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ABSTRACT

Using the theory of Lyapunov’s second method developed earlier
for time scales, we extend our stability results to two measures which
give rise to unification of several stability concepts in a single set up.
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INTRODUCTION

It is well-known [9] that the development of stability theory in terms of

two measures unifies and includes a variety of known concepts of stability in a

single set up.

In [5] we have developed Lyapunov’s second method in the framework of

general comparison principle for dynamic systems on time scales.

In this paper we extend the above mentioned results to obtain stability

analysis in terms of two measures by using the comparison result, Theorem 2.1,
given in [5], in terms of Lyapunov-like functions. We further give examples for

various stability concepts in terms of two measures.

We also introduce the concepts of (ho, h)-Ll-stability and finite interval

(ho, h)-LX-stability and give various stability criteria in terms of these notions.

We further give examples illustrating the relation between these new definitions.
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1. PRELIMINARIES

Consider the dynamic system

x = f(t,x), X(to)= Xo, to > O, (I.I)

where f Cra[’ xn,n]. Suppose that he function f is smooh enough o
guarantee existence, uniqueness and vd-continuous dependence of solutions

z(t) = z(t, to, Zo) of (I.i). ee us firs define the following classes of functions for

future use"

{a e C[N+ ,N+ l: a(u)is strictly increasing in u and a(0)- 0},
k = { C[N+, N+ ]: (u)is strictly decreasing in u and ld(u)= 0},
C% = {a 6 Crd[T x e +, + 1: a(t, s) 6 for each t},
F {h e C,d[T x e", N + 1: inf h(t, x) = 0},

t }.

We now define stability concepts for the system (1.1) in terms of two

measures ho, h F.

Definition 1.1: The dynamic system (1.1) is said to be

($1) (ho, h)-equistable if, for each e > 0, to T, there exists a positive

function - 8(to, e) that is rd-continuous in to for each e such that

ho(to, Xo) < 6 implies h(t,x(t)) < , t >_ to, where x(t) = x(t, to, Zo) is any

solution of system (1.1),
($2) (ho, h)-uniformly stable if the in (Sx)is independent of to.

Other stability concepts for the system (1.1) can be defined similarly.

Definition 1.2: Let ho, h 6 F. Then we say that

(i) ho is finer than h if there exists a p > 0 and a function % such

that ho(t, z) < p implies h(t, z) <_ (t, ho(t, z));
(ii) ho is uniformly finer than h if in (i) is independent of .
Definition 1.3" Let V 6 Cd[q]’ x [",N+ ]. Then V is said to be

(i) h-positive definite if there exists a p > 0 and a function b % such

that b(h(t,x)) < V(t,z) whenever h(t,z) < p;

(ii) h-decrescent if there exists a p > 0 and a function a % such that

V(t,z) <_ a(h(t,x)) whenever h(t,z) < p;
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(iii) h-weakly decrescent if there exists a p > 0 and function a % such
that V(t, x) <_ a(t, h(t, x)) whenever h(t, x) < p.

Definition 1.4:
in [4]. Then we define

Let V Cd[Tx n,+] and #*(t) be as in Definition 2.2

and

infV(t, x) V(t #*(t), x #*(t)f(t, x))D Va(t,x) = lira
#*(t)-o

D + Va(t, x) =_ lira supV(t + #*(t), x + tt*(t)f(t, x)) V(t, x)
.(,)-o ,-(t)

(1.2)

(1.3)

If V is differentiable, then D_ Va(t, z) = D + Va(t, x) = V(t, z) where

VX(t,x) = Vta(t,x)+ V(t,x). f(t,x). Here V is considered as in Definition 2.5

in [4] and Va is taken as the normal derivative.

Let x(t) be a solution of (1.1) existing on [to, C) and V(t,x) be locally
Lipschitzian in x. Then, given t >_ to, there exists a neighborhood U of (t,x(t))
and an L > 0 such that

v(,. 5) v(,. v) _< L 11 v !! for (,, 5), (,. ) e u.
Choose #*(t) > 0 sufficiently small so that

(t + *(t), z(t + tt*(t))) e U and (t + z*(t), z(t) + #*(t)f(t, z(t))) e U.

Then we have

V(t + #*(t), x(t + #*(t)))- V(t, x(t)) = V(t + #*(t), x(t) + #*(t)f(t, x(t))

+ ,*(t),)- v(t, (t))

<_ V(t + #*(t), z(t) + #*(t)f(t, z(t))) + L#*(t)I e v(t, (t)),

where e tends to zero with #*(t). It then follows that

lira sup.l,t)[V(t( + #*(t),z(t + #*(t)))- V(t, x(t))]
*(t)-o +

< lira
t, (t)-o sup#,l(t)[V(t + #*(t), x(t) + tt*(t)f(t, x(t)))- V(t,x(t))].

On the other hand, we have

v(t + ,*(t), (t + ,*(t)))- v(t, (t)))

>_ V(t + #*(t), z(t) + tt*(t)f(t, z(t)))- L#*(t)I e v(t, (t))



328 BILLOR KAYMAKALAN

which implies

lira
u*(t)--,o + ,-.t-)[v(t + ’(t), =(t + .’(t)))- v(t,=(t))]

> lira
--’. +u (t)-.o sup#,l(t-)[V(t + #’(t), x(t) + #*(t)f(t, x(t)))- V(t,x(t))].

Thus we obtain

lira
u (t)--.o t)[v(t + ’(t), (t + .’(t)))- v(t, (t))]

= lira
,*(t)--.o + suP#t)[V(t + #*(t), x(t) + #*(t)f(t, x(t))) V(t, x(t))].

Similarly, we can show

lira inf,l,.)[V(ti + #*(t) z(t + #*(t)))- V(t z(t))]
t,*(t)o +

= lira inf..-,lti)[V(tt + #*(t) z(t)+ #*(t)f(t, x(t)))- V(t,x(t))]. (1.5)
.( +u t)--.o

The following result is useful in the subsequent discussions.

Lemma i.i" Suppose re(t) is rd-continuous on (a,b). Then re(t) is

nondecreasing (nonincreasing) on (a, b) if and only if D + mX(t) >_ 0 ( <_ O) for
every t (a, b), where

D + mx(t) = lira sup
-(,)-o + . t)[,(t + ,*(t)) ,(t)].

Proof: The condition is obviously necessary. Let us prove that it is

sufficient. Assume first that D +ma(t) > 0 on (a,b). If there exist two points

a,/3(a,b), a</3, such that m(a)>m(fl), then there is a # with

re(a) > # >m(fl) and some points t [a,/3] such that re(t) > #. Let
= sup{t; re(t) > #, t [a,/3]}. Clearly, (a,/3) and m(4)- #. Therefore, for

every t (,/3), we have

(t). ,,() < 0t-
which implies D + ma() _< 0. This is a contradiction.

(a,b).
Assume now, as in the statement of the lemma, that D+ma(t)> 0 on

For any e > 0, one gets D + [re(t) + et]zx D + ma(t) + e > 0. Hence from
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he above discussion re(t)+ et is nonaecreasing on (a,b). Since his is true for

any ,, re(t)is also nondecreasing on (a,b). Similarly, one can prove tha re(t)is
nonincreasing if D + raze(t) <_ O. Thus ghe proof of ghe lemma is complete.

BASIC LYAPUNOV THEORY IN TERMS OF TWO MEASURES

In general, in Lyapunov’s second method, a Lyapunov function wih

continuous firs order partial derivatives is considered. Here, we shall consider

more general case and develop the basic Lyapunov heory in terms of noions

introduced in Section 1.

Theorem 2.1: Assume that

(i) V Cd[’x R",N + l, h F, V(t, x) is locally Lipschitzian in x and h-

positive definite;

(ii) D + V(t, z) < O, (t, z) S(h, p), where S(h, p) {(t, z)
h(t,x) < p,p > 0}.

(A)

(B)

if, in addition, ho F, ho is finer than h and V(t,x) is ho-weakly

decrescent, then the system (1.1) is (ho, h)-equistable,
if, in addition, ho F, ho is uniformly finer than h, and V(t,x) is ho-
decrescent, then the system (1.1.) is (ho, h)-uniformly stable.

Proof: Let us first prove (A). Since V(t,x)is ho-weakly decrescent,
then for t ]-, xo N, there exist a constant 8o = 8o(to) > 0 and a function

a E 12% such that

V(to, Xo) < a(to, ho(to, Xo)), provided ho(to, Xo) < 6o.

The fact that V(t,z) is h-positive definite implies that there exist a constant

Po (0, p) and a function b % such that

b(h(t, x)) <_ V(t, x), whenever h(t, x) <_ Po. (2.2)

Also, by the assumption that ho is finer than h, there exist a constant

51 5(to) > 0 and a function o % such that

h(to, Xo) <_ (to, ho(to, Xo)), if ho(to, Xo) < 61,

where 51 is chosen so that p(to, 51) < go.

(2.3)
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Let e (0,po) and to Tk be given. By the assumption on a, there exists

6(to, ) > 0 that is rd-continuous in to such that

,(o, 6)< (). (.4)
Choose (to) = min{o,,}. Then ho(to, Xo) < implies, by (2.1)-(2.4), that

b(h(to, Xo)) <_ Y(to, Xo) <_ a(to, ho(to, Zo) < b(e), which in turn yields that

h(to, Xo) < e. We now claim that for every solution x(t)- x(t, to, Xo) of (1.1) with

ho(to, Zo) < 6

h(, (t))< , >_ o.
If this is not true, then there would exist a t > to such that

h(t,x(t)) >_ and h(t,x(t)) < , t e [t0, t),

for some solution x(t)= x(t, to, Xo) of (1.1). Set re(t)= V(t,x(t)) for t e[to, t].
Since V(t,x)is locally Lipschitzian in z, it follows from (1.4) and assumption (ii)
that D+ma(t)<_ O, which implies, by Lemma 1.1, that m(t) is nonincreasing in

[to, t]. Thus it follows from (2.1)-(2.4) that

() < (h(t, z(t,)) < v(t,,(t,)) < V(to,o) < (),

which is a contradiction.

equistable.

Hence (2.5)is true and the system (i.I)is (ho, h)-

To prove (B), note that if V(t,x) is ho-decrescent and ho is uniformly finer

than h, then the functions a and T in (2.1) and (2.3) are independent of t.

Consequently, it is easily seen that the constant 5 can be chosen to be

independent of to: Hence the system (1.1) is (ho, h)-uniformly stable.

We next prove a result on (ho, h)-uniform asymptotic stability.

Theorem 2.2: Assume that

(i) ho, h F and ho is uniformly finer than h,
(ii) V Cd[T,+],V(t,z)is locally Lipschitzian in x, h-positive

definite, ho-decrescent and

D + Va(t, x) <_ C(ho(t x)), (t, x) e S(h, p), C e %.

Then the system (1.1)is (h0, h)-unKormly asymptotically stable.
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Proof: Since V(t,x) is h-positive definite and ho-decrescent, there exist

constants 0 < Po < P, 0 < o and functions a, b % such that

(h(t, )) <_ v(t, ), (t, ) e s(, po)

V(t,x) _< a(ho(t, x)) if ho(t, x) < (o.

It follows from Theorem 2.1 that the system (1.1) is (ho, h)-uniformly
stable. Thus we let e = Po, there exists 8 = 8(p) > 0 such that

ho(to, Xo) < 8 implies h(t,x(t)) < Po, t >_ to,

where x(t)= x(t, to, Xo)is any solution of (1.1).

Let 0 < e < Po and = 8(e) be the same as in Definition 1.1 for (ho, h)-
uniform stability. Assume that ho(to, xo) < * = min{6o,6}. Set T T(e) =
(*)
C(6) + 1. To prove (ho, h)-uaiform symptotic stability, it is enough to show that

there exists a t" [to, to + T], such that

ho(t’,(’)) < .
If this is not true, then there exists a solution x(t)= x(t, to, Xo) of (1.1) with

ho(to, Zo) < * such that

ho(t,z(t)) > , t [to, to + T]. (2.9)

Let m(t)= V(t,z(t)). Then it follows from condition (ii) that

D + ma(t) < C(ho(t, z(t))), t > to
which implies by (2.8) that

to+T

f C(ho(, ()))x _< .(to)_< a(*).
o

On the oher hand, from (2.9), we obtain

to+T
/ C(ho(s,z(s)))As >_ C()T > a(’),
o

which is a contradiction. Thus the proof of the theorem is complete.
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Next, we discuss some examples, as applications of he above results.

Example 2.1: Consider the dynamic system

z = 1/2zx + z z,

Z2 .---- tZl
X3 = (X2 312,t.

(2.10)

Choose V(t, x) = xe’ + (x x3),
Then we have

h(t,) = , and ho(t,x) = + z2 + x3.

(h(t, )) < v(t, ) < ’(ho(t, )), (t,)e vx,
D + VX(t, z) 2’(z x3) _< 0, (t, z) - n3.

By Theorem 2.1, we conclude that the system (2.10) is (ho, h)-equistable.

Example 2.2: Consider the dynamic system

xa= -y+(1-x:-y)ze-t

y x + (1 z y:)ysinz. (2.11)

Let V(x, y) (x+y-l),ho=h- Ix+y-I Then we see

(,) < v(z, ) < ho(Z, ), (, ) e ,
D + VX(x, y) = -4(x + y- 1)(xe-t+ y2sinx) < O, (t, x, y) T’x.

Thus (ho, h)-uniform stability follows from Theorem 2.1.

Example 2.3: Consider the dynamic system

Xl Xl(1 q- sin2x3) 2z2e t,

x 2x x2et

xa3 = xe-t + xcost + x3sint.

Set V(t, x) x + xe -t, h(t, x) = d(x, B) and ho(t, z) = d(x, A) where
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A = {(xx, xz, zz) e Rz; xx = x = 0}, B = {(zx, zz, zz) e Rz; x = 0}. Clearly A C B,
h(t, z) <_ V(t, z) <_ h0(, z) and D + VX(t, z) <_ 2h0(t, z). Thus, by Theorem 2.2,
the system (2.12) is (h0, h)-uniformly asymptotically stable.

3. COMPARISON METHOD

The concept of Lyapunov function together with the theory of dynamic
inequalities provides a very general comparison principle under much less

restrictive assumptions. In this setup, Lyapunov function may be viewed as a

transformation which reduces the study of a given complicated dynamic system

to the study of relatively simpler scalar dynamic equation.

Let us consider the following scalar dynamic equation

= a(t, >_ o,
where g Cd[T x N, N] and g(t, O) O.

Definition 3.1: Let 7(t) be a solution of (3.1) existing on some interval

J = [to, to + a),0 < a _< + oe. Then 7(t) is said to be the maximal solution of

(3.1) if for every solution u(t)- u(t, to, Uo)of (3.1) existing on J, the following
inequality holds

u(t) <_ 7(t), t J. (3.2)

We now refer to Theorem 2.1 in [5] for the basic comparison result in

terms of Lyapunov function V and having this theorem at our disposal, we can

establish some sufficient conditions for the (ho, h)-stability properties of the

dynamic system (1.1).

First we need the following definition.

Definition 3.2" The trivial solution u(t)-0 of (5.3.1) is said to be

equistable if for any e > 0 and to T, there exists a = t(to, e) > 0 that is rd-

continuous in to for each e such that uo < implies u(t, to, Uo)< e,t >_ to,
u(t, to, Uo) being any solution of (3.1).

Theorem 3.1: Assume that

(Ao) ho, h are rd-continuous, belong to the class F and ho is uniformly finer
than h;
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(A1) V Cra[’Xff{n,+], V(t,x) is locally Lipschitzian in x, h-positive

definite and ho.decrescent;
(A2) g 6 C,a[T x IR +, IR] and g(t, O) -- O;
(Aa) D VX(t, x) <_ g(t, V(t, z)), (t, x) 6 IF x n.

Then the stability properties of the trivial solution

corresponding (ho, h)-stability properties of (1.1).
of (3.1) SmlV the

Proof: We shall only prove (h0,h)-equiasymptotic stability of (1.1).
For this purpose, let us first prove (ho, h)-equistability.

Since V is h-positive definite, there exists a b % such that

_< v(t, E x S". (3.3)

Let e > 0 and to E T be given. Suppose that the trivial solution of (3.1) is

equistable. Then given b(e) > 0 and to 11-, there exists a function

= 6(to, e) > 0 such that

uo < 61 implies u(t, to, Uo)< b(e), t E T (3.4)

where u(t, to, Uo)is any solution of (3.1). We choose Uo- V(to, Xo). Since V is ho-
decrescent and ho is uniformly finer than h, there exists a Ao > 0 and a function

a % such that for (to, Xo) S(ho, Ao) where S(ho, Ao)- {(t,x) T x ": ho(t,z) <
o, o > 0}, we have

h(to, Xo) < Ao and V(to, Xo) < a(ho(to, Xo)). (3.5)

It then follows from (3.3) that

b(h(to, xo) <_ V(to, Xo) <_ a(ho(to, Xo)),(to, Xo) e S(ho, Ao).

Choose 6 = 6(to, ) such that 0 < 6 _< Ao, a() < 6 and let ho(to, Xo) < 6.

(3.5) shows that h(to, Xo)< e since 6 < b(e). We claim that

Then

h(t,x(t)) < e, t >_ to whenever ho(to, xo) < 6,

where z(t)= z(t, to, Xo) is any solution of (1.1) with ho(to, Xo)< 6.

true, then there exists a t > to and a solution x(t) of (1.1) such that

If this is not

<_ h(t,x(t)) and h(t,x(t)) < e,to _< t _< tx, (3.7)

in view of the fact that h(to, xo) <, whenever ho(to, Xo) < 5. Using standard
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arguments [8], we have

v(t, (t)) <_ (t, to, o), to <_

where r(t, to, Uo)is the maximal solution of (3.1).
(5.3.7) and (3.8)yield

Now he relations (3.3), (3.4),

(,) _< v(t,, z(t,)) _< (t,, to, o) < (,),

contradiction, proving (ho, h)-stability of (1.1).

Suppose next that the trivial solution of (3.1) is equi-attractive. Then we

have that, given b(e)> 0 from (ho, h)-stability and to (E ql, there exist positive

numbers 6 = 6(to) and T T(to, e) > 0 such that

Uo < 5 implies u(t, to, Uo) < b(e), t >_ to + T. (3.9)

Choosing uo V(to, Xo) as before, we find a 8 673(to) > 0 such that 0 < 6 < ,ko

and a(8) < 6. Let ho(to, Xo)< 8o. Then the estimate (3.8) is valid for all t _> to.
Suppose now that there exists a sequence {tk} tk >_ to + T, tk--c as k--+cx such

that e _< h(tk, x(t)) where x(t)is any solution of (1.1) such that ho(to, Xo)< o.
This leads to a contradiction

b() <_ V(t,z(t)) <_ r(t, to, Uo) < b(E)

because of (3.8) and (3.9). Hence the system (1.1)is (h0,h)-equi-asympotically
sgable and ghe proof is complete.

Remark 3.1: Usually when stability properties for differential systems

are proven, one imposes conditions on V(t,z)only in + x S(p), where S(p)=
[z : Izl < p], because stability notions are of local nature relative to the

trivial solution. On the other hand, when we deal with difference equations, we

need, either to assume S(p) is invariant or work in the entire N’, since we have

no control of how large the solutions grow being discontinuous. As a result, if t
in (3.7) is a scattered point, for example, h(t,x(t))> e and it may happen that

h(tx, x(tx)) > p if we impose condition only on S(h, p) for some p > 0 instead of
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4. L-STABILITY AND FINITE INTERVAL L-STABILITY

In this section we introduce the new concepts of L-stability and finite
interval L-stability in terms of two measures and extend Theorem 3.1 in this
context.

Let Y be a time scale. Then ql" is countable union of compact subsets of

+. There may be more than one way of denoting q]" as such a union. Each

component, being a compact set, is Lebesgue measurable with measure m.

Hence q]" is Lebesgue measurable. Let f be any valued function on T.
Measurability of f is defined with respect to measurable subsets of T. Lebesgue

integral of f over q]- is defined in the usual way the integral over a measurable

set is defined. Let LX(q]") or L be the usual class of absolutely summable

functions on T. Let % be as in Section 1. We define,
% {b %: for any u:T+, u L implies,

(b -u): ql’--, + is in n1}.
(Here (b- u)(t) b- (u(t)) = c such that b(c)= u(t)).

Let h0, h F be two measures as usual, with h0 being finer than h.

Definition 4.1" The trivial solution of (1.1) is said to be (ho, h)-L-stable if

it is (h0, h)-equistable in the sense of (S) and there exists = (t0) such that

ho(to, Xo) < implies /h(s,z(s))As <
o

Definition 4.2: Let [T,T=] C T be a given interval. The trivial solution

of (1.1) is said to be (ho, h)-L-stable on [T,T] (i.e. it is said to have finite

interval L-stability) if given e > 0, to > 0, there exists t = 8(t0, e, T,T=) > 0 such

that
T2

ho(to, Zo) < t implies f h(s, z(s, to, Xo))As <
T

Many times, the rivial solution may not indicate the full performance of

the system. Hence we define,

Definition 4.1’: The system (1.1) is said to be (ho, h)-L-stable if there

exists 8 > 0 such that
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ho(to, Xo) < S implies f h(s,z(s))As < c.

o

Definition 4.2’.:. The system (1.1) is said to have finite interval (ho, h)-L-stability on the interval ITs, T] C "I!" if givea e > 0, we cax find a > 0 such that

T2

ho(to, Xo) < implies f h(t,x(t, to, Xo))At <
T

We note that, when stability of the trivial solution of (1.1) is assumed, Lx-
stability oa [T,T] follows quite naturally. We refer to Remark 4.1 for details.

Also we point out that the usual LV-stability defined as in [7] can be obtained as

a special case of (ho, h)-L’-stability by taking h(t,x)= II x !1 r,, for any p > 1.

Theorem 4.1" Assume that (Ao) (A) and (A3) of Theorem 3.1 remain

valid with (A) replaced by

(A)* V Cd[T x I",+ 1, Y(t,x) is locally Lipschitzian in x and h-positive

definite.
Then, if the trivial solution of (3.1)is (ho, h)-L-stabte, we have that the trivial

oZto oy (.) o (ho, h)-L’-tt.
Proof: Under the hypothesis, by Theorem 3.1 it follows that the trivial

solution of (1.1)is (h0,h)-equistable. Further, we have by (3.8)

6(h(t, (t))) __< v(t, (t)) _< r(t, to, o)

where r(t, to, Uo) is the solution of

= (t, .), -(to) y(to, o).

Since by hypothesis r(t, to, Uo) L, as a result of the L-stability of scalar

equations and b %, it then follows that

/ h(t, x(t))Pt <_ /(b- lr(t))At < oa.

o o

This proves the (ho, h)-L-stability of the trivial solution of (1.1).

Remark 4.1: Let > 0, T,T q]’ with T > T and m([Tx, T]) > 0

where m is the Lebesgue measure.

Choose e’> 0 such that b-I(E,) This is possible since b-
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is continuous at O.

Since the zero solution of the scalar equation (3.1) is stable, there exists

5’> 0 such that

to, uo) < e’ whenever 0 < uo < 5’.

Since V(t,x)< r(t, to, V(to, Xo)), using the rd-continuity of V at (to, xo) choose

5 > 0 such that Xol < 5 implies V(to, xo) < 5’. Then we have,

(h(, (, o, o)))_< V(, (, o, o))< (, o, o)< ’.

Hence,

Thus

/
[T1,T21

(t,(t, to, o))< -(’), t e ITs, T]

hat < rn"([T, T])
[T1,T2]

Hence, finite interval (ho, h)-L-stability is trivial if we assume the stability of the

zero solution of (1.1). So, (ho, h)-Li-stability of the trivial solution, as defined

earlier, implies equistability of the trivial solution which in turn implies the

finite interval (ho, h)-L-stability. However,

Remark 4.2:

(i-) (ho, h)-L-stability of a system need not imply finite interval (ho, h)-
L-stability of the system.

To see this, let us consider the following example.

Let f be a differentiable function on [0, oo) such that f(t)>_ > 0 on Its, t2]
and f is integrable on [t, oo)- [0, t)Q ]-a.

a() =

This has the solution,

f(t) + (t t)xo,
x(t)

f(t),

Consider the equation

f(t)- x(t)- f(t) 0 < t < tt -t

fix(t), t >_ t.
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Hence
x tl m

0 0 1

since the first integral is over [0, t] and f is assumed to be integrable.

Hence the trivial solution of (4.1) is (ho, h)-La-stable with

ho(t,x) = h(t,z)= Ilxll. In fact, the region of LLstability is N, so global
stability follows.

However, since f(t) > e on [t, t],

irrespective of the choice of x0.

2

/ z(t)At > e(t tx)

Hence the system (4.1) is not [t,t2]-L-stable. This is quite natural if the

influence of the initial data vanishes in a finite time.

(ii-) The obvious advantage of finite interval Ll-stability is that even

when the trivial solution of the system is unstable in the usual sense, it may be

finite interval L-stable, as can be seen by the simple example of xzx = ax, a > O.

Clearly, this system is not Ll-stable, in fact, not even stable, but of course the

trivial solution is L-stable in any finite interval.

We can refine Theorem 4.1 and obtain uniformity results for the (ho, h)-
L-stability of the trivial solution of (1.1) based on the following definitions.

Definition 4.3" The trivial solution of (1.1) is said to be

(i) uniformly (ho, h)-Ll-stable if 5 in Definition 4.1 is independent of to,

(ii) uniformly (h0,h)-finite interval-L-stable if 5 in Definition 4.2 is

independent of to.
Coronary 4.1" If all the assumptions (Ao)-(A3) of Theorem 3.1 are kept

valid, including ho-decrescentness of V(t,x), then Theorem 4.1 can be extended to

give the uniform (ho, h)-L-stability of the trivial solution of (1.1) whenever the

uniform (ho, h)-L-stability of the trivial solution of (3.1)is assumed.
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5. FINITE INTERVAL/)’-STABILITY FOE LINEAR
AND WEAKLY NONLINEAR. SYSTEMS

For the linear system

xa = A(t)x, x(to)= Xo

let @A(’, to) be the fundamental solution guaranteed by Theorem 3.2 in [4].

We will make use of the following relation between the transition matrix

CA(t, to) and the fundamental matrix (t):

So, by using the formula (4.3) in [6] with the above notation we have that

z() (),-’(0)=0 (5.3)

is the solution of the system (5.1).

In this section by LP-stability or finite interval L’-stability, p >_ 1, we

understand the corresponding (ho, h)-n-stability concept with ho(t,x)- h(t,x)=
]] x II p. We can easily observe the finite interval-LP-stability of the trivial

solution of the system (5.1) as follows"

By use of (5.3), for any t, t Y, t < t

2 2

[ !1 =(t)II ,t _< f II ,(t)-’(to)=o II

2

-’(o) II’ il =o II /" II ()!1II

Since is r-continuous, when t-
2

ht il =(t)II ,t < oo d o th rii-i=t=-’-biiy

solution of the system (5.1) follows easily.

Hence we h&ve

of the trivial

We also observe that the trivial solution need not be stable.
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Next, consider the weakly perturbed system:

xA = A(t)z + R(t, x), Z(to) = Xo.

Theorem 5.1" Let to < t < t < be given with to, t, t ". Suppose
that there exists a function r Lq[t, t:] with + = 1, p > 1, such that R(t, O) 0
and

(i)
(i) q P

] ()
0

t) II (t)!1 "at
o

and

II ’-’ I1 o,= p !1 -x(t)il[t0, t2]
with/ = 1, p > 1.

Then the trivial solution of the system (5.4)/s finite-interval-L’-stable.

Proof:

(.7) [61.
The proof easily follows by the variation of parameters formula

Using (5.2) we can rewrite (3.7)in [61 as follows:

Then

(t) = (t)- ’(to)o + f (t)-’(,())n(,()).

/p

foil (t)II t /t /1/p_< !! - (to)!!. !1 o II II (t)II
o

2

+ f II (t) II
lip

f- ’(()). n(,())
o
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II -*(*o)II I! o II II II

2
1/

[ -’(,()) R(,())X A
o

where ]l II o,= is defined by (5 7) Considering only the second part of the right-]D

hand side of the inequality (5.8),
1]p

,t2 ,,t
0 0

Using condition (i) and H61der’s inequality

ess sup l] ,I,-
e[to, t:l k to

(5.10)

where II II o,q is given by (5.5) with -}+- 1, p >1. Now, by using (5.7) for

II -il d and replacing (5.10) in (5.9), in view of (5.8) we obtain,

[1 II ,x,-’ Ii o,. II ’ 11 o,oo p q

o
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Hence,

It2 1 p-< Ii ,2 II  ll tl-r II o,2).P q

Reducing the region of integration in (5.11) from [to, t2] to [tl, t2] we get;

o

oo p q

Now by use of condition (ii) we can make the right-hand side of (5.12) as small

as we want when II 0 l[ < 6 for some 6 > 0. Hence, the finite inerval-L-stability of the trivial solution of the system (5.4) follows.

Remark 5.1" We note tha (ho, h)-L-stability and finite interval L-stability concepts are defined on time scales of positive measure. So we can not

consider L-stability or finite interval Ll-stability on a set of Lebesgue measure

zero, for instance the Cantor set. On such time scales we have o define a new

measure for these stability concepts to make sense. On the other hand, the

Definitions (4.1)-(4.2’) still make sense even in the case of T = 2[, the set of all

integers, for then we can take the counting measure as the non-zero measure.
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