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ABSTRACT

Transpiration control can avoid change of the shape of a high-
speed vehicle resulting from ablation of the nose, therefore also can avoid
the change of the performance of Aerodynamics. Hence it is of practical
importance. A set of mathematical equations and their boundary
conditions are founded and justified by an example of non-ablation
calculation in reference [1]. In [2], the ablation model is studied by the
method of finite differences, the applicable margin of the equations is
estimated through numerical calculation, and the dynamic responses of
control parameters are analyzed numerically. In this paper we prove
that the solution to transpiration control problem given in [1] exists
uniquely under the assumption that the given conditions (i.e. given
functions) are continuous.
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I. THE CONSIDERED PROBLEM AND THE EQUIVALENT PROBLEM
FOR AN INTEGRAL EQUATION

In this paper we consider the following problem:

Ou _ 20%  pdu_ sy l=z Ou
3t—aaz'z+ﬁ31‘+s(t)l—s(t)(')x for t >0, s(t) <z <,
u(z,t)|t=0=<p(x) for 0 < z <! with ¢(0) = ¢,
u(z,t)|z=,(t)=c for 0 < t < o with s(0) =0, } (1.1)
Qu _=-Q for 0 < t < o with Q,() >0,
()= k221, _ )+ @00, Qy(8) >0, for 0< t <o,
/

where u(z,t) and s(t) are unknown real functions, ¢(r), Q,(t) and Q,(t) are given functions

and c, k are given constants.

Using the transformation T = u — ¢, the condition

u(z,t)l:r:s(t) =c

can be written in the form

T(z, ) | z=s(t) = 0.
Thus, without losing generality we may assume that the constant ¢ from (1.1) is equal to zero.

Below, we transform problem (1.1) into an equivalent problem which is formulated in

the form of an integral equation.

Lemma 1.1:Suppose s(t) is the Lipschilz continuous function for t € [0,0] and p(t) is

the continuous function for t € [0,0]. Then we have
t

9 / p(T)K(z,t;s(r), 7)dT

li =
z—s(t) +0) 0z

t
= —%P(t)-%/ p(r)%K(s(t),t;s(r),T)dr,
0

r—£)2
K(z,t;€,7) =—T——1——T ezp[—a—g-;—‘f){-x-i}

2r2a(t — )2

where

The proof of the above lemma is a consequence of standard computations.
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Definition: A function u = u(z,t) is said to be a solution of problem (1.1), where s(t)
is defined for ¢t € (0,0) (0 < 0 < 0), if
(9) du/dt, du/dz and 3%u/dz?® are continuous for s(t) < z <1, 0 < t < o}
(#1) u and Ou/dz are continuous for s(t) <z <[, 0< t < 0;
(#41) uis continuous for t =0, 0 <z < ;
(iv)  s(t) is continuously differentiable for 0 <t < o, and mf [{—s(t)| >0;

0<t<o
(v)  problem (1.1) is satisfied.

From Lemma 1.1 and from Chapter 5 in [3], we have

Lemma 1.2:Let u(z,t) be a solution of (1.1) and let inf |l—s(t)] =d>0. Then
0<t<eo
there ezists the fundamental solution T(z,t;€,7) for equation Lu=0 in Q: =[—11]x[0,0].
Moreover

t t
tim 2 [ oG tistr)nir = ko) + [ oI, tstr)nr,
0

z—s(t) +0 0z
| 0

: 1 G
| (=, t:€,7)| < M(t__f)‘lg' ezl’l: 8a2(t _TJ (1.2)
and
ol (z, t; €, —£)?
a8
where
Lu: = azg Y + (t)ll_sitt) g; - %’?‘, (1.4)

p(t) is the continuous function for t € [0,0] and M = M(a,d,sup |5(t)|).
0<t<Le

Next, let us get down to transform problem (1.1) into the equivalent integral equation

problem.
Let us suppose the solution of problem (1.1) exists. By Lemma 1.2, there exists the
fundamental solution I'(z,t;€,7) for Lu =0 in Q. We shall use the following sets:

B.=an{-l<z<]|, t=r}

Let V(z,t;&,7) be the solution of the following problem
LV =0 for (z,4¢,7) EQXQ, t > T,

Vi =0, > (1.5)

t=r1

== oz |:l.---l’ 6:'::—1-;_6_5':: -0
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where I'(z,¢;€,7) is the fundamental solution of Lu = 0. From Chapter 5 in [3] we know that
the solution of (1.5) exists. Let

G(z,t;€,7): =D(z,t;6,7)+ V(z, ;7). (1.6)

Then (see Chapter 3 in [3]), G € C}([QxQ]N{t > r}), and for any f € C[ —1,1]

w(at= [ £©GE e e (L7
satisfies Lu_ = 0. Moreover v
(9G/dz)| _, =0 (1.8)
and
Jim [ 106G 66 e = 2) (19)
B

r

Consider the conjugate operator L* of L given by the formula

L*V_azu- B +3(r =G + 3O+ 5 (1.10)

From Chapter 3, Section 7 in [3], the fundamental solution I'*(z,¢;&,7) of L*V =0 exists in
the domain Q. Now, we shall study the following problem:

L*V*=0in (z,4£1) €QxQ, 0<t <7< T,

)

vel,__=0, ) (1.11)

t=1r

(Q(‘%:-—bv*)lz—:tl (6I‘ =b(z )|, 4y

where b(z,t): = 8+ 5(t)(I —z)/(I = s(t)).

Again from Chapter 5 in (3], we obtain that the solution V*(z,t;£,7) of problem (1.11)
exists. Let G* =T*+4V*. Then G* € C%. Moreover for t < 7 we have

L*G* =0 (1.12)
and
6G x
e P (e YR (1.13)
If f € C[—=1,1] then
Jim [ 106" @ e e = 5(2). (114)

It is easy to see that T
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G(z,&,1) = G (&, 752, 0). (1.15)

Let u(&,7) be the solution of problem (1.1) where (z,t) is replaced by (§,7). We consider the
Green identity
GL u—ulf, \G
(&7) (&) (L.16)
drqou _ 0G| Joi =
df[Gdf Y3E +(B+5(r ) (t))uG] 5_;(:10):0.

Integrating this identity over the domain D,: = {0 <7 <t<t—¢,s(0) <o <[} and applying
the Ostrogradski formula, we obtain

o= [ | H(G.__u )+ (68 5t )| -—(ua)}dedr

t—e¢ t—e
=/ G(z,t;s(r),r)?—t-l&%(glﬂdr+/ Q(T)G(z, t;1,T)dT (1.17)
0 0

l l
—/¢(§)G(2,t;£,0)d§+/ u(&,t—€)G(z, t;€,t —€)dE.
0 s(t—e)
Let u(z,t) =0 for £ < s(t) and t € (0,0). Then, applying (1.9) and passing to the limit in
(1.17) as e—0, we have

I:'TO u(é,t —€)G(z,t;€,t — €)d€ = u(z,t)
and s(t—e)
l t
wz)= [ 06660~ [ QG bl dr
0 0

(1.18)
/ Gz, ts(r), 12 Th Ty “(s(’)’

Then using Lemma 1.2, we obtain

Qu(s(t),t) _ 1 Gu(s(2),t)

3% =3 s Bu(s(r), 7) (ﬁ(s(t), t;s(r),r)dr

0
t l
-/ QI(T)Gz(S(t),t;l,T)dT+/ go(f)Gx(S(t),t;E,O)df
0 0

i.e.
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t
u (s(t),t) = —2/ u (s(7), 7)G (s(t), t;s(r), T)dT
0

t {
o / Qy(7)G(s(t), 1, 7)dr +2 / P(E)G(5(t), 1 €,0)dE.
0 0

Let W(t): = u_(s(t),t). Then W satisfies the following integral equation:

t t
Wi(t) = —-2/ W(r)G (s(t), t;s(‘r),‘r)dr—‘l/ Qi (7)G(s(t), t;1,7)dT
0 0 (1.19)

l
+2/ 0(§)G (s(t)t;€,0)dE, for t € (0,0),
0

where
t

s(t) = / 0(W(v') +Qy(7))dr, for t € (0,0). (1.20)

Obviously, if u(z,t) is the solution of (1.1) and if u is continuous with respect to t € (0,0),
then W(t) = u_(s(t),t) is the continuous solution of the integral equation (1.19) on [0,c],
where s(t) is defined by (1.20). Conversely, suppose that W is the continuous solution of the
integral equation on [0, 0], where s(t) is defined by (1.20) and tig[fo [t—s(t)| =d>0. Then

1]
we can prove that u(z,t) obtained above is the solution of (1.1). Substituting W(r) into
(1.18), we have

t t
u(z,t) = — W(T)G(z,t;s(r),f)dr—/ Q:(7)G(z, t;1, )dT
;0 0

+ / 0(€)G(=,t;€,0)dE, for s(t)<z<land 0<t< o,
0

(1.21)

where G(z,t;&,7) is the Green function (1.6) obtained after determining s(t) by (1.20). For
function u(z,t) determined by (1.21), it is easy to see that

Lu(z,t) =0, for0<t<o, s(t)<z <,

and

I:'mou(a:, t)=¢(z), for0 <z <.

Moreover, (1.21) implies that
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t t
u(z,t) = — / W(r)G (=, t;s(T), 7)dT — / Qi(T)G (=, t;1, T)dT
0 0
| (1.22)
+ / 0(6)G(z,t;€,0)dE, fors(t)<z<land 0< t<o.

0

Passing through to the limit as z—s(t) + 0 in the above equation and applying Lemma 1.2, we

obtain that

t
u (s(t),t) =W(t)/2 - / W(r)G_(s(t), t;s(T), T)dT
t 0 !
—/ Ql(f)G,(S(t),t;l,f)dr+/w(f)Gx(S(t)yi;fyo)df
0 0

=(W(t)+W(t)/2=W(t), for t €(0,0).
Hence, (1.20) implies that
5(t) = uy(s(t),t) + Qy(t), for t € (0,0) and s(0) = 0.
Below we shall prove that

u (l,t) = — Q,(t) and u(s(t),t) =0.

Lemma 1.3:Assume that there ezists a continuous solution W of (1.19), (1.20) on

0<t<o and inf |l-s(t)] =d>0. Then the function u defined by (1.21) satisfies the
telo,
condition (0.1

u (l,t) = —Q,(t) for t €(0,0).

Proof: In this proof we denote by M various constants dependent only on «, d

and sup norm of §(t) on 0 <t > o. Since

G(:L’, t; ¢, T) = F(Is &, T) + V(.‘L‘, t;f,T)

then
G(z,t;1,7) = (z, t;1,7) +€lirln 0V(a:, t;€,7), (1.23)
where
t
M(z,t;€,7)= K(z,t;6,7)+ / / K(z,t;y,0)0(y,0; &, 7)dydo, (1.24)

T
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1 1

K(z,;&,7): = (2n%a(t — 1)) " lexp[ — (z - §)*/(4a*(t - 7)), (1.25)
®(z,t:€,7): = Y (LK) (. :6,7), (LK), = LK,
1=1

l
(LK) 41(=,68,7) = / / (LK)(z,t;y,0)(LK) (y,05§,7)dydo, j =1,2,...

T 1
and

| ®(z, t;€,7)| < (M/(t—7))exp] — (= — €)*/(8(t - r)a?)]. (1.26)

By (1.8), G_(z,t;&,0)] el = 0 for any t>0. Moreover, since inf|l—s(t)| =d >0, so
G (I,t;s(r),7) =0 for t > r. Thus, (1.22) implies that for any ¢ > 0, we have the following

equation:

t
u(l,t) :xﬁT_o/ (= Q)G (=, t;1,7)dT
' 0

(1.27)
t
=II_;;1‘n-0/ —(Qy(m)G (z,t;1,7)dT, for 0 < e < t.
t—e
Additionally, since (0K /0z) = — ((z — €)(2a*(t — 7)) " 1)K, then
| 0K [0z | < (M/(t—T))ezp[ - (z = €)*/(8(t = 7)a®)]. (1.28)

Applying (1.26), (1.28), we get

t
/ / | K (z,t;y,0)®(y,0;&,7) | dydo
-1

A
t +o00
S// K (z,t;y,0)®(y,0;¢,7)dydo
T —00

1
<M(t-1) —7ezp[ —(z- 5)2/(8a2(t -1))], for (z,t) € (=1,1)x(7,0).

Moreover, for Q,(t) € C[0,7],

t t
[ -0 [ [ Katvon.eenivdodr
t—e T -1

[ Lo

-1
_<_M/ (t—7) 2dr < Me

t—e¢
and



Existence of Solution to Transpiration Control Problem 347

t
xl_inrx_()/ (OK(z,t;€,7)/0z)( — Q,(7))dr = — Q,(t)/2, for t € (0,0).

t—e¢

Therefore, we obtain from (1.27) that

t 1
lim / - Q,(P)T (2,0, 7)dr +Q,(t)/2| < M2

z—l-0
. t—e¢
1.e.

t
xliT—o/ (= Qu(T)OT(z, 51, m)dr = = Q(t)/2 (e—0).
t—e¢

By (1.27), to prove the conclusion of this lemma we have only to prove that

t
tfim [ (- = Q02 (-0,
t—e¢
where V(z,t;€,7) is the solution of (1.5). We denote by u the inward normal vector to the

boundary of [ —I,I]. Then the boundary condition in (1.5) can be written in the form:

@V/om|, _, =Tz 667 . _ -
z= -1 z= -1
By results from Chapter 5 of [3], we know that the solution of (1.5) is given by the formula
t t

V(z, t;6,7) = / I(z,t;1,0)®(l,0;¢,7)do + /(z, t; —,0)®(—1,0;¢,7)do, (1.29)
T T

where
t
a(xitgn) =2 [ (TR g6, r) 4 TEE =Ly 1036,7) | do
Ou Ou
A
(1.30)
=2l (£, 8¢, 7).
Moreover, from (1.24) it is easy to see that
-1
|oT(x1,t; £1,0)/0p|< M(t—0) 2. (1.31)

Thus, in spite of a singularity in the integrand, the integral in equation (1.30) is integrable.
Since (1.30) is an integral equation whose unknown function is ®( £1,¢;£,7), hence if £ # 1,

then there exists a continuous solution ®( £1,¢;£,7) of (1.30). From (1.24), we also have that

|OF(£1,t56,7)/02) | < M1 F € (#ra¥(t — 1)) “ear] - (17 €40t = 7)) 7]

+M(t—r)-%ezp[—-(1¥£)2-(8a2(t—‘r))"1]. (1.32)
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Formula (1.32) shows that [FI( -1, €, T)IS M as £—1—0, and from the inequalities

S i—¢ (1-¢)?
/ Culbil, s)(s — )32 exp[ 4a¥(s—7)

A
(c+1)/2 o .
< + / <Mo-7) 2

T 2

and (c+7)/2

g 1
/ I‘l‘(l,a;l,s)-(s—r)cids <M,
A

we get an upper bound of the solution of the integral equation (1.30) as

L gy - (=97 | _11=€] 1 -(=¢)
(t—1)3? "|4ad(t-7)

(t—1) 8a“(t—7)
2
|<I>(—-I,t;£,1')|§M 1+—1 l-ezp[——(lT-—Q-—] . (1.33)
5 8a“(t—1)
(t—7)2
Moreover, we have
a 1
/ L (xlo; £1,5)2(£1,5&,7)ds <M(1+(c-7)"2),
A

<M.

t o
/ F(x,t;I,a)/ F“(:D:I,cr;il,s)@(:j:l,s;{,r)dsda
T

Thus, we can define the following integrals:

t o
/ F(z,t;l,a)/ L (xl,051,5)®(, 551, 7)dsdo
T T
t o
: =€Ii71n 0/ I'(z, t;l,a)/ I‘"(il,v;l,s)‘b(l,s;f,r)dsda,
T T
t o
/ F(z,t;l,a)/ I‘”(:!:l,a; - 1,$)®(—1,s;l,7)dsdo
T

T

t o
: =€li1;n 0/ I(z, t;I,a')/ I‘#(:i:l,a; —1,5)®(—1,s;¢,7)dsdo.
T T
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So, (1.29) becomes
t t

V(z, t;€,7) = —2/ I‘(;t,t;l,a)l‘z(l,a;é,r)da—-‘.2/ [(z,t;1,0)T (= 1,0;6,7)do
T

T

t o
+2/ F(x,t;l,a)/ {l‘u(l,o‘;l,s)d)(l,s;E,r)+I‘“(l,a; —1,5)®(~1,5;€,7)}dsdo
T

(d

t

349

2/ [(z, t;! cr)/ T (=lLols)®(,s:67)+T (- o; = 1,5)®( = 1,5;€,7)}dsdo.

T

Since T (= {,;&,7) is continuous on 0 < 7 < t <o as §—I -0, we have that

¢

€lirln o F(z,t;l,a)l‘x(—l,a;f,r)da=/ I(z, 41, 0)T (= 1,031, 7)do.
T T

Thus

V(z, t;1,7): =zlirln_ OV(x, t;€,7)

- 1-¢)?
_.Izm /F(I,“,'»")-"—'é——fez —4(512(,631—)

4(ra’(o - r)%)2

—-2/ I(z,t;1,0)T (Losl,7)do +V +V,+ V5
T

= I(z, t;1,7) —-2/ I(z,t;1,0)T (oI, 7)o +V +V, + V3.
T

and
t

/ (= QTN (=, 51, m)dT

t—e¢

QT (z, 51, 7)dr +2 | Qy(r) [ T (z.t;l,0)l (I,03l,7)dodT
t[E t[c /
t
+ [ =, +Va +Vs i

t—e¢
We have

Izm / Q)T (2,1, 7)dT = ——Ql(t) (e—0).

t—e¢

Moreover, we have

(1.34)
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1
/ Q,(r / [ (z,t;1,0)T (I,0;l,7)dodT | < Me?

t—e¢
and
t

1
/ —QI(T)(V11+V2;_+V31)dT _<_ Mfz.

t—e
Therefore,

Itm / - QT (2, t;l,7)dr = = Q,(t)/2, (e—0).

t—e
Consequently, the proof of Lemma 1.3 is complete.
Next, we shall show that u(s(t),t) =0 for t € (0,0). Integrating the following Green’s

identity:

| ~0u 3 -
{Gas YSE Gy B+ 3(1')[ ( ))uG] - 6r(uG) =0,
on the region 0 <7 <t—¢, s(v) < € <! and letting e—0, we get

t
/ u(s(7), Gz t55(7), ) = 3(r)Gz (), i = 0. (1.35)
0
Obviously, we have
t
im { W(s(r), T3 (TG, 5(r), )T

t

= / u(s(7), 7)5(7)G(s(t), t; s(7), T)dT,
0

Gf(: t6,7) = Gf(& Tz, t) = *(ga TiZ,t) + VE(E, 5%, t),
Ge(z, t;5(r),7) = Gg(s(r), 732, t) = Tg(s(7), 732, 8) + Ve(s(r), 752, t);

and
t t

xliaz)+o{ u(s(r),r)V;(s(r),r;z,t)dr={ u(s(7), T)Ve(z(r), m55(t), t)dr.

Analogously to Lemma 1.2 we have

t
x-ﬁ?t‘)+0{ u(s(r), T)IE(s(7), 752, t)dr
t
= -——é—u(s(t),t)-*'/ U(S(T)af)rz(s(r)vT;s(t)’t)dr'
0
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Letting z—s(t) + 0 in (1.35) we get

t

Ju(s(t),t) = / u(s(7), TG e(s(t), ti5(7), 7) = $(7)G(s(2), £ s(7), 7). (1.36)
0

Similarly to the proof of Lemma 1.3 we can show that
1 1
|Gels(t), (), )| < M/(L= )2, | Gls(t), is(r), 7) | < M /(= 7).
So, the integrand in (1.36) is integrable. Therefore u(s(t),t) = 0.

Summing up, in this section we have showed that the solvability of problem (1.1) is

equivalent to the solvability of the integral equation (1.19).

2. THE SOLVABILITY OF THE INTEGRAL EQUATION

In this section we shall prove that the solution of (1.19), (1.20) exists uniquely.
Consider the mapping

wl(t) = T(W (1)), (2.1)
where
t t
T(W(t): = -2/ W(r)G(s(t), t;s(r),7)dr =2 | Q(7)G(s(t), t;1,7)dT
0 I 0

+2 [ w(O6,(s(0), 8,0, (2:2)
0

t
s(t) = / (W(r)+ Qq(m))dr. (2.3)
0

The function G(z,t;€,7) in (2.2) is given by (1.6). Let
Coui = {W(t): W(t) € C[0,0}| W(t)| < 4,4 > 0}.

By the continuity of Q,(t), it is easy to see that for any fixed A >0 and sufficiently small
o >0, |s(t)| < 1/2 holds for t € [0,0). Thus the mapping w(t) = T(W(t)) given by (2.1), (2.2)
and (2.3) is well defined in C,, 4.

Theorem 2.1: Let ¢ €CY0,l], Q, €C[0,T] and Q,€C[0,T).  Then, for
A: =26ngx<l|<p'(z)| +1 there erists 0y >0, such that w(t) =T(W(t)) defined by (2.1),
— z —
(2.2), (2.3) is a mapping from C”w“‘ tnto itself.
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Proof: Since G, =T_+V then

{
2 ] (€)G (5(t), €, 0)de
0

{ t !
= ; 1€,0)dydod
2 { () { /I K (s(t), tiy, 0)®(y, 73 £, 0)dydod€

l l
+2 / PEWV (s(8), €, 0)dE +2 / P(E)K (s(t), &€, 0)de.
0 0

Noting K, = — K, we have

l l
2/<P(€)Kz(8(t),t;€,0)d€ = —2<P(1)K(s(t),t;1,0)+2/¢'(€)K(S(t),t;€,0)d£-
0 0

Thus
t

t
TW(t) = -2 / W ()G, (s(t), & s(r), r)dr — 2 / Qy(r)G,(s(0), 1, 7)dr
0 0

l
= 2p(DK(s(8),61,0) +2 [ K(s(0) 6, 0)p'(E)de
0

It 1
w2 [ [ oK (s 5000000016, 0)dudods
0 0 -1
l 6
+2 [ @V s, 660d = 3T,
0 t=1

(2.4)

where s(t) is defined by (2.3), and w(t) is defined in C oA for a fixed A and sufficiently small
09 >0 (such that |s(¢)| <1/2). Below we shall estimate T; (i =1,...,6). We denote by

M = M(A’) a constant, where A’ is Lipschitz constant, i.e. |s(t)—s(r)| < A'|t—1].

condition

T (s(t) ts()7)

_s(t)—s(r)

2(t e 2K(s(t),t s(r),r)+/ / K (s(t),t;y,0)®(y,035(7), 7)dydo

we obtain

By the
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|To(s(t), t5(7), 7)| < M(t~ T)_%-

From (1.29), (1.33), (1.3) and from the inequality |I—-s(r)|21/2>0 we see that
V (s(t),t;s(7), ) is bounded on [0, 0], and

|Va(s(t), t;5(r),7) | < M(t =)

Thus
f Y
[T,| < 2A'/ |G (s(t), t;s(7),7) [T < Mt2 < Mod. (2.5)
0
In the same way we have
1
|T,| < Mol (2.6)
Since |1 — s(t)| > 1/2, we get
1
| K(s(t),51,0)| < Mo
and
l
t), t; €, "(&)dé| < ! . 2.7
[ K6, 66.00p/0de| < maz | 196)] (2.7)
0
Thus
1
T3 + Ty < 2'?%3[ 1) l¢'(€)| + Ma3. (2.8)

To estimate T'5, we need the following two lemmas from [3]:

Lemma 2.1 ([3]): Suppose —oco<a<3/2 and —oc0o< f<3/2. Then
t +oo

z—h)? 2
[_/oo (t—0)" %exp |:—-h71(—(-i—:'—’;))— a—r)"ﬁezp [—-’;—((y;:-f;)—)— ydo
1 _e\2
= (4B~ a+3/2, B +3/2)(t =) =" =P+ %zp [-%(-ZTO)—}
where B(-, -) is the beta function.

Lemma 2.2 ([3]): Assume that the coefficients of the operator L are Lipschitz
continuous in Q. Then the fundamental solution for Lu =0 ezists in 2, and it is given by

(1.24), where

t
¥z t67) = LK 66+ [ [ LK( b o036 dydo,
-1

T

&(z,t;&,7) is bounded and satisfies inequality (1.26) and the constant M in (1.26) depends only
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on Lipschilz constants and Q.

With the aid of Lemma 2.1-2.2 we get down to estimate Ty.

5 =‘2/ / / e(&)K (s(t), y,0) LK (y,0;€,0)dydod§

+2/ / /cp(f)h’ (s(t), t;y, 0 / /LK(y,O',C,z)(D(C,.,, ,0)d{dzdydodé

For this purpose, observe that applying Lemma 2.1-2.2 we get
1
| T5o| < Mo3.

Noting LK (x,t;6,7) = (B +s(t)(I —z)/(1 — s(t)))K (z,t;§,7) we get
1t 1
Ty, = —2/ / /<p(£)Ky(s(t),t;y,a)LK(y,a;E,O)dydo'df
0 0 1!

=T} +T5 +Th
with

1t
Thi= -2 [ [ oK), 600K @560, - £ dode,
0

o

Lot 1
thi=2 [ [ [ o6 6oy DK w56 0)dudode
0

It 1
- ) o(o)(l—y) .
T:;l' = 2{ ‘0/ _/l ‘P(&)K(s(t)’ i y,v)(ﬂ +—I—_';(-;T')sz(y, o3 €, O)dydO’dE.

Since | K(s(t),t;y,0)| < Mt, for y = +1 and

t
/ | LK(y,0;6,0)|do < M,

0
thus we have |T§1| < Mo,
Apply] Lemma 2.1 and using the boundedness of ¢(§) and j; j(;;l)

|T§1 | < Mag. Moreover from K, ,(y,05€,0) = — K (y,0; £,0) we have

we get
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{

T3 = -2 / / [K(s(t ty,0)(8 + 220V y’)so(s)lcz(y,a;e,o)] dydo

s(d) £E=0

+2 / /K(s(t t,0)(0 + SISO (.03, 0ydode
-10 0

Since ¢(0) = 0 then

t
[I;] < —-2/ / <p(1)K(s(t),t;y,d)(ﬂ+s( )(:( )y) (¥ 031,0)dydo

0 -1
< M ezp| - (s(t) = 1)?/(8a%1)]

1
< Mo} (because |s(t)—1]| >1/2).

1
Applying Lemma 2.1 in a similar way we can obtain |I,| < Mo3. Therefore,

1
| Ts| < Ma2. (2.9)

Next, we shall estimate Tg. From (1.34) in Section 1 we get V_ and substituting
V (s(t),t€,0) in to the expression of Tg we obtain
with
{

t
V= —4 / 0 (€) / T, (s(t),t;1,0)T (1,05 &,0)dod,
0 0

t
V= -4/ <p(£)/ T (s(t), t;1,0)T (= 1,05¢,0)dod¢,
0

= / 0 (€) / T (s(t),1,0) / [T, (1,031, 2)®(1, 7 €,0)
0

+T,(lo; =1,2)®( =1,z £,0)]dzdad¢,
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{ t o
Ve =4 [ 0 [ Tsntito) [ 00~ bt e0,560)
0 0 0

+ I‘"( —lo; = 1,2)®( - 1,2;£,0)]dzdod€.
Since
|T.(s(t),t;1,0) | < M(t—0) < Moy (by |s(t)=1| 21/2>0),

and

t
/ T (056,00 “ Lk, 016,000 < M,
0

then |V,| < Mogand |V,| < Mg, By (1.33) we have

(o4
1
[ ke 120215 ,00z| < M+
0

and |T (s(t),t;1,0)+ < Mo, Thus we get
[Vl + S Mogand |V, | < Mo,

Therefore, we obtain

| Tg| < Moy, (2.11)

Combining (2.5), (2.6), (2.8), (2.9), (2.11) we have

1
| T(W(2))] Sngﬂlro l¢'()| + Mo,

where constant M depends only on 4', I, a, 3, maafo . le|,m ’ze[o |Q,| and ma:c tQ2|

1
Choose o > 0 sufficiently small such that Mo < 1 for A =2 mgai- | ¢'(z)]| +1. In this case

we have |T(W(t))| <AforWeC g A" Therefore Theorem 2.1 is proved

To solve the problem, we have only to prove that T(W(t)) is a contraction. We

denote || Q,(¢t)|| = maz IQl( s Q) =maz |Q2( ) le() Il =ma
le(z) |-

Theorem  2.2: Suppose ¢ € CY0,1], Q,€C[0,T], Q,€C[0,Ty] and
A= 2m:ez.1[e |¢'(z)| +1. Then there ezists a oy >0 (0, <Ty) such that the mapping

w=T(W(t)) defined by (2.1), (2.2), (2.3) is a contraction on Cal,A'

Proof: Let ||W(t)|| =maz _|W(t)|. Then ||W(¢)] < A.
te(0,0,]
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Moreover let L be the operator defined by (1.4) and M be constants dependent only on
A llells 1@l I, a. Additionally, let

bz, W(8)) = B+ [5()1 - 2)/(1 - (1)), (2.12)
where s(t) is given by (2.3). For any WjGC(,o_A(j=l,2) we consider the following
equations:

= o20%u (1)du _ du _ i=1,2
Lu=a 522 + b(z, WJ(t))ax 5t = 0 (j=1,2) (2.13)

and their fundamental solutions

Caten =K@ en+ [ [ Kebnodboendde (=12 (214)
T 0

where K(z,t;€,7) is given by (1.25) and ®,(z,t; €, 7) satisfying
t 1
®i(z,t;6,7) = LiK(z,t,§,7) + / / L;K(z,ty,0)®,(y,05&,7)dydo (j = 1,2). (2.15)
T -1

Lemma 2.3: The functions Qj(x, t;€,7) (7=1,2) defined by (2.15) satisfy the
estimation
Bz, 66,7) — Byl 5ET) | <MW, =W, |l ) ezp [ (2 - ©2/(8aX(t=7)]  (216)
for0<r<t<oy<land —-1<z LI

Lemma 2.4:If |z| <!l and |£] <! then

t 4+ .
/ / K o o(2,t5y,0)b(y, W(0)) K ¢(y, 03 €, T)dydo < tl_t_lr ez‘{ —(z-¢) }

2
s 8a*(t—71)

Lemma 2.5: Suppose that -l <z, <1, |z| <l—d (or || <l-d) andd >0, then

t 1
/ / Kzz(xv 5y, ‘7)3 (y: U)Kx(y’ a; ¢, ‘r)dydcr
T |

< {1+ L5 eanl - (2 - ©/(Ba7(t - )]

t 1
/ / K (z,t;9,0)b (y,0)K ,¢(y, 03 &, 7)dydo

T
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< M{1+ L5 el - (2 - /Bt - )1},

where b (y,0) = b(y,W(0)) = B+ 3(o)( —y)/(I = 5(0)).

Lemma 2.6: Assume that |z | <1/2, |€]| <1/2 and W € Cao,A' Then

t 2
/ / , K, (z,t;y,0)®(y, 03§, 7)dydo | < M<1 +7 1 7 “’{sa(?tt _fr))])’

a
where $(z,t;E,7) is given by (2.15).

Lemma 2.7: Suppose that —1 <y, £<I, | €] <1/2 and W(t) € Cao.A’ Then

o
[ [ tkwom e e ninde| < s{t+1s eapl - (v - €7/ = r1},
T =1

where ®(z, t;y,0) is given by (2.15).
Now let us get down to prove Theorem 2.2.

By (2.2), (1.6), (1.24) and by letting
t 1

Ki(z,t;¢,1) = / / K(z,t;y,0)®(y,0;§, 7)dydo,
T

we may write T(W(t)) in the way as
T(W(T)) = T,(W()) + To(W(1)) + T3(W (1)),

where

t t
T,(W(t)): = -2/ W(r)K _(s(t), t;s(r),r)d‘r—?/ Q(T)K (s(t), t;1,7)dT
0 0

l
+2 [ POK (s(0), 56,006,
0
t t
T,(W(t)): = —-2/ W(T)Klz(s(t), t;s(r),'r)df—-2/ QI(T)KII(s(t), t;l,7)dr
0 0

l
+2 [ plOK, (s(0)t:6,0)d¢
0
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=N1+N2+N3

and

t t
T3(W(t): = —2/ W(T)Vz(s(t),t;s(r),r)dr-2/ Qu(T)V (s(t), 1, )dT
0 0

{
+2 / P(EWV (s(t), £;€,0)dE
0

= N4+ Ng+ Ng.

By a result in [4] we know that T, is a contraction mapping in C g A for sufficiently small

o, >0.

With the aid of the above lemmas, we obtain

[N\ (W)= Ny(Wy)| SMo||W,-W,|| foro <oy W,W, € Coo,/ﬁ
1
| No(W )= No(Wy) | SM||W, =W, |02 for o <oy Wl’ercao,A3

1
To complete the proof of Theorem 2.2 we need the following lemmas:
Lemma 2.8: Suppose that W,, W, € Ca'O,A' Then

| Flz(sl(t),t; +l,7)— I‘2x(s2(t), ;L) SM||W,-W,|lo

and
| le( 1 t54(7),7) - l"gz( tlt;s5(7),7) | SM||W,-W,]| 0.

Lemma 2.9:Assume that W, erCaO.A and ®;(x1,t;¢,7) is given by (1.30) for
Wi(i=12), ie,

t
(£l t554(r), 1) = 2/ L, (£441,0)®(1,055)(r),7)do
u
-

t
+2/ I‘j“(il,t; —l,a)<l>j(—l,a;sj(r),r)da'—-2I‘jz(l,t;sj(7'),1').

T

Then

[ ®,(xt5.(m), )=y 1, t55(7),7) | SM||W, =W, |.
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Lemma 2.10: Suppose that W, WZECaO,A' Then (bj(:i:l,a;f,r) given by
(1.30) satisfy

1
| @, (1,056, 7) =By 21,0:6,7)| S M(o—7) Z||W, =W,]|.

Below we go on with the proof of Theorem 2.2 by considering N4, N5, N and we have
| Ny(W)) = Ny(Wy) | S MW =W, o
| Ns(W1) = Ng(Wy) | < Ma®2 || Wy =W, ||,
[Ng(W )= Ng(Wy)| SM||W,-W,|o.

Combining the estimates for N, No, N3, N,, Ns and N we have proved that

1
| T(W(t)) =T(Wq(t))| < Mo?2||W,-W,]|| for e <ogand oy< 1,

whe{e M depends only on A, a, |l¢]l, ||Q;ll, |Qyl]. Choose 0 <o, <oy such that
M cr? < 1. Then we get that T is a contraction of C,_ 4 into C, 4. Therefore, Theorem 2.2
1’ v

is proved.

Theorem 2.2 implies that there exists unique fixed point. Thus, we have the following

existence theorem for problem (1.1).

Theorem 2.3 (Ezistence): Suppose thal ¢ € C(l)[O,l], ©(0) =0, Q, € C[0,T,],
Q, € C[0,T,], constant Ty > 1. Then, there exists 0 < oy <1 such that the solution u(z,t),
s(t) of the problem (1.1) ezists on [0,0,].

Theorem 2.4 (Uniqueness):  Assume that ¢ € C(l)[O, 1], ¢(0)=0, Q, € C[0,T,),
Q, € C[0,T,] and constant Ty > 1. Then, the solution of problem (1.1) is unique on [0,0,]

and the constant o, 1s the same as in Theorem 2.3.

Proof: Let ug(z,t) be another solution of (1.1) on [0,0,], with s(t) replaced by

so(t) and let Wy(t) be the solution of corresponding integral equation. Moreover, let

4= maz{A, sup  |Wy(t)] }
0<t< o,
Choose o, sufficiently small such that for any W € Ca 1 where
21

C, a ={W@:W®) eClo,o], IW(H)| <A}

mapping T(W) is a contraction of C_ - into C, 4- On [0,0,] we thus have that W(t) =

A A
2’ 2!
u (s(t),t) =Wy(t) = uoz(so(t), t), i.e., in the region Dy, ={s(t)<z<l, 0<t<0o,} the
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solution of (1.1) is unique. For D, ; = {s(t) <z <, 0, <t <o} we consider the following
problem (1.1)™:

a, =k +pu, +5(t)(I-z)(I-s(t) " tu, in Dy ;.
U(s(09),05) =0, U(z,0,) = u(z,0,) for s(t) <z < |,
a(l,t) = —Q,(t) for o, <t <oy, S (L.1)*
u(s(t),t)=0 foro, <t< o,
() = (s(t), ) + Qyt), for 0, <t < ay.

Repeating the same procedure as above, we can prove that there exists a constant oy >0,
04 < 03 < 0y, such that the solution of problem (1.1)* exists uniquely on [0,03]. Therefore,
we have proved that for any 0 < ¢* < o; the solution of problem (1.1) exists uniquely on

[0,0™]. Therefore, Theorem 2.4 is proved.
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