebraic polynomial Q(x)= gjz =

E(gj) = p 0 obtained half of the real roots of the case E(gj) = 0. Farahmand [3] also found
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a reduction in the number of real roots when he considered the case of K :# 0 rather than

K = 0. Very recent,ly in two interesting papers involving several new methods, Wilkins [10, 11]
dramatically reduces the error term for the case of K = 0, considerably improving the previous

result.

In this paper, for the random trigonometric polynomial (1.I), we will study the case

when the means and variances of the coefficients gj are not necessarily all equal. It will be

shown that EN(0,2r) will be independent of E(gj) and K, but dependent on the var(gj). For

/1, /2, "12 and r as any bounded absolute constants, we prove the following theorem:

Theorem: If the coefficients gi’ j = 1,2,...,n of T(O) are normally distributed with

means and variances Pl and al >0 for <_ j <_ n and P2 and o’ > O for n < j <_ n,

respectively, then for any sequence of constants Kn = K, such that K2/(naa2 + nr) tends to

zero as ni tends to infinity, the mathematical epectation of the number of real roots of the

equation T(O) = K satisfies
1

3 23 2+(n3 nl)"2 1riley

Comparing his result, with the algebraic case with non-identically distributed coefficients

sudied in [5], shows another ineresfing difference between these wo ypes of polynomials.

Tha is, for the algebraic case, he behavior of the number of real roots is dictated by the

means and is independent of variances while, in contrast, for the trigonometric case, this

number depends on he variances and no on he means. In he proof of the theorem, he

assumption that./1, /2, rl2, r2
2 are independen of n is no necessary, bu he gain in stating a

marginally more general conclusion subject to a very ungainly hypothesis seems insignificant.

2. PROOF. OF TIlE TtIEOREM

We first look at the polynomial T(O)- K as a non-stationary normal process with 1
and A2, say, as its mean and variance and A2 and B2, say, as the mean and variance of its

derivative, respectively. Then we can use Cromer and Leadbetter’s [1, page 285] result for the

level crossings of this type of process to get,

EN(a,) = /(B/A)(1 -C2/A2B2)7(A/A)[2(rl) + r/{2(I)(r) 1}]d0 (2.1)

where

C = COV[{T(O)- K}, T’(0)], rl = (CA- A2A2)/AzX,



Number of Real Roots of a Randoln Trigonotnetric Polynomial 3O9

and

A2 A2B2_C’ (t) = (2r)-7 ep(-y2/2)dy

(t) = q)’(t) = (2’)-Tezp(-

Now since (t)- 1/2+(r)-Terf(t/V.) where err(x)= f exp(- tZ)dt from (2.1) we have the

extension of the Kac-Rice [7] formula

EN(c,/3) = i [(A/rA2)ezP{ (B2 2CAiA2 + A2A)/2A2}

4-(V/-/r)A -3 A2A2 Cl exp A’/2A2)erf( A2A2 CA /V/-AA)IdO

= / l,(O)dO + / 12(O)dO say. (2.2)

We divide the interval (0,2r) into two groups of subintervals. The first group of subintervals

includes the -neighborhood of 0, and 2r and the second lies outside these e-neighborhoods. As

in [4], we need further modification of Dunnage’s [2] approach which is based on an application

of Jensen’s theorem [9, page 125] or [8, page 332]. By choosing e sufficiently small and

applying this approach we will be able to show that the expected number of real roots in the e-

neighborhood of 0, and 2r is small and the main contribution to the number of real roots is

from those outside these neighborhoods. Indeed should be chosen large enough to be able to

evaluate the dominant terms of A2,B2,..., with the smallest possible error. We chose

= n- /4 and we will show that this choice of satisfies both above requirements.

First we let 0 be in either the interval (e,r-e) or (r +e,2r-e). Since the coefficients

of T(O) are independent normal random variables, we have

nl n

A2 = "21 Z cs2jO + tr Z cs2jO"
J=l j=nl+l

Also from [4, page 554] inside this interval we have
n

E cs2jO = (n/2)+ O(1/e).
3=1

So, combining this with (2.3), we find that

A2 = nlo’/2 + (n nl)o’/2 + 0(1#). (2.4)

Similarly
nl n

3= j=n +1
j2sin2jO

= n/6 + r(n3/6 nt3/6) +
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n

j=n =1
j sinjO cosjO

=

n

A = cosjO + l2
3=1

cosjO- K 0(lie)- K,
j=nI +1

and
n

A2 = E j sinjO-
2=1

Hence from (2.2)-(2.4) we can obtain

E j sinjO = O(n/).
j=n +1

(2.7)

(2.8)

A2 = (nil’fig.. + (n nl)o’i212}{n?o’f16 + (n3 nl)o.2/6}32 + O(n3/e). (2.9)

From (2.2)and (2.4)-(2.9) we have

:
il)0"2 }1 1/2

La{ "10:12 (" =’Bi )0"22 {1 + O(1)}

and

Hence from (2.2), (2.10), (2.11) and since K = o{ K21(na + na)} we have

(2.10)

(2.11)

EN(,,Tr-,l=EN(Tr+e,27r-,) L3{,qo. + (,,_ nl)o. 11 + o(1)). (2.12)

We conclude proof of the theorem by showing that the expected number of real roots outside

the intervals in (2.12) is negligible. To this end, let N(r) denote the number of real roots of

the random integral equation of the complex variable z of the form

T(z,w)-K-O (2.13)

in the circle [z[ < r. The upper bound to the number of real roots in the segment of the real

axis joining the points 5= e certainly does not exceed N(e). Therefore, an upper bound for g(e)

could serve as an upper bound for the number of real roots of (2.13) in the interval (0,e) and

(2rr-e,2r). The interval (Tr-e, Tr +e) can be treated in exactly the same way to give the

same result. By Jensen’s theorem [9, page 125] or [8, page 332]
2e

g(e)log2 <_ / r 1N(r)dr
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< (2r)- S log {T(2eei,)- K}/{T(O)- K} dO. (2.14)
n 0

Now, since T(0, w)- g)(w) is normally distributed with mean -n +(n-n)2 and
3=1

variance 2 na +(n- n1), we can see that, for any positive ,
K+e

Prob(- e-" T(0)- K < e -) = (2ra2) - exp{- (t- )2/2a2}dt
g -e-

In order to find an upper limit for the integrand of (2.14), we notice that
n

T(2ee)l cos2jeel <_ ne2"’ma g!
3=1

where the maximum is taken over _< j _< n. The distribution function of [gj] is

F(z) =

x

o

0 x<0

where
for 1 _< j < n

for n < j < n.

(2.16)

(2.17)

Now since for any positive v and = 1,2

from (2.17) we have

f ep{-(t-

< (. .1- f (t .)e{ -(t

< (2/r)[(nll/(ne" gl)}zp{ -(he" 1)/2}

+ {(n- nl)tr21Cnev -/i)}ezp{ -(he’ -/2)/2tr22}1 = M, say. (2.18)
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Therefore from (2.16) and (’2.. 18)

T(2eei)l < 2n2ezp(2n + v),

except for sample functions in an set of measure not exceeding M. Hence from (2.15), (2.16)

and since for K = o(v/’)

2n2ezp(2ne + v)+ K < 3n2ezp(2ne + v)

we obtain

{T(2eei,w)- K}/{T(O,w)- K} < 3n2ezp(2ne- 2u) (2.19)

except for sample functions in an w-set of measure not exceeding M + (2/ra2)Te Therefore

from (2.14) and (2.19), we find that, outside the exceptional set,

N(e) <_ log3 + 21ogn + 2ne +

Then since e = n 4, it follows from (2.20) and for all sufficiently large n that
1

Prob{N(e) > 4he + 2v} _< M + (2/rtr2)e ". (2.21)
3 3

Let n’ = [4n4] be the greatest integer less than or equal to 4n4, then from (2.18), (2.21) and for

all sufficiently large n we obtain

EN(e) = Z Prob{N(e) >_ j}
3>0

= Z Prob{N(e) >_ j} + Z Prob{N(e) > n’+ j}
<_j<_,,’

3

= O(n4). (2.22)

Finally from (2.2), (2.12) and (2.22) we have the proof of the theorem.
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