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ABSTRACT

We discuss the existence, uniqueness, and continuous dependence
on data, of anti-periodic traveling wave solutions to higher order two-
dimensional equations of Korteweg-deVries type.
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1. INTRODUCTION

The well-known Korteweg-deVries (referred to as KdV henceforth)
equation was derived in 1895 [14]. It is a non linear evolution equation governing

long one-dimensional, small amplitude, surface gravity waves propagating in a

shallow channel of water. It was rediscovered in 1960, in the study of collision-

free hydromagnetic waves [9]. Subsequently, the KdV equation has arisen in a

number of physical problems, such as stratified internal waves, ion-acoustic

waves, plasma physics, and lattice dynamics. A survey of results and applications

for the KdV equation was written by Miura [16].

A two-dimensional generalization of the KdV equation is the Kadomtsev-

Petviashvili (KP) equation, which was obtained in 1970 in the study of plasmas

[11]. The evolution described by the KP equation is weakly nonlinear, weakly

dispersive, and weakly two-dimensional, with all three effects being of the same

order. The KP equation has also been proposed as a model for surface waves and
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inernal waves in channels of varying depth and width [18].

A fifth-order KdV equation was considered by Nagashima [17], and

Sawada and Koera [19]. A relaed (2 + 1)-dimensional varian appears in [13].
Higher-order KdV-like evolugion equagions were invesgigaged in [4, 12]. Such

equagions may provide realisgic models for various physical processes, including
ghe propagagion of small ampligude surface waves in sgraigs or large channels of

varying widgh and depgh [1]. In ghis conexg, ghe Burgers equation appears as a

one-dimensional analog of ghe equagion governing viscous compressible flows [8].
KdV equagions pergurbed by a Burgers-like germ were sgudied in [10, 15].

In a recent paper [3], two of the authors have discussed the existence and

properties of anti-periodic raveling wave solutions to a nonhomogeneous

generalized KP equation. It is he purpose of the present note to extend he

theory of [3] o a broader class of Kadomtsev-PeviashviXi-Burgers (KPB)
equations. For simplicity and clarity of exposition, we specifically consider the

equation

{ut + If(u)]. + au. + u*** + 7u*****}. + 5uu = " (t >_ O, x,y ), (1.1)
where f C([), a, /3, 7 and 5 are real constants, while is a real-valued

function of x, y and t. The case when u is independent of y, - 0, and

u in (1.1), corresponds to a KdV-Burgers type equation. (In particular,

if also a < 0 and /3-3’ = 0, we geg ghe classical Burgers equagion). If = 0,

u, a-/3 = 0, " = -1, and u is independeng of y, (1.1) reduces go a

fifgh-order KdV equagion. In ghe case when a-7 = 0, we recover ghe equagion

sgudied in [3]. (If, in addigion, f(u)=1/2u and =0, we obgain ghe KP

equagion). Finally, we remark hag (1.1) is a special case of ghe more general,

higher-order equagion

{ut + [f(u)] + au,, + u,, + 7(- 1)"D"+ ltt}x -" 6ttyy ", (1.2)
where rn is an integer >_ 2.

The plan of the paper is as follows. In Section 2, we reduce the study of

anti-periodic traveling wave solution to Eq. (1.1) to that of a fourth-order

boundary-value problem. The main existence, uniqueness and continuous

dependence results are stated in Section 3. The proofs, based on monotonicity

methods and a Leray-Schauder type technique, are given in Section 4. In the last

section (Section 5), we comment on the possibility of generalizing our results to
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cover Eq. (1.2).

2. FORMULATION OF THE PROBLEM

We consider Eq. (1.1) with f C(), 0, and (for convenience) - > 0.

The case when > 0 ( < 0), pertains to a medium with negative (positive)
dispersion.

We are interested in the existence of anti-periodic traveling wave solution

to (I. i), of the form

,(, , t) = U(z), z = a +-t, (.)
where a 0 (and for simplicity, we will suppose that a > 0), while b and w are

real constants. Correspondingly, we make the natural assumption that depends
on z only, i.e.,

(x,y,t) = g(ax + by,- wt), with g: --+ . (2.2)
Straightforward computations then show that (1.1) reduces to the sixth-order

ordinary differential equation
dU(6)(z) - cU(4)(z) -- dU(3)(z) -[- cU(2)(z) -- h-z2f(U(z)) gl(Z), (2.3)

c=a-7- d=a-3a/- e (b5- aw)a 6 1,
= -47-, (z) = a-%-(z). (.4)

We consider (2.3) in conjunction with the anti-periodic condition

U(z + T) = -V(z), z e , (2.5)
where 0 < T < oo is a fixed constant.

Remark. If -_-0, condition (2.5) implies that the only constant solution

to (2.3), (2.5)is the trivial solution.

To further simplify our analysis, we impose additional restrictions on f
and g, namely:

and respectively
f( r) = f(r), Vr R, (i.e., f is odd), (2.6)

g e C(R) and g(z + T) g(z) (z e R). (2.7)
We now confine our attention to the anti-periodic boundary value problem (on
[0, T])

() u((z) + u((z) + dU((z) + Y((z)
d+ zf(U(z)) = (z), 0 z T, (.S)
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(ii) U()(0)= -U()(T)(k = 0,1, ,5),
where c, d, e, h and g axe given by (2.4). It is obvious that the restriction to [0,
T of any C-solution to (2.3), (2.5) satisfies (2.8), and conversely, if U C[0, T]
is a solution of (2.8), then by (2.6), (2.7), its T-anti-periodic extension to

satisfies (1.1), (2.5).

Next, introduce the function G: [0, T] R by

G(z) = "f g(t)dtds + lx(T 2z) ] g(t)dt
O0 ].T s " 0

-f f g(t)dtds, 0 <_ z <_ T. (2.9)
2- 0 0

It is readily verified that G 6 C [0, T] and

G"(z) = g(z), G()(0) = G()(T) (k = 0,1). (2.10)
Integrate now (2.8) (i) twice and make use of (2.8) (ii), (2.9) and (2.10), to

obtain

(i) U(4)(z) -- cU"(z) 2v dU’(z) Av U(z) -- F(U(z)) G(z), 0 z T,
(ii) = =

= e
Conversely, differentiating (2.11) (i) twice and employing (2.6), (2.10), (2.11) (ii)
and (2.12), leads to (2.8). (Note that if U fi C4[0, T] is a solution of (2.11), then

actually U e C[0, T], since F e C(.) and G e C:[0, T]).

We have thereby established the following result

Theorem 1. Let f C:() and g" satisfy (2.6) and (2.7). Then

the problem (2.8/ (where c, d, e, h, and 61 av, give? by (2.4)) i8 ,q?Jl,ivaff,Ttt to

(2.11) (where F and G are defined by (2.12) and (2.9), respectively).

3. MAIN RESULTS

We are primarily concerned with the existence, uniqueness, and

continuous dependence on data of solutions to Eq. (2.11). Although we view

(2.11) as a boundary-value problem of independent interest, our assumptions are

compatible with, and motivated by, (2.6), (2.7), (2.10) and (2.12).

We first suppose that

(i) c_<O, e_>O, d,
(ii) F C(), F is monotonically nondecreasing, (3.11
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(iii) G 6 C[0, T].
We then have:

Theorem 2. Let conditions (3.1) be satisfied. Then the problem (2.11)
has a unique solution U C[O, T].

Next, let (3.1) (i) hold, and let F,, G, (n = 1,2,...) be real functions, such

that

f, and G, satisfy (3.1) (ii) (with F, and G,
in place of F and G, respectively). (3.2)

By Theorem 2, for n = 1,2,..., the boundary-value problem

(i) U)(z) + cU(z) + dU’,(z) + eU,(z) + F,(U,(z)) = G,(z), 0 <_ z <_ T
(i) u)(0)= -U)(T)( = 0,,,3), (3.3)

hs a unique solution U. C[0 T]. The following is a continuous dependence
result

Theorem 3. Let (3.1), (3.2)be satisfied, and le U and U denote the

oo o (.) d (.), ct. fo, -,
F, f in C[O, l], for any 0 < l< c,

G, G in 0, T], (3.4)
then

U, U in C[0, T] (n) (3.5)

We now consider the case when the constant e is of rbitrary sign, and F

Finally, by combining our analysis of problem (2.11) (in particular,

Theorems 2 and 4), with the discussion of problem (2.3), (2.5)in Section 2 (in
particular, Theorem 1), we obtain:

Theorem 5. Let f Ce() and g satisfy (2.6) and (2.7), respectively,

Theorem 4. Assume that (3.1)(iii) holds, and that

F e C($); F is odd. (3.6)
If also c <_ O, d 0 and e N, then the problem (2.11) has at least one solution

ue c’[0, T].

is only required to be continuous and odd. The price we pay for such a generality
is that d 0 and the uniqueness of solutions of (2.11) is no longer guaranteed.
The corresponding existence result is:
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and let c, d, e, h, and g be given by (2.4). Then the following holds.

(i) If c <_ 0 and d 7 O, then the problem (2.3), (2.5) has at least one solution

(ii) If c <_ O, e > O, and f is also monotonically nondecreasing, then the

problem (2.3), (2.5) has a unique solution U e G’[0, T].

4. PROOFS

We only present the proofs of Theorems 2, 3 and 4. As already mentioned

in Section 3, Theorem 5 is a direct consequence of Theorems 1, 2 and 4, and the

general discussion in Section 2. (Note that a > 0 and 7 > 0 imply, by (2.4), that

h > 0, which is essential in deriving conclusion (ii) of Theorem 5 (cf. (2.12)). For
conclusion (i), we only need a, 7 7 0).

Proof of Theorem 2. Consider the space L(0, T) with the usual norm

and inner product, denoted by I" and (,), respectively. For p = 1,2, we defin 

the linear operator

d, if p- 1

BU- %U(), % = c, if p 2 (4.1)
1 if p-4

D(B) = {U e W’(O, T):U()(0) -U()(T), k = 0,1,...,p- 1}.
By [5, Theorem 1] and (3.1) (i), it is easily verified that each B, given by (4.1),
is maximal monotone in L(0, T). Next recall the Poincar type inequality (cf.
e.g., [2, Proposition 1.5])

Iu(t) _< 1/2T1/IIU’]I, t e [0, T], VU e D(B). (4.2)
(Actually, in [2], (4.2) appears with T1/ instead of T/, bu it is immediate

that 1/2T1/: is the best possible constant). A repeated application of (4.2), in

conjunction with [6, Theorem 2.4] then leads to the conclusion that the operator

B, defined by
BU (B4 q- B2 + B + eI)U, D(B) = D(B4)

is maximal monotone in L(0, T). In addition, B satisfies

(BU, U) k ll u"ll2, vu D(B) (4.4)
where k denotes a positive constant, which is independent of U. Now remark

C -solution of (2.11) satisfies the equationthat any 4

(B+F)U=G, (4.5)
in L(0, T), where is the L-extension of F. Conversely, if U C4[0, T]
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satisfies (4.5), then it is a solution of (2.11). On account of the properties of B,
and assumptions (3.1) (ii) and (iii), we can adapt the proof of Theorem (3.1) (i)
in [2] (taking, in the setup of [2], H = and A = 0), to conclude that Eq. (4.5)
has a solution U W4"(O, T). The coatiauity of F aad G implies that
U(4) C[0, T]; therefore, U(4) C[0, T], and the existence of a C4-solution to

(2.11) has been established. The uniqueness is a direct consequence of (4.2), (4.4)

Proof of Theorem 3. Let (C, I" Iv) denote the space C[0, T] with the

usual sup-norm. In view of (4.1), (4.3) and (4.5), it is obvious that (3.3) can be

rewritten as

in L2(0, T). Form the L2-inner product of (4.6) with U, and use (3.2), (3.4),
(4.2), (4.4), and Hblder’s inequality, to obtain

{U} is bounded in L2(0, T). (4.7)
Applying (4.2) successively, with U and U in place of U, it follows from (4.7)
that

{U.} is bounded in e. (4.8)
Next, by (4.6), we have

B(U.
Rewrite

U,) + F.(U.) F,.,,(U) G. G,. (4.9)
F.(U.)-

(F,(U,) F(U,)) + (F(U,) F(U,)) + (F(U) F,(U,,)), and take the inner-

product of (4.9) with U,-U,.,. Invoking (3.1) (ii), (4.2) and (4.4), we arrive at

for some k: > 0 (which is independent of n and m). This, in conjunction with

(3.4), (4.2) and (4.8), implies that {U,} is a Cauchy sequence in W:’:(0, T);
consequently

U, -- U, in W:’:(0, T), as n--+oc. (4.10)
Going back to (3.3) and using (3.4) and (4.10)yields

U(n4) -+ U!4) in L(0, T), as n-<. (4.11)
Applying again (4.2) with (U,- U,) (a) in place of U, we deduce (by (4.10) and

u, u, i, c [0, T].
Passing to the limit as n in (3.3) and making use of (3.4) and (4.12) we see

that actually U, U, in C4[0, T], and that U. satisfies (2.11). Since the solution



SERGIU AIZICOVICI, YUN GAO and SHIN-LIANG WEN

of (2.11) is unique (cf. Theorem 2), U. must coincide with U, and (3.5) follows.

Proof of Theorem 4. For each w e C[0, T], let U, C4[0, T] be the
unique solution of

(i) U)(z) + cU’(z) + dU’(z) = G(z) ew(z) F(w(z)), z e [0, T],
(ii) U)(0)= -U)(T)(k = 0,1,2,3). (4.13)

The existence and uniqueness of U, follows from Theorem 2 (where we take

e = 0, F = 0, and replace G by G-ew-Fow). Define the map 5: by
w = U, and invoke Theorem 3 (with F, = F = 0, and e = 0) to conclude that

is continuous. Moreover, is compact, in the sense that it maps bounded

subsets into precompact subsets of . To see this, let w belong to a bounded
subset of . Since, by assumptions (3.1) (iii) and (3.6), F and G are continuous,
it is clear that the right-hand side of (4.13) will then lie in bounded subset of ,
as well. Multiplying (4.13) (i) by V(t) and integrating the result over (0, T)
yields (on account of (4.2), (4.13) (ii), c _< 0, and H61der’s inequality) that {U}
is uniformly bounded and equicontinuous. Therefore, by the Ascoli-Arzel

theorem, {U,} is precompact in e, as needed. (Note that the condition d # 0 has

not yet been used).

We next employ a Leray-Schauder type argument, comparable to the one

of [7, p.244]. (One can also rely on the result of [20]). Specifically, we show that

there exists a sufficient large r > 0, such that if v satisfies

v = Av (4.14)
for some A > 1, then

Iv(z)[ < r, z [0, T]. (4.15)
By the definition of , it follows from (4.14) thai v C[0, T], and

+ + d v’(z) = F(v(z)), z e [0, T],
(ii) v()(0) = v(:)(T) (k 0,1,2,3). (4.16)

Now recall (cf. (3.6)) that F is odd. This implies that the function F" - ,
defined by F,(x)= f F(t)dt, is even (i.e., F(-x)=F(x)). Moreover,

0
F1 CI(R), and

= v’(z)F(v(z)), z e [0, T], (4.17)
for all v C[0, T].

Multiply (4.16) (i) by v’(z) and integrate over (0, T). Taking into account

(4.16) (ii), (4.17) and the evenness of El, we obtain
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d NI v’ I[ G Ill v’ !1.
Inasmuch as d # 0 (by assumption) and A >_ 1, (4.18) leads to

v’ II _< dl- Xll a II.
Recalling (4.2), we finally have

I (z) I_< dl-aT/ilall, z [0, T].
This shows that (4.15) holds as soon as r satisfies

> dl- IT1/21I G I[.
Leg nexg P denoge ghe r-radial regracion in e, i.e.,

(4.19)

u, if luk: _< r,
P,.u =

r U::: if luk: > r.
iuk:’

(4.20)

In (4.20), ig is assumed that r satisfies (4.19). Remark that P is continuous on

e, while P o ff is conginuous and compacg. In addition, by (4.20), P o maps

B(0, r) (the closed ball of radius r, centered a the origin, in e) into itself. Apply
Schauder’s fixed point gheorem go conclude ghag ghere exists v B(0, r), such

that

We claim that
Pv v. (4.21)

IVvb< .
Assume the contrary; that is, [ffv b > r. Then, in view of (4.20) and (4.21), we

have

v Av, with A zJv b > 1 (4.23)r
It also follows that Ivk: = r. By the preceding discussion (recall (4.14), (4.15) and

(4.19)), we see that (4.23) contradict (4.15); therefore (4.22)must hold.

Finally combining (4.20), (4.21) and (4.22), we deduce

P,.ffv = ffv- v. By the definition of if, this implies that v- U, and U
desired solution of (2.11). The proof is complete.

that

is the

(1.2).

5. CONCLUDING REMAPS

The purpose of this section is to outline an extension of our theory to Eq.

traveling wave solutions of the form (2.1) (where a > 0). Letting again

We consider (1.2) with 7 > 0, # 0, f e C2(N) and e C(N), and look for
be
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given by (2.2), we see that (1.2) reduces to
d( 1)mu(2m + 2)(z) + cU(4)(z) -- dU(3)(z) - eU(2)(z) -4- hz2f(U(z)) -. gl(z):(5.1)

where

c : a 2m + 2fl7-1 d = a- 2m + la7-1 (b2 aw)a- 2m- 2.f- 1

h = a 2
7 1, g(z) = a 2 2

7 lg(z). (5.2)
If we associate condition (2.5) to Eq. (5.1), assume that (2.6) and (2.7) hold, and
define G and F by (2.9) and (2.12), respectively, we arrive at

( )u()(z) + ,,(z) + dU’(z) + U(z) + F(U(z)) = a(), 0 z T,
()(0) = -()(T) ( = 0,,...,2- ). (.3)

By combining the methods of Section 4 with the general discussion in [2], we

conclude that analogs of Theorems 2, 3 and 4 (with essentially similar proofs)
hold for the problem (5..3). (The only change is that the space C4[0, T] is

replaced by C[0, T] in the conclusions of the theorems). Going back to Eq.

(5.1), and recalling Theorems 1 and 5, we obtain:

Theorem 6. Let f e C:() and g satisfy (2.6) and (2.7) respectively,
and let c, d, e, h and gl be given by (5.2). Then the following conclusions hold.

(i) If c <_ 0 and d y O, the problem (5.1), (2.5) has at least one solution

U C" +

(ii) If c < O, e > O, and f is also monotonically nondecreasing, the problem

(5.1), (2.5) has a unique solution U 6 C2m + 2([).
Remark. The case when the term (-1)"D"+ u, in (i.2), is replaced by

general differential expression of the type ’_ "D2_2#k( 1) --z +lu, where mis

an integer >_ 2 and # (k = 2,...,m) are nonnegafive constants (with #, > O) can

be treated in a similar way.
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