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ABSTILCT

We consider an M/G/1 retrial queueing system with two types
of calls which models a telephone switching system. In the case that
arriving calls are blocked due to the channel being busy, the outgoing
calls are queued in priority group whereas the incoming calls enter the
retrial group in order to try service again after a random amount of time.
In this paper we find the Laplace-Stieltjes transform of the distribution of
the virtual waiting time for an incoming call. When the arrival rate of
outgoing calls is zero, it is shown that our result is consistent with the
known result for a retrial queueing system with one type of call.
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I. INTRODUCTION

Retrial queueing systems are characterized by the feature that arriving calls who find

the server busy join the retrial queue to try again for their requests in random order and at

random intervals. Retrial queues have been widely used to model many problems in telephone

switching systems, computer and communication systems. Simple examples in which retrials

can be observed are telephone traffic and non-persistent CSMA protocol in the communication

systems [18, 20]. For comprehensive surveys of retrial queues, see Yang and Templeton [20]
and Falin [10].
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In this paper we consider a mathematical model of a telephone switching system. In

modern telephone exchanges, subscriber lines are usually connected to the so-called subscriber

line modules. These modules serve both incoming and outgoing calls. An important difference

between these two types of calls lies in the fact that in the case of blocking due to all channels

busy in the module, outgoing calls can be queued, whereas incoming calls get a busy signal and

must be retried in order to establish the connection. As soon as the channel is free, an

outgoing call, if present, occupies the channel immediately. Therefore incoming calls may not

establish the connection as long as there are outgoing calls waiting. This fact implies that

outgoing calls have non-preemptive priority over incoming calls.

Recently, Choi and Park [2] modeled the above system as an M/G/1 retrial queue

with two types of calls and derived the joint generating function of the number of calls in the

two groups and the mean queue lengths. Khalil, Falin and Yang [15] investigated the same

model with exponential multiple servers and obtained some of its properties such as the

existence of a stationary regime and limit theorems under a high repetition intensity of blocked

calls.

The main purpose of this paper, which is a continuation of [2], is to find the stationary

distribution of the virtual waiting time for an incoming call. An M/G/1 retrial queue with

one type of calls is a special case of our model when the arrival rate of outgoing calls is zero.

Falin and Fricker [11] calculated the Laplace-Stieltjes transform of the distribution of the

virtual waiting time for ordinary M/G/1 retrial queue with one type of call. For papers

related to our model, see [13, 18]. We follow Falin and Fricker’s technique [11] to derive the

Laplace-Stieltjes transform of the distribution of the virtual waiting time.

This paper is organized as follows. In Section 2, we describe the model in detail. In

Section 3, we derive the Laplace-Stieltjes transform of the distribution of the virtual waiting

time for an incoming call. It is shown that our results are consistent with known results for a

special case [11].

2. TIIE MODEL

As a mathematical model of a telephone switching system, we consider an M/G/1
queue in which two independent Poisson flows arrive with rate A1 and A2. Calls from the

Poisson flow with rate A1 (the Poisson flow with rate A:z respectively) can be identified as

outgoing calls (incoming calls, respectively) in the telephone switching systems (see Figure 1).
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Incoming calls arrive at the system according to a Poisson process with rate A2. If an

incoming call upon arrival finds the server free, he immediately occupies the server and leaves

the system after service. If he finds the server busy on his arrival, he enters the retrial group in

order to seek service again after a random amount of time. He persists this way until he

succeeds the connection. The retrial time (the time interval between two consecutive attempts

made by a call in the retrial group) is exponentially distributed with mean 1Iv and is

independent of all previous retrial times and all other stochastic processes in the system.

priority group

outgoing calls (’1)

Figure 1.

The outgoing calls arrive at the system according to a Poisson process with rate A1.

They are queued in a priority group after blocking and then are served in accordance with

some discipline such as FIFO or random order. As soon as the server is free, an outgoing call

occupies the server immediately, so incoming calls in the retrial group will be served only when

there are no outgoing calls in the priority group. According to the above rule, outgoing calls in

the priority group have non-preemptive priority over incoming calls.

We assume that the service times of both types of calls are independent and identically

distributed with p.d.f, b(x) and mean b. The assumption about the same distribution of two

types of calls is analytically convenient and is practically natural in the sense that both

incoming and outgoing calls in a telephone switching system have the same characteristic for

We need to assume that the service time has the density function to guaranteeservice times.

(13). Let

b*(O)- f
o
e-Xb(x,)dx

be the Laplace transform of the p.d.f, of the service time. It is easy to show that the system is

stable provided that p = Ab < 1, where A = A1 + A2 (see [2, 12]). We consider only stable
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systems in this paper.

Next we define the random variables;

Nl(t = the number of outgoing calls in priority group (excluding the call in service) at time t,

N2(t) = the number of incoming calls in retrial group at time t,

X(t) = the residual service time of call in service at time t,

f0, when the server is idle at time t,
(t) =

(1, when the server is busy at time t.

Define the probabilities;

qj(t) = P{N2(t = j,(t)= O)

qi(t,z)dz = P{N(t) -i, N2(t) j,X(t) (a:,z + dz], (t) = }.

3. THE VIRTUAL WAITING TIME

The distribution of the waiting time of an outgoing call can be obtained from the

theory of priority queueing systems [14]. In this paper, we consider only the distribution of

waiting time for an incoming call.

First we introduce an auxiliary Poisson process {Ne(t),t >_ 0} with intensity s, s > 0,

which is independent of the functioning of the system. The events of this Poisson process will

be called ’catastrophes’. Name any arriving call as a tagged call. Suppose that the tagged

incoming call arrives to the system and finds the server busy. Then he enters the retrial group.

We name the first call, which departs the systems since the arrival of the tagged call, the 0-th

call and then we number calls in their departing order (see Figure 2).

O-hc

group

tagged incoming call
Figure 2.

tagged call

time
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Suppose that at the moment of departure of the O-th call, there are m outgoing calls

and n incoming calls. Let pi(s) denote the probability that at the time of the i-th departure

there are k outgoing calls and incoming calls including the tagged call and until this time, no

catastrophe occurs. The initial condition of p)(s) is

Pl)(s) = / 1, if k = m, l= n,

0, otherwise.

Theorem 1:

formulas:

The probabilities p)(s) are calculated from the following recursive

k+l 1+1

k’=l 1’=1

-t- eOl’ S"-t-’
A (/’--1)
A +’l’tfk, -l’(s) q’s q-’A "b i"tJfk, l-l’ + l(s)’

1=1

(1)

where by convention

and

f
o

fk,_l(S) =0

st
k! l!

’’2t)tb(t)dt

is the probability that during one service time, exactly k outgoing calls and incoming calls

arrive and no catastrophe occurs.

Proof: Let be the time of the i-th departure. Then

P//+ 1)(8) = INl(ti + 1) = k, N2(ti + 1) = l, Nc(ti + 1) = O]
k+l

k =0

/+1

E ek’l’t"(i) tsprNj l(ti + 1) k, N2(ti + 1)- l,Nc(ti + 1) = O lNl(ti) = k’,
/e=l

N2(ti)=l’,Nc(ti)=O].

To find conditional probabilities

lNl(ti + 1) = k, N2(ti + 1) = l, Ne(ti + 1) - 01N(ti) = k’,N2(ti) = l’,Ne(ti) = 0],
we have two cases depending on k’.
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Case 1: k’= 0 and the (i+l)-st call to be served arrives before the first

catastrophe occurs. This event is divided into two disjoint events depending on whether the

(i + 1)-st call is from an outside system or from a retrial group. First we treat the case that

the (i + 1)-st call to be served is a call (either outgoing or incoming) from outside the system.

This even occurs with probability /(s + + l’v). In order that there are k outgoing calls and

incoming calls and no catastrophe occurs until the moment of the (i + 1)-st call’s departure,

exactly k outgoing calls and l- l’ new incoming calls must arrive with no catastrophe occurring

during the service time of the (i + 1)-st call. The above event occurs with probability

fk, l,(S)

Next we treat the case that the (i+l)-st call to be served, is an incoming call

(excluding the tagged call) from the retrial group. This event occurs with probability

(/’= 1)v/(s + A + l’v). By applying total probability law, we have

lN(ti + ) = k, Na(ti + 1) l, Ne(ti + ) = 0 Nx(ti) = O, Na(ti) = l’,Nc(ti) = 0]
A (l’- 1)u= S’+ A +’l’vf,t-t’(s) +s +’A+’l’uY,t-t’+ 1 (s)"

Case 2: k’ 0. In this case, there are outgoing calls waiting in the priority group

at the moment of the i-th departure, the next service immediately begins with an outgoing call

in the priority group. In order that there are k outgoing calls and incoming calls and no

catastrophe occurs until the moment of the (i+ 1)-st call’s departure, exactly k-k’+ 1

outgoing calls and l- l’ new incoming calls must arrive with no catastrophe occurring during

the service time of the (i + 1)-st call. Thus

lNl(ti + 1) = k, N2(ti + 1) l, Nc(ti + 1) = O Nl(ti) = k’,N2(ti) = l"Ne(ti) 0]

For zj, with zj] <_ 1, j = 1,2,

z z2

defines the joint generating function for pQ(s) with respect to k and I.

From equation (1), we have

p(i + 1)(S, Zl,Z2) (S, Zl,Z2)(p(i)(s, zl, z2)_ p(i)(s, 0 z2))

A t’ (i),,+ fl(8, Zl, Z2)Z S + , + l’vz2 PoetS)
1=1

(2)
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.(S?.z!,.z2. ).-- (1’-1)t+ Z2 lZ=lS+A+l’b 2FOl’k

where ($,Zl, Z2) = b*(8 -[- AI(1 Zl) -4- A2(1 z2)).

Next we introduce the generating function for P(i)(s, zl, z2) with wl _< 1,

P(s, Zl, z2, w) = Z P(i)(s’ Zl’ z2)wi"
i---0

We multiply both sides of (2) by w + and sum over i. Then we obtain

P(s, Zl, z2, w) zz = W(8, Zl, Z2)(p(s, w) P(s, O, w))’Zl Zl,Z2, z2,

This can be rewritten as

+ w(s, z, z2)Z wiZ s + "’+ jte, ’ ,2
i=O j=l

w(s, z, z2), wi, !)’ ,,(i) s)+ z2 i=o i=s + A + jgeo( z.

(Zl w(8’Zl’Z2))P(S’Zl’Z2’W) ---- ZlW(S’Zl’Z2)Zwi 8"q-’ -b jr’e03t ’ 2
i=O j=l

o (j 1)r, .,(i)(szj 1"4" ZIw(8,zI,z2)Z wiZ 8"- ’q- j,eo3 12
i=o j=l

-. Z 4" lz W(S, Zl, Z2)Z WiZ P(Oi)3 (S)ZJ2
i=0 j=l

Consider the function

(3)

g(8, Zl, Z2, W) ---- Z1 W(8, Zl, Z2).

For each fixed s, z2, w, with s > 0, z2l _< 1, [w < 1, regard g(s,z,z2,w) as a function of

z. On the unit circle z = 1, we see that Re(s + A(1 zl) + A2(1 z2) > 0. Using the

well known fact that b*(0) < 1 for 0 > 0, we must have 13(s, z1, z2) < z on zI = 1.

By Rouch$’s theorem, there is a unique solution z1 =l(S, Z2, W) of the equation

g(s,z,z2, w)= 0 in the unit disc, i.e.,

g(’3, ql ($’ Z2’ W), Z2, W) ql (8, Z2, W) Wfl(’3, 1 (’3, Z2, W), Z2) 0.

As a matter of fact, (s, z2, w) has the following explicit probabilistic meaning by TakAcs’

lemma [5],

l(S, Z2, W) E [e-(S + A2(1- z2))LcxwI], (4)
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where Loo is the length of a busy period and Ioo is the number of calls served during this

period in the ordinary M/G/1 queue with the arrival rate 1 and p.d.f, b(a:) of service times in

the steady state. Furthermore

for I _< 1 and Re(s + A2(1 z2) >_ 0 except w = 1 and s + A2(1 z2) = 0 (see [51).

Next we will eliminate P(s, zl,z2,w from the left-hand side of (3) and then obtain the

relationship between the p(o(S)’S which will be used to find the virtual waiting time. By

inserting z1 = l(s, z2, w) into (3), we obtain

oo oo (j 1)u_(i)ts,zjl(s, z2, w)E wiE s+ A + jue, ,2
i=o j=l

(6)

Let us introduce the following transformation

1w’ s / +i=l j=l

We will see from (9) that re(s, 1, 1) is the probability that the tagged call occupies the server

before the first catastrophe occurs. By (6) we have a singular first order differential equation

for (s, Zl, w)

(7)

Define the function

h($, z2, w) = z2 1(8, z2, w).

For each fixed s, w with real number s > O, wl _< 1, regard h(s, z2, w) as a function of z2.
Using (5) and Rouch’s theorem, we have that there is a unique solution z2 = 2(s, w) of the

equation h(s, z2, w)= 0 in the unit disc. It is easy to see that for real s and w with s > O,

0 < w < 1, 2(s, w) is real and 0 < 2(s, w) < 1. On the other hand, since

dh(s, z2, w) I. bA !_
dz2 z = o 1- bA1

< O,
2=w=l

we conclude that z2 =2(s,w) is analytic in [w < 1 and s > 0 and is continuous at
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(s, w) = (0, 1) and that $2(0, 1) = 1.

Now return to equation (7). Arguments similar to those used in the proof of Theorem

3 [11, page 450-452] show that the solution of differential equation (7) is given by

(8a)

if z2 # 2(s, w).

For z2 = 2(8, W), we have directly from (7),

S + : ,,2(, 0)" (8)

When (z2, w) (1,1), note that 1 # 2(s, 1), because (s, 1,1) = E[e- sL] <1 for

s > 0. So, we will use (Sa) when (z2, w) = (1,1).

Let Tmn denote the time interval from the moment of the 0-th call’s departure until

the tagged call occupies the server (see Figure 1). Then the Laplace-Stieltjes transform of the

distribution of Tmn is given, for s > 0, by

E[exp( sT.mn)] = / e stdFmn(t
o

= /P{no catastrophe occurs in [0, t]}dF.,.(t)
o

= P{no catastrophe occurs in [0, Tmn]}
(9)

P(during the period Tmn catastrophe does not occur and, exactly
calls were served before the tagged call and there are l- 1
incoming calls and 0 outgoing calls at the moment when the
tagged call occupies the server)

i=0 /=1
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where Finn(t) is the distribution function of Trnn. It should be noted that the dependence of

E[exp(- sTmn)] on (m, n) has the form

(,,)
E[ezp( sTmn)] = / [bl($,/t, l)]mun- lf(s, uldu,

1

(10)

where

}f(s, u) = i(s u1, 1) u
exp

s u-I-.A(1.- 1(s.., v, 1))dv
[61(, , x) -

Finally, we find the Laplace-Stieltjes transform of the distribution of the virtual

waiting time W for the tagged call. Without loss of generality, we may assume that the

tagged call arrives at the system at time 0. The state of Ni(t at immediately prior to is

denoted by Ni(t- ). Then

E[exp( sW)] = Eie- sW (O = 0]E qn
n=O (11)

+ E[e- sWlN1(0-) = m, N2(0- n, (0- = 1, X(0- = xlqmn(x)dx,
0 m=0 n=0

where

qn ltimccqn(t), qmn(x) ---- ltimooqmn(t,x)"
It is known [2] that the probability qn is equal to 1- p, and, for the second term of (11),

n----O
we need the generating function

P’(S’Zl’Z2)=m=OE n=o 0 e-SXqnm(x)dx)zrz’
which can be obtained from [2, equation 4] as follows:

,(fl(O, Zl, Z2) b*(8)) z1 1(z2)P*(,z,) = ( ) a(1 :)-;i:;( :):)" (,:)

l_z2 f" i(z2)-z2 "ex zf2 el(X) x ]

(13)

where 1(x) 1(0, x, 1).
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It is clear that E[e-sWl(O-) = 0] = 1 and E[e-SWlN1(0-) = m, N2(0-) = n,

(0- = 1, X(0- = z] can be rewritten in the following way

E{e-w N(0- )= m, N2(0- ): n, (0- )- 1,X(0- )= x}

(14)

where we used (10) in the last inequality.

right-hand side of (11) becomes

Thus by (12) and (14), the second term on the

(,,x)
f(s, u)P*(s + AI(1 (1 (8, u, 1)) + A2(1 u), 1(8, t, 1), u)du.

1

Therefore we obtain from (11) and (13), that the Laplace-Stieltjes transform of the distribution

of W is

2(s, 1)

E[exp(-sW)]= l p+ l-Pf (1-u)[l(O,u, 1)-l(S,U, 1)
s [1(0, u, 1)- u][l (s, u, 1) u]

1

exp [’"1’(0, ,’ 1)’" x][l (S, x,’"l) "’ x]
(15)

In summary,

Theorem 2: In steady stale, the Laplace.Stieltjes transform of the distribution of
the virtual waiting time W is given by (15), where l(S,U, 1) (el(S, 1), respectively) is the

unique solution of the functional equation l(S,U, 1) = b*(s + Ax(1 (s,u, 1)) + 2(1 u))

(Ca(s, 1) = (s,2(s, 1), 1), respectively) and satisfies the inequality 0 < (s,u, 1) <_ 1

(0 < 2(s, 1) _< 1, respectively).

Remark: When 1 = 0, our model becomes the ordinary M/G/1 retrial queue with

one type of call. In this case Ct(s, z2,w)= wb*(s + 2(1- z2)) and 2(s,w) is the solution of

z2 = wb*(s + 2(1 z2) ). Equation (15) reduces to

62(s, 1)
1 p f .A(1 u)[b*(A2 A:u)- b*(s + A2S[ezp( sW)] = 1 p + s "j [b*(A Au)- u][b*(s + A: A:u)- u]

1
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which agrees with Theorem 3 in Falin [11].
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