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ABSTRACT

We consider a process {(Jt, Vt)}t >0 on Ex[0, o), such that {Jr} is a

Markov process with finite state space-E, and {Vt} has a linear drift r on

intervals where Jt- and reflection at 0. Such a process arises as a fluid flow
model of current interest in telecommunications engineering for the purpose of
modeling ATM technology. We compute the mean of the busy period and
related first passage times, show that the probability of buffer overflow within a

busy cycle is approximately exponential, and give conditioned limit theorems for
the busy cycle with implications for quick simulation. Further, various
inequalities and approximations for transient behavior are given. Also explicit
expressions for the Laplace transform of the busy period are found.
Mathematically, the key tool is first passage probabilities and exponential change
of measure for Markov additive processes.
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1. Introduction

Fluid flow processes can be seen as a class of applied probability models which in many ways
is parallel to queues. Frown an application point of view, the historical origin is in both cases

performance evaluation in telecommunication, with the difference being motivated in the change
of technology: from switchboards in the days of Erlang to modern ATM (asynchronous transfer

mode) devices. Mathematically, both class of models have fundamental relations to random
walks and more general additive processes. For queues, the classical example is the reflected
random walk representation of the waiting time via the Lindley recursion ([5], Ch. III.7-

8). More recently, the use of Markov-modulation for modeling bursty traffic has led into more

general Markov additive processes (see e.g. [6], [7]) which are also the key tool we use for studying
fluid flow nodels, by representing them as reflected versions of finite Markov additive processes
with the additive component having the simplest possible structure of a p,re linear drift.

Most of the applied literature deals with the computation of the sl,eady-sl,al,e distribution.
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However, as in queueing theory, steady-state theory only tells part of the story and one may want
to have some information on transient behavior as well. The purpose of this paper is to present a

study of this aspect; in particular, we study the behavior within a busy cycle and bounds and
approximations for the time-dependent state probabilities. Since Professor Takcs is one of the
main early contributors to busy period analysis and the study of transient behavior for queues
(see e.g., his book [39]), and his work [40] on cycle maxima forms the foundation of an earlier
study by the author ([9], with Perry), it is a great pleasure to present this contribution in the
present volume.

The process {(Jt, Vt)}t > o under study is defined by {Jt} being an irreducible Markov process
with finite state space E, ad {Vt} having piecewise linear paths with slope r on intervals where

Jt- i,V > O, and reflection at 0. The stability condition ensuring the existence of a limiting
steady-state is

vir < 0, (1.1)

where r-(ri) e E is the stationary distribution of (Jr}, and we let (J,Y) denote a pair of
random variables having the limiting stationary distribution of (Jr, V). For the evaluation of the
distribution of (J,Y), see Anick et al. [2], Gaver & Lehoczky [19] for some early studies and
Asmussen [8], Rogers [35] for more recent treatments and a more complete set of references (note,
however, that the mathematically attractive features of the models have motivated purely
theoretical papers like Barlow, Rogers Williams [11]). We write E+- {i E E:r >0},
E_ {i E: r < 0} (for simplicity, it is assumed that r -7(: 0 for all though this assumption is
not crucial, cf. [8]).

A summary of the results and organization of the paper is as follows. One of the main topics
is various aspects of busy period behavior. A busy period of length Pi inf{t > O" V 0} starts
from V0 -0 and J0- E +, and ends at the time Pi the process returns to 0. Our first result
(Section 3) is an expression for the mean busy period E:iP given in terms of a set of linear
equations; the equations involve quantities related to the steady-state solution. Besides its
intrinsic interest, the mean busy cycle also enters in an essential way in the rare events analysis
which is carried out in Section 5. Letting My(T)- maxo < < TV(t), the first result given there
states that the cycle maximum Mv(Pi) has an asymptotica-Ily-exponential tail. The implications
are that after suitable normalizations, the first time {Y(t)} exceeds a given large level u has an

asymptotical exponential distribution, and My(T) itself one of the classical extreme value
distributions.

Section 7 deals with transient behavior, more precisely the study of P(VT > u). We show
that for large u and T, a certain time epoch of the form T u/’(7) (with n and 7 defined in the
body of the paper) plays a crucial role as the time at which (VT > u) approximately attains its
stationary value P(V > u) (which in turn is approximately proportional to e-’u). For
T<< u/g(7), we determine the approximate form of (VT > u), and for T>> u/g’(7), we

evaluate the difference (V :> u)-(VT > u). Further results give a central limit estimate of
(VT > u) when T is only moderately different from u/g’(7), and an estimate of the rate of
convergence P(UT > u)--,(V > u) when u is fixed and only T--,c.

Whereas most results of the paper are inequalities or approximation_s,0/ction 8 contains a

variety of exact results. In particular, we find the Laplace transform Eie of the busy period
and the related time 7_(u) the system needs to empty from a large level u. However, the
expressions involve a functional inversion and may appear too complicated to be useful for
computational purposes (in fact, it does not seem not straightforward just to differentiate to
derive the mean of Pi or r_ (u)). Nevertheless, [Vr_ (u) can be evaluated exactly.

Section 2 gives the preliminaries and a summary of the most relevant result from the
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literature. In particular, some basic matrices occurring in the steady-state solution are intro-

duced; they are of basic importance in the present paper as well, since the computational eval-
uation of the busy period/transient behavior results turns out to require either just these matrices,
or matrices of just the same form but defined via duality in terms of time reversion, sign rever-

sion or change of parameters. In Section 4, we introduce the basic technique used in most of the
paper, change of measure via exponential families. In fact, some of the results show that this is
not only a convenient mathematical tool but that the process in certain situations will behave
precisely as if the parameters were changed in this way. In particular, Section 6 gives a precise
description of this type of process behavior prior to exceedance of a large level in a busy cycle, a

result which also determines the optimal change of measure in rare events simulation.

The results of the paper are exemplified via a simple two-state model in Section 9; this
example may be read before the body of the paper to get a first impression of the flavor of the
results. The Appendix contains two proofs deferred to there.

We finally mention that, though not developed in detail, most of the analysis of the present
paper carries over to fluid models with Brownian noise which have received some recent attention,
see in particular Gaver & Lehoczky [20], Kennedy & Williams [25], Asmussen [8], Rogers [35] and
Karandikar & Kulkarni [28]. This means that on intervals where Yt i, {St} evolves as a

2 depending on i. In some cases, theBrownian motion with drift r and variance constant r

formulations have, however, to be slightly changed. In particular, the above definition of a busy
period becomes trivial (Pi 0), so that instead one has to start the busy period at x > 0.

2. Prehminaries

As in [81, we represent {Vt} as the reflected version

of the net input process

V S rain S (2.1)
0<v<t v

S /rj
o

In particular, this means that {St} is a continuous Markov additive process defined on an

irreducible Markov jump process {Jr} with a finite state space E (see e.g. Qinlar [1.6]).

An illustration of the connection between {Vt} and {St} is given in Figure 2.1. This figure
shows also another fundamental tool of the paper (as well as of [8] and papers like [11], [35], [25]),
two Markov processes

x>O +(x)
x>O

which are obtained by observing {J} when {S} is at a minimum or maximum. Here

7- + (x) inf{t > O’S- x}, 7 (x) inf{t > O’S x}

are the first passage times to levels x > 0, resp. x < 0.

On l)’igure 2.1, E+ {spade, heart}, E_ -{diamond, club}.
natural way such that

The slopes r arc ordered the
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r$ > r >O>ro >r$.

{y,}

Figure 2.1

Let It- (,kij)i,j e E denote the intensity matrix for {Jt} and write for brevity Ai- -Aii for
the rate parameter of the exponential holding time in state i. We let T denote the matrix with
ijth element lij/]ril. Using the convention that for a given E-, E+- or E_ -vector
s- (si) A

s denotes the diagonal matrix with the s on the diagonal, we can write T- h rrll
We shall also use block-partitioned notation like

h(++ h(+-) )h- ^(-+) h(--) T-
T( + +) T(+-) )T + T

When we write say Ar- l/t_( q- ), the convention is that dimensions should match. I.e., Ar is

E+ x E+ with the ri, E E+, on the diagonal. Similarly, the identity matrix I, the ith unit
column vector e and the column vector e with all entries equal to 1 may have indices in E, E +
or E_ depending on the context.

The intensity matrices for the Markov processes (2.2) are denoted U(-):E_ E_,
,a(+ -)’E xE by a(-)-U(+)’E+ xE+, and we define matrices tr(- + )’E_ xE+ + *3

i(J + (o) J) etc. (it is trivial that i(Jr_ (o) j)- 0 if j E E + that i(Jr_ (o) j)- 6ij if

i, j E_ and similarly for i(gr j)). It is easy to see via an operational time argument
([8]) that, c.g., + (0)-

V(-)-T(--)+T(- +)a(+-), (2.3)

o( + / eT( + + )yT( + )eV(-)

o
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and similarly for a + ), U + ).

Algorithms for computing matrices like a + -),a(- +) and thereby U(-),U(+) are

discussed in [11], [8], [35] (this yields also the steady-state distribution in view of (2.10) below).
Some are iterative, based upon functional equations provided by expressions like (2.3), (2.4), and
others are based upon diagonalization ideas, delivering automatically matrices like U(-) on

diagonal form,
v(-

where .iU(-) -si.i,U(-)r -siri. The numerical computation may be demanding, not least
when the number of states in E is large (700-900 occurs in references like Anick et al. [2] or Stern
& Elwalid [38]), but from the point of view of the present paper, we shall consider this problem as

settled and matrices of type a + ), o + ), U + ), U as computable.

For later reference, we quote also the Wiener-Hopf factorization identity ([11] or [35])

a + I a + I 0 U( (2.6)

We now introduce the time-reversed version {Jr, St} of the Markov additive process {Jt, St}.

A’A= (note thatWe can write h (i.e. the matrix with elements Aij rjji/ri) as h A/r
A --A and r -ri). Thus {Jt} is defined in terms of h rather than A, and {St} is defined as

{St} with the same rates r but {Jr} replaced by {Jr}" Further let M~ (t)- suPo< <tSuS _u_

M~ suPt > oSts
Proposition 2.1 ([8])"

j(Jt i, V E A) -#-Pi(Jt j,M (t) A),

P(V A,J- i)- rii(M A).

Notation like

refers in an obvious way to {t)" In particular, since clearly {M (t) > x} {Y+ (x) _< t),
Proposition 2.1 yields

ri (t-J,Y (x)<t),(Jt i, V > x) ’i +

F(V > x,J i) riei(’ + (x) <

(2.7)

(2.8)

Recall that a distribution F on [0, oc) is phase-type with phase generator U and initial vector
a if F is the distribution of the lifetime of a Markov process which has initial distribution a and

intensity matrix U, cf. [33]; if the mass ae of a is less than one, we adapt the convention that this

corresponds to an atom of size 1- ae in 0. From the above discussion, it follows immediately

that (as shown in [8]) the distribution of the steady-state variable (J, V) is phase-type given

J-i, with phase generator (+) and initial vector !- +) for iE_ and efor iE+. More
precisely, for E E_
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e(v > .,J i) u!.+ x__,fl

e(V 0, J i) ri(1 -U!.+ -)e);
for E +, just replace + by ei.

(2.9)

(2.10)

3. The Mean Busy Period

Let P be the matrix with ijth entry #i Ei[Pi; JP.- J]; then Pe is the vector with ith entry

[ViPi. We shall show that once a + has been evaluated, the entries of and e can be
computed as the solution of linear equations. We start with the case of Pe, which may be
worthwhile treating separately because we get matrices of lower dimension than as for P.

Theorem 3.1"

Pe (I + T + + )- la( + )A rXl A(- + )) x(A( + + )- 1
e 4- T + + la( 4- )A rll e).

Proof: We use a decomposition of the path {St}0 > < P. as indicated in Figure 3.1.

Figure 3.1

Here w inf{t > O’Jt E E
and

}, so that w is phase-type with representation (h + +),e) w.r.t. Pi

4-)-1

Similarly, an operational time argument ([8]) shows that Sw is phase-type with representation
(T + +), e), and that

Pi(Sw dx, gw j) eeT( + + )XT( + -)ejdx (3.1)

(note incidentally that this easily leads to (2.4)).
The post-w path can be split up into two types of intervals, the first being intervals where

{St}t > 0 is a relative minimum and the second being sub-busy cycles (two on Figure 3.1; marked
by bold lines on the time axis). Lct the total lengths of intervals of the two types be wl. w2. If

J- j,S- x, the values of {Jr} observed on the Wl-segment are distributed as
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{J-(-u)}0 < u<
starting from Jr_ (0) J" Hence, the expected time in state k E E on the Wl-segment is

x

[Fl;j,k(x e,eU(- )ye.
k. Irk

’dy"
0

In particular, using (3.1) and (2.4), we get

EiCl; Jw, k(Sw)
1 dy

Summing over k, we get

eT(+ +)-leT(+ +)UT(+-)eU(-)ye
k [rkldy

0

1-eT(+ + 111(+ -)ek" Irk I"

FiWl eT( + + )- la( + )A 1 e.

Now when Jt- k on the Wl-segment a sub-busy period of type t E E+
Hence

occurs at rate $kl"

kEE_ EE+

eT + +)-lo A- -)A [-rll A(- + )P e.

Noting that EiP -[i(w + CO -]-02) collecting terms and rewriting in matrix notation, the result
follows by easy algebra. V!

Pmark 3.2: In [9], a somewhat similar argument is carried out in branching process
language. As was kindly pointed out by Dr. S. Grishechkin, the process in question is not a

branching process in the strict sense (some of the required independencies fail). However, the

argument for expected values is correct. V1

Now consider the more general case of P.

Theorem 3.3:

0 Ar- 1A( + + )P + At-- 1( + + p t i-rll A + PA rll A + )a( +

+ a( + )A i-ll A(- + )P + a( + )A rll.
Proofi We distinguish between the possibilities that {Jr} has a state transition in [O, dt/ri),

to k (say), or not. If k E in the first case, the busy period will terminate within time O(dt),
so that the contribution from this is O((dt)2) 0. If k E +, a sub-busy period starts from k
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and coincides with Pi up to O(dt) terms.
transitions in [O, dt/ri) is

Thus, the total contribution to ij from state

AI=
kE+,k#i

In the second case, there are three contributions: the one A2 from the initial segment; the
one A3 from the sub-busy period starting from at time dt/r in level Vdt/r :dt and ending at
the next downcrossing of level dr; and the one Ar from the final segment ater this downcrossing.
The length of the initial segment is dt/ri, and up to O((dt)2) terms, it provides a contribution if
the sub-busy period ends in state j; thus A2 dt/ri. a!? -). Let k E E_ denote the state in
which level dt is downcrossed by the sub-busy period. If k - j, a contribution to A3 can occur in
two ways, either by a transition to j before time dt/Irkl or by a jump to some E E+, in
which case the following (second) sub-busy period must terminate in state j which occurs w.p.
a(+ -) This second possibility also occurs if k- j, but then there is in addition a contribution
from the event that no transition out of j occurs before time dt/rj] after the downcrossing
which occurs w.p. 1- 2jdt/[rj]. Thus

k d -)+ij 1- dek5 dt + ik
rk

A3
keE_,k#j keE_,geE+

Aky
tit+ ik

rkkE_
Finally, decomposing A4 as a contribution from a second sub-busy period and a passage to level 0
without state transitions yields

Irk dtgj +a!? -) 1 dt

Writing

ij A1 + 1 -dt (A2 + A3 d- A4),

subtracting ij from both sides and dividing by dr, we get

Absorbing the fifth term into the first sum as the k- term and rewriting in matrix notation,
the result follows.

Note that the matrix identity in Theorem 3.3 is of dimension E + x E_ and depends linearly
on the elements Pij of , so that indeed we have E+ x E_ unknowns and as many linear
equations.

Define the busy cycle C starting from J0 i, V0 S0 0 as
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C inf{t > Pi’St > 0} inf{t > Pi’Jt E E + }.

Proposition 3.4:

EiCi -iPi eit
+ )A )-

Proof: Obviously, the idle period Ci- Pi is phase-type with phase generator A(--). The

initial vector is the distribution of Jp., which is just a!.+ ). Thus, the results follow from general
distributions. I-1formulas for the mean of phase-type

The busy cycles Ci are not regenerative for {(Vt, Jt) } but semi-regenerative. A proper
regenerative cycle C is defined by fixing E E+ and adding up cycles until a second cycle of
type occurs. That is,

C inf{t > 0:V O,J i}.

Proposition 3.5:

where

For E +,

r/d= EieE_,/ceE+’i(1--!+. -)e)i"
(3"3/

Proofi Consider the E +-valued discrete-time Markov chain obtained by observing {Jr} just
after the beginning of busy cycles, and let t/-(rlj)j ft. E denote its stationary distribution.
Then (3.2) holds by general results on semi-regenerative pr-cess ([5], p. 2281, so we only have to
verify the asserted expression for r/j. But consider a large time interval [0, T]. Conditioning upon
the state G E_ of {J,} just before a busy cycle starts from j G E+ shows that the expected
number of such. cycles is

lEE_ o lEE_

of. (2.1). ttence the proportion of busy cycles starting from j among all busy cycles is

approximately given by (3.31, and from this the result follows by letting T--,cx (the argument is

essentially "conditional PASTA", cf. [18]).

4. Change of Measure via Exponential Families

4.1 Monents and Cumulants

We first introduce a suitable matrix generalization of the m.g.f. Define F as the measure-

valued matrix with ijth entry Ft[i,j;x] Pi[St < x;J -j], and [et[s as the matrix with ijth
sS

entry t[i, j; s]- Ei[e ;Jr j] (thus, F[s] may bc viewed as the matrix m.g.f, of F defined by
cntrywisc integration). Let further K[s] h + sAr.

Proposition 4.1 ([8])" t[s]- ctK[s].
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Since obviously Ft[s is strictly positive (and defined for all real s), it follows that K[s] has a
simple and unique eigenvalue x(s) with maximal real part, such that the corresponding left and
right eigenvectors t,(s’), h(s) may be taken with strictly positive components. We. shall use the
normalization r,(S)e r,(S)h(s) 1. Note that since K[0] = A, we have t() r, h(0) e.

The following result, which is proved in the Appendix, shows that the function n(s) plays the
role of an appropriate generalization of the cumulant g.f. as well as it shows how to compute the
asymptotic mean and variance directly from the model parameters. Its origin is results for
discrete-time Markov additive processes obtained by Keilson & Wishart [29], [30]; similar results
for Markov-modulated M/G/1 queues are in Asmussen [6].

Theorem 4.2: The function n(s) is strictly convex with

Furthermore

tim x’(s) max ri,s--,oo E +

’(0) lira EiSt

lira g’(s) rain ri.s---,-oo E E

,Are-- riri, (4.1)
lEE

VariSt"(O) lira 2’(0)2 2rArDAre (4.2)

where D is the matrix (A-er)- 1.
The function g(s) is finite for all O, has x’(0) < 0 (cf. (1.1), (4.1)) and converges to cxz as scxz.

In particular, a 7 > 0 with t(7 -0, a 7o > 0 with ’(7o)- 0 and (for y > 1/ max E /ri) an

(u > 7o with a’(cu) - exist, see Figure 4.1. Since 7 plays a special role, we write h- h(w).

Proposition 4.3: Let 0 be fixed.
{est- ta()ht)}t > o is a martingale.

Figure 4.1

Then for any i, t,F_ieStht) et’()h!O) In particular,

Proof: For the first assertion, just note that
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iFieOSthlOt) e,t[O] h(O) eetK[O]h(O eet,(O)h(O) t,,(o) , (o)
I

Letting t cr(Jv, St’O < v < t), it then follows that

E[eSt + v- (t + v)(O)hrOt)+ it]_ eost_ tn(o)E[eo(st + v-st)- v*()hlOt)v +v
o, :,

It follows from the below results (e.g. Theorem 5.1) that a large value of h can be interpreted
as being a state such that starting from Jo i, {Vt} grows rapidly in its initial phase (before
{Jr} reaches equilibrium).

For the time-reversed process {(t, Yt)},:- AIK’A=. From this it follows easily that

n (in particular, 7, 70, etc. remain the same), whereas h’A=, A.U u’. A large value

of h can be interpreted as being a state for which Jt is likely to occur for large values of Vt,
cf. e.g. Corollary 4.7 and Theorem 7.1 below.

4.2 Likelihood Ratio Identities

We now turn to the construction of an exponential family of fluid models, such that the 0
member has a changed intensity matrix A(0)- (A!))i,j e E, but is otherwise unchanged (in

particular, the r are the same), and that the case 0- 0 corresponds to the given process, i.e.

^(0)- ^.

The relevant choice turns out to be

That is,

A(0)- A)K[O]Ah(o)- (0)I- A/)AAh(o)+ OAr

Aij--- 7 j
(o) h,ij

"ii + Ori- x(O) j

Proposition 4.4: A(0) is an intensity matrix,.

 !O h!Ol ;ol.e. A(0).
The stationary distribution r(0) is given by

Proof." Since the off-diagonal elements are non-negative, it suffices to verify A(0)e- 0. But

A(O)e A)(K[O]-

Similarly, the components of u(O)A non-negative, sum to one in view of v()h(0) 1 and

we have
h(O) are
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(O)Ah(o)A(O) (0)Ah(O)Ah,v)(K[O (O)I)Ah(O
)(K[O]- ,(o))

((0)t- (0))() o.
The idea behind the likelihood ratio method is basically to change the mean drift

lEE
of {St} from negative to positive values, thereby giving rare events like { + (u)} P0, i-probability
one. The following result shows that this is attained for 0 70" Let 0() denote the cumulant
g.f. for the P0,/-process.

Proition 4.5: (a) 0() ( + 0)- (0);
() s,’(O)o,c..

Prf: Obviously,

aST exp{T(h(O) + aAr)}(0, i[e JT J])i, j e E

A)exp{T(A + (a + O)Ar x(O)l)}Ah(O)
= - r(0)a)p[ + 0Jan(0),

from which (a) follows. Differentiating w.r.t, c and letting c- 0 yields (b).
Now let Po, be the governing probability measure for the fluid model which is governed by

A(0) and the r and has initial environment J0 i. In the Appendix, we show the following
likelihood ratio identity, which is our fundamental tool in the following. Its origin is results for
discrete-time Markov additive processes obtained by Bellman [12], Tweedie [41] and Miner [32]; a
similar identity for Markov-modulated M/G/1 queues is exploited in Asmussen [6] (cf. also
Asmussen & Rolski [10]). For a survey of the likelihood ratio method for simple queues and
random walks, see [5] Ch. XII.

Proposition 4.6: Let r be any stopping time and let G E r,G C_ {r < oc}. Then

p{ os + (0)}; a1.PiG P0; G h!)ff:o,

Here is a first quick application of the likelihood ratio method. For.each 0, define

(4.3)

1

hO)
C_ (O)

maxj elE +hO) C + (O)
minj e E +

and similarly for C + (0), C + (0). Then"

!) ()-Corollary4.7: ’(7)C (7)e 7u<p(V>u d-i)<ii,i +
Prf: Applying (4.3) (in its time-reversed version) with r + (u), G { + (u) < },

and noting that $7 (u) u by the skip-free property, (2.9) yields

P(V > u, J i) iPi( + (u) < ) i)e-U[o,i eo)
+ (u)(o). (4.4)
J

Letting 0 (so that (0) 0) yields + ()
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(Y > u, J i) 7rihie "uE.;,
= +

(4.5)

From this the corollary follows by trivial estimates, l-!

Compared to the exact solutions in the literature, the advantage of Corollary 4.7 is of course
that less computations are required. For example, we can compute (/9) by Elsner’s algorithm
([33]) which automatically gives us also h(0). In queueing theory, corresponding inequalities for
the GI/G/1 queue have been derived by Kingman and Ross (see, e.g., the survey in Stoyan [37]).

In fact, the argument in the proof of Corollary 4.7 can be strengthened to show that
P(V > u,J i) is asymptotically exponential. This fact follows of course from the phase-type
form of (Y > u,J i)(see [33]), but we shall give the result anyway since the proof is short,
given some auxiliary results (that are needed below for other purposes) and since the form of the
constants which come out in this way is more suitable for comparison with other results of the
paper.

We first need to introduce the matrix U + )(/9), defined as U(+) but with the Pi replaced by

the D0; (similar notation like a( + -)(/9) etc. is used in the following).((When/9 70, U( + )(/9) is a

proper intensity matrix and thus has a unique stationary distribution + )(/9).
Lemma 4.8: (a) U + )(7) A- 1U( + )A

h + 71, a + )(7) A- I-a( + )Ah;

< I )/r(’)Are. (4.6)(b) (( + )(7) r()A
a(_ +)

eeU( + )(’)Uej ;i(Jv J)+()

-c-Ei[e + .j j]- + (’)

h.
u U + + /I)ue

h

which implies the asserted expression for U(+)(7). Similarly

hj hj,(+ _)

From the Wiener-Hopf identity (2.6) and 7r(’)h(7)- 0, we obtain

()h c,(- + )(7) o v(-)(7)

From this it follows that the r.h.s, of (4.6) is indeed a left eigenvector of U + )(7) corresponding
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to the eigenvalue 0. Thus the result follows from

r(’r)A,,e

(using that et + )e e).

the result follows.

Corollary 4.9: P(V > u,J 1) rii’De-Tu uoc, where ) ( + )(7)Xh- le.
0)Proof: By (4.5), the result holds with D- limu_oE.r, il / ~ (u); the limit exists because

r4.

(u)} is an irreducible Markov process. Since the limiting stationary distribution is (+)(7),
4-

5. Cycle Maxima and Rare Events

The distribution of the cycle maximum

Mv(Pi) sup V sup S
o<t<P o<t<P

is of interest for a variety of reasons: if x is the buffer size, P(Mv(Pi) > x) can be interpreted as

the probability of buffer overflow within a busy cycle; and the set of Pi-distributions of Mv(Pi)
lead to the extreme value behavior of {Vt} as explained below.

Note that the Pi-distributions of Mv(Pi) is only non-trivial for E E+ (if u E E
Pi(Mv(Pi) 0) 1). Our main result on the cycle maximum is the following"

then

Theorem 5.1: For E +,

ei(Mv(Pi) > u) Dchie-u, (5.1)

where

DC (1 A- 10( 4- )h) 4- )(’),)h- le.

Proof: In just the same way as in (4.4), we have

ei(Mv(Pi) > u)- ei(v + (u) <

+ ()
hiE.r; r + (u) < PihJr + (u)

hie + (u) < Pi]"ruE;i hJr + (u)

hie- 1 ,]P i(Pi- cx3)3’UEn; hj "Y;

+ ()
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using ’.; i(" + (u)--oc) 1
expression

in the last step. Thus the result follows with the preliminary

DC P.; i(Pi cx) ulLrn_.; il.hjr
for DC. But by Lemma 4.8,

P.; i(Pi < cx) er + )(7)e A- 10( -4- )Abe A- 1( + )h,

and as in the proof of Corollary 4.9, the limit in (5.2)is (:( + )(7)A/ le. I"l

The study of cycle maxima in queueing theory was initiated by Takcs [40], who found the
exact distribution for the M/G/1 queue (for a simple proof of his result, see Asmussen & Perry
[9]). For fluid models, one can as in [9] find a representation of the exact distribution of My(Pi)
in terms of the lifetime of a non-homogeneous Markov process,)the time-dependent intensities of
which can be expressed in terms of the matrices (- + ), (+ U(-), but we shall not give the
details.

The GI/G/1 analog of Theorem 5.1 was obtained by Iglehart [24] and extended to more

general queues in [9].
We shall not apply Theorem 5.1 to rare events analysis. To this end, we need first to

translate Theorem 5.1 into a similar statement on the maximum Mv(C) of {Vt} within the
regenerate cycle C defined in Section 3.

Lemma 5.2: Pi(Mv(C) > u) ne- 7u, where

D rl Z ,jhj.
jEE +

Proof: Use Theorem 5.1 and [9], Proposition 10.1.

Now let 7v(U inf{t > 0: V >_ u} be the first occurrence of the rare event {V _> u}.

Corollary 5.3: As u-oc, e-Uv(U) is asymptotically exponential with rate parameter
*Di. That is, for all x >_ 0 and all j E E,

>

Proof: This follows immediately from Lemma 5.2 and standard results on rare events in rege-
nerative processes (e.g. Gnedenko

Next consider the extreme value My(T).
Corollary 5.4: As T ,

j E + rljDchj --H,7Mv(T logT log
J
_
E + rljlvjej

where H has the extreme value distribution P(H <_ x)-e
--x

Proof: By Lemma 5.2 and [9], Corollary 10.1.

Note that (by general regenerative processes theory) Corollaries 5.3, 5.4 hold for arbitrary

starting values J0- i, V0 x.
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The GI/G/1 version of Corollary 5.4 was proved in [24] and extended to more general queues
in [9].

6. Conditioned Limit Theorems. Quick Simulation

For the process {Vt} to reach level u within the busy cycle, it must have behaved atypical
because of the negative mean drift condition (1.1). Thus one may ask what more precisely this
atypical behavior looks like. The following theorem tells that the answer is "like if the intensities
were switched from A to A(7)". To make this precise, define

Nkj(u)- E I(J -k,J- j), Nk(U E Nkj(u)’ N(u)- E Nk(u)’
< r +(u) j:/:k ke E

+ (u)

Tk(u)- / I(Jt- k)dt.
0

Thus, e.g., Tk(U is the time spent in state k before v + (u), Nkj(U is the number of jumps from
k to j, and Nkj(u)/Tk(u is the average rate of such jumps.

Theorem 6.1" The following convergences all hold in Pi(. Iv + (u) < Pi)-probability:

(a) Tk(U)/r + (u)---+r);
(b) Nkj(u)/Nk(U)---,,k;.)/’);
(c) gkj(u)/Tk(u)---,A.);
() Uo <, < o r()(*)- (1--)*)1-o, r()(.) , mca

distribution of the holding times of state k prior to 7- + (u);

Lr+(u)/TJ
[r + (u)/Tjl n= 1

P({gt}(n- 1)T _< _< nT)"+-3,; .(,)({gt)0 _< _< T),

where (. is a measurable functional DE[O, T]---,R;

(f) 7" + (u)/u---*l/g’(7).

For the proof, we need a lemma:

a P.y;i-a.s. as u-+cxLemma 6.2: Let (u) be a r+ (u) measurable r.v. such that (u) __a_.

fo om oa a. T [[() + (u) < P]-a,

+()
Ei[(u);v+(u)<Pi]-hiE; qt(u)e hJ

;v + (u) < Pi- + (’)

hie- UE’y; [hJr + (u)
;v + (u) <
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hie uET; hjr
+ ()

,, aPi(v + (u) <

(cf. the proof of Theorem 5.1 for the last step). El

Proof of Theorem 6.1" Assertions (a)-(e) follow by easy combinations of Lemma 6.2 and the
law of large numbers for Markov processes. E.g.,

E I(Jt- k,J- j)
t<T

T
f I(J lc)dt
o

Thus letting T v + (u), (u) I(INkj(u)/Tk(u))- ") > ), the assumptions of Lemma 6.2
are satisfied with a 0, and (c) follows.

For (f), let similarly t(u) I(Ir + (u)/u- 1/g’(7) > e), and appeal to Lemma 7.2 below. El

Theorem 6.1 may be seen as an analog of GI/G/1 results of Asmussen [4] (see in particular
Theorem 5.1 of that paper). See also Anantharam [1].

The result has implications for quick simulation. Assume we want to estimate the
probability Pi(v + (u)< Pi) of buffer overflow within a busy cycle by simulation. The crude
Monte Carlo method has the typical problem of rare events simulation (a low relative precision so

that an excessive number of replications is needed), and thus we may want to speed up the
simulation by a change of measure. Formally, the simulation can be seen as picking a point at
random from the probability space ([2,,), where [2 is the set of all sample paths
{(Jt, Vt)}o<_t<_ r+ (u) APi,

ff the obvious r-field and F the restriction of Pi to (,ff). The

change of measure amounts to simulating from a different P, i.e. to use importance sampling,
and by general results from that area, the optimal P is given by Fi(" v + (u) < Pi)" This choice
is not practicable, one among many reasons being that the likelihood ratio involves the unknown
probability i(- + (u) < Pi)" However, by Theorem 6.1

Pi(" ’+ (u) < Pi) " PT;i(" Iv + (u) < Pi),

which suggests to simulate simply from PT;i; the transition from PT;i(.
involves no asymptotic loss of efficiency since the PT;i-probability of the conditioning event

{r + (u) < Pi} has a strictly positive limit (viz., P.i(Pi oe)), in contrast to what is the case for

[Pi"
The corresponding simulation estimator is

e "yu hi
hj I(’+(u)<Pi)"
+()

Obviously, its PT;i-variance is O(e- 27u), i.e. of the same order of magnitude as Pi(r + (u) < Pi)2

(this is roughly the optimality criterion used in Chang et al. [15]).

Estimation of the steady-state probability IP(V > u,d -i) can be carried out, in a similar way

by simulating {(Jt, oct)} from PT;i and using the estimator
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e-TU 7rihi
h~
J" (u)r+

cf. (2.8). There is a straightforward analog of Theorem 6.1 for that settgtoo. When estimating
P(VT > u,JT -i), the results of the next section suggest to simulate {(Jr, St)) from Fu;i where
y-T/u.

Note that the approach to rare events simulation is most of the literature (e.g. Bucklew, Ney
& Sadowski [14], Parekh Walrand [34] and Cottrell, Fort & Malgouyres [17]) takes a somewhat
different approach via the general theory of large deviations. For fluid models, see in particular
Kesidis & Walrand [26].

7. Inequalities and Approximations for Transient Behavior

Define

For computational purposes, note that by Theorem 4.2 and Propositions 4.4, 4.5

’(.) :(0) (").-
"(.) 2(0) 2’(.) 2(")an(.)(^(.) .(")n(.))-.

Theorem 7.1: As

Pj(VT > u,JT i) rihi’ + )-le’e-/uo
T u/’(7)

h

in the sense that if T- T(u) varies with u in such a way that

y lira
T(u)- u/’(7)

exists, then (7.1)is rihi/rje-TU(y)/O(e-TU).
For the proof, we shall need some lemmas.

Lemma 7.2: For any 0 >_ 7o, it holds w.r.t. Po;i tha ’ + (u)lu a’s:-+llt’(O) and that

(7.1)

+ (u)- u/g’(O)N(O, 1). (7.2)

Proof: First note that {St} is a cumulative process with asymptotic mean and variance given
by Theorem 4.2. Hence by general results on cumulative processes ([5] pp. 136-137),

St a.s. ,g’(O),
S tt’(O)S(O, t"(Ol).
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Letting Y+ (u) in the first limit and noting that S~ (u) u yieldsr+
and (7.2) then follows by applying Anscombe’s theorem to the second limit. E]

Lemma 7.3: + (u) and J~ are asymptotically independent. That is,- + ()

Proof: Easy along the lines of the proof of Stam’s lemma in [5], pp. 271-272.

Lemma 7.4: Let ’() > 0 and assume that T u/g’(a) + zv//w. Then

+()

Proof: By (2.7),

j(VT > U, JT i)

e(y + (u) < T T J)

ri!a) -.s% +7 (.)a(.)r + (u) +

Now

3

Letting v- T-+ (u) and noting that v--,oe conditionally upon if~, + (u) (and
according to (7.2) (it follows that asymptotically (7.3) becomes

-.s% + (.)(.)
( + (u)

_
T)e * + (u) +

+(-)

(7.3)

+(u)<_T)
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7 ()(.)
au e +

+ ()

Proof of Theorem 7.1: Letting a 7 in Lemma 7.4 yields

Pj(VT < u,JT i) . rihie E.r; r + (u) <_ T

+(,,)

, rrihie 7Ulim E.7;u---}oo

hj,,
+ (u)

rihi( +)-le.e UO(y),
h

using Lemma 7.3 in the second step and the same estimate as in the proof of Corollary 4.9 in the
third.

From Theorem 7.1, we immediately obtain"

Corollary 7.5:

e(Vyu > u, Juu j) { 0 y < 1/’(7)
P(V > u,J- j)

+

1 y > 1/’(7)"

The implication of Corollary 7.5 is that if we are interested in valued in excess of u (say u is
the buffer size of an ATM model), then T u/g’(’y) plays a critical role as the time at which
P(VT > u) becomes of the same order of magnitude as for the steady state. We may be more
ambitious and ask for bounds or approximations on the convergence rate in Corollary 7.5. Define

a as the solution > 70 of n’(cu)- l/y, cf. Figure 4.1, and recall the definition of C+ (a) from
Section 4.

Theorem 7.6: Assume y > l/max E +ri and let 7y ay- yg(ay). Then

lira sup
Pj(Vyu > u’Juu i) ri ~Ia )C< h (c) (7.4)u-+o

e 7yu +

Proof: Consider first the case y < 1/g’(7). Then g(cu) > 0 (see Figure 4.1). By Lemma 7.4,

(7.5)

-yU + yu(Cy)
e.;i(r + _<
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rilu)C 1+(%) .,
using Lemma 7.2 in the last step.

Note that the condition y > 1/maxi6 E r is no restriction:

Vyu <_ u so that P(Vyu > u) O. +

Remark 7.7: Heuristically, we can sharpen (7.4) to the approximation

Writing

that

if y< l/max 6 E ri, then
+

rr h ( + ,, y"
"yyU

e;(v > ,-i) (1,,(,)
(.)

+ (u) yu + ul/2 V, where Y is normal (0,1) under P we get heuristically
Y Y

+ (u),C(ay
+ (u) <_ yu , e e aY V <_ 0

Y

yu(y) 1 / e

0

= e"() 1

-z

Inserting these estimates in (7.5) and noting that w2 ya"(cy), (7.6) follows.
Y

The main difficulty in making the proof precise is that one needs a sharpened version of the
CLT for - + (u) (basically a local CLT with remainder term). However, also (7.7) needs a more

rigorous proof.

If y is larger than the critical value 1/’(7), we can get a bound on the deviation from the
steady-state value:

Theorem 7.8: Assume y > 1/n’(7) and let a.u-ytc(Cty). Then

"()C ""0 P(V > u,J i)-P(Vyu > u, Juu -i) ihi + (ay)c (7.8)

Proof: Let j(u) Pj(M > u). Since g(Ty) < 0, (4.4) yields

() _< c + (,.)) -’’e

ttence by I)roposition 2.1
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e(v > ,,j -i)- e.(v > ,j i)

riei(M~ > u)- .=-e.(M~ (yu) > u,’uu =j)

j.E
j)- ei(M (yu) > u,

riZ ei(M~s > u,M (yu)_< u, "Juu, J)
j.E

j)}

(7.9)

riE ei(M > u,M (yu) <_ u, ,uu <- u, Juu J)
j_E

Non-negativity follows from (7.9).
The form of the above results originate from classical collective risk theory, a setting which is

mathematically equivalent to the M/G/1 queue. Thus Theorem 7.1 was proved in that
framework by Segerdahl [36], whereas Theorem 7.6 goes back to Gerber [21] (in the setting of
[21], Theorem 7.6 takes the form of an exact inequality) and (7.6) to Arfwedson [3]. The present
proof appears to use less information than is inherent in the definition of cu, 7u. However, as in
[21] this definition will produce the maximal 7y for which the argument works. The idea behind
the choice of cy is essentially the saddlepoint method, to make Ea ’ (u) ’ T yu.

y;" +
Here is an estimate of the rate of convergence to the steady state which is different from (7.8)

by fixing u and letting only T--oc.

Theorem 7.9: Let 70 > 0 satisfy ’(7o) 0 and let 5 e(7). Then

o < e(v > J i)- e.(vr > ,Jr i) < l’o)c (o)-’" (7.10)

Proof: Replace ay by 70 and yu by T in the proof of Theorem 7.8. V1

The aI/a/1 version of Theorem 7.9 is due to gooko [3]. we conjecture that the
condition of stationary initial conditions for {Jr} is not critical for the rates in Theorem 7.8, 7.9
and that (of. standard relaxation time results for simple queues, e.g. [5], pp. 95, 262-262) the
correct rate of convergence in Theorem 7.9 is T/T3/2.

Note that (7.10) can be seen as a limiting case of (7.4) (except for the constant 1/2 there).
Indeed, if we write T yu with u fixed, we have y-oc which implies cyl70 and

e 7’. 6T e 7u + uu,(70) ,, e
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8. Some Exact Formulas

We first compute the Laplace transform of the busy period.

TheoremS.l: For E E + ,j E E_ and c >_ n(To),

where 0 O(c) is the unique solution <_ 70 of (0) c. If a < X(7o) then

-(PiE e ;JPi j

(8.1)

Proof: Since n(0) increases monotonically from (70) to oe as 0 decreases from 70 to -c,
the existence and uniqueness of 0 is clear, and we get

j] h!) + (O)Pi- aP
;JPi

h!) h!)+

using SPi 0. If a x(3/0) , then similarly

aP (0) [ e_Pi Jl"
However, some easy irreducibility arguments show that since n’(7o)- O, we have _.o;iPi-c
(otherwise, the P’0; .-process would be positive recurrent) and hence -.o;i e ;JPi

V1

Now consider the time r_ (u) for the system to empty starting from V0 u > 0.

Corollary 8.2: If c, 0 are as in Theorem 8.1, then for i, j E_

Ei[e ’r (u);Jr (u) Jl-
h() -(- )(o)eOueO ej G E_

h!) _o v(-
(8.2)

If c< (7o), then Ei[e -at- (u); jr_(u) Jl- oe.

Proof: As in the proof of Theorem 8.1, it follows from St_ (u) u that

-c (u); J -o e r_ J-_(u)- JEie J_ () -(-.o5
3
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h!O) Ou j).

That o;i(Jr_ (u) J) has the asserted form is obvious. The case a < (70) is treated as above.El

The difficulty in applying Theorem 8.a and Corollary 8.2 is that the explicit form of
0- x-l(a)is complicated, and that the matrices a!- +) (0) and U(-)(0) do not appear to
reduce (except for the case 0- 7, cf. Lemma 4.8); see however, the next section for a simple
example. However, the less ambitious goal of computing the mean of v_ (u) is attainable by a
direct argument. Note that for u-0, this has already been carried out in Section 3 by
computing the matrix P.

Define M(-)(u):E_ E_ as the matrix with ijthe element [i[r_ (_u);Jr_ (u) J] an.d
M + )(u): E + x E as the matrix with ijth element Ei[r (u); Jr (u) J]" Note that it is easily
seen that asymptotically

The following result gives an exact expression incorporating also information on the Jr
component.

Proposition 8.3:
U

0

M + )(u) peU( -)u + a + -)M -)(u) (8.4)

Here M )’(0) A Frl[
Proof: Consider first M(-)(u). We decompose r_ (u + v) as r_ (u)+ r*_ (v), where r*_ (v)

has the same distribution as r_ (v), only started from Jr_ (u) rather than i. Given Jr_ (u) k,

the condition probability of Jr_ (u + v) j is e’ke
U(-)v

ej, and the conditional expectation of

eu(- ),r*_ (v)I(Jr_ (u + v) J is e’kM(v)ej. Since the Fi-distribution of Jr_ (u) is we obtain

M(u + v) M(u)eUv + eUUM(v).

This leads to M )’(u)- M -)(u)U + eUuM(-)(0) and the solution of this differential equation
subject to the obvious boundary condition M -)(0)- 0 is indeed (8.4). Furthermore,

du idu ) du 5ij+ E ,ikdu j]

which immediately leads ot the asserted expression for M(-)’(O). Finally for M(+)(u) and
E E+, we decompose r_ (u) as Pi + r*__ (u), where r*__ (u) has the same distribution as r_ (u)

stated from Jpi. Given gpi k, the conditional probability of Jr (u) J is e’eU( )Uej, and

the conditional expectation of r*__ (u)I(J._ (u)= J is e’M(u)ej. From this the asserted formula

du Sij + E ikdu
Iril keE+
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easily follows.

Corollary 8.4: In terms of the diagonal form (2.5),

lEE_ i, jEE_

whe fij liM(- )’re (O)rj.
Proof: By straightforward integration.

csi
u

,i#j

siu )sifiJ .riIj,8
3

9. An Example

Consider a two-state fluid flow model with E + {1},E --{2},

A- r- i.e., K[s]-
1 1 -2 1 1-2s

In particular, r- (1/2 1/2)and the mean drift is

1t’(O) 7fir1 + 7r2r2 2"

Note that any two-state model is automatically time reversible so that h h etc.

The characteristic polynomial of K[s] is z2 + z(s + 2)+ s 2s2. Thus, g(s) is the largest root,

s- 2 + V/9s2 +4
2

From this it is readily seen that at the positive right eigenvector h(0) of K[O] corresponding to the
eigenvalue n(0) can be taken as

h(0) c c /,,, (9.5)
1 0 + (0) vu2 + 4

2

and that the solution 3’ > 0 of n(7) 0 is 7 1/2. In particular,

and C + (0) C

from this we obtain

h- h() c
1

(0) 1/c. Thus in this case, Corollary 4.7 is exact and takes the form

P(V > u,J- i)-
1/2 e -u/2

-u12
(9.6)

0
[P(V O,J i) ri- [P’(V > O,J --i)
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It is also easily checked that the constants in (9.6) coincide with those of Corollary 4.9, so that
the approximations there are exact as well.

Theorem 3.2 yields the mean busy period [1P1 as

14-1/2=3P 12 1- 1/2
Alternatively, the same result follows by Theorem 3.3 which takes the form.

P12. P12. P12 10 12 d- 1 --+-- +---- + .
Since the idle period is exponential with mean 1, we get E1C1 -EIC 3-4- 1 4.

In Sections 5-6,

DC 1/2 1 1
"-d, D1 DC" c -.

Thus Theorem 5.1 yields the asymptotic tail of the cycle maximum Mv(P1) as

e(Mv(Pa) > u) 1/2e -’/.
Note, incidentally, that for this simple example the exact distribution of Mv(P1) is easily
obtained: a sample path inspection shows that it is the same as the distribution of the cycle
maximum of the virtual waiting time of a M/M/1 queue with service rate 1/r1 1 and arrival
rate 1/r2 1/2, so that ([9], Corollary 2.1 or Theorem 3.1)

[PI(Mv(P1) > u)- e-u
2(1-e-u/2/2)"

By Corollary 5.3, the time 7"y(U of the first occurrence of the rare event {Y > u} is
asymptotically exponential,

Also, Corollary 5.4 takes the form

1/2Mv(T logT -4- log8 --H,
which shows that the maximal value Mv(T of {Vt} in the time interval is of the order of
magnitude 21ogT; more precisely

P(Mv(T < 21ogT + x) e- e- x/2/s.
Finally, the changed measure P;. occurring in the conditioned limit theorems and the quick
simulation schemes is described by the changed intensity matrix

1 1

I.e., as expected, the sojourns in state 1 are longer and those in state 2 shorter.

In Section 7, we get first
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9a 18’() + "()
2V/9c2 + 4 (9c2 -t- 4)3/2.

In particular, n’(7 2/5 so that the critical time for (VT > u,JT i) to reach its steady-state
value (V > u,J- i)is approximately 5u/2 when u is large. For T- 5u/2 + O(), Theorem
7.1 yields the approximation

3X
i-1

P(VT > u, Jt-i)

(calculating w2 as 18). To exemplify (7.4) and (7.6), let y- 2. Then n’(au)- 1/y yields

Thus (7.4) yields the approximate upper bounds

e -(2- 2r/3) (i 1), 1

for F(V2u > u, J2u-- i) and (7.6) the approximations

-(2 2V/-/3)u (i 2)

(i 2).

For Theorem 7.9, n’(70) 0 yields

70 z so that n(70) 3X/
1, c 1

and an upper bound on the rate at which Pr(VT > u, JT i) approaches the steady-state value
asT is

1 -u/3y/.(e4/3V/--l)T1/2e u/3k// (e4/3V/ 1)T (i- 1), 2v/e (i- 2).

Finally consider the results of Section 8. For a given c the solution 0--0(c) of n(0)= c is

seen after some algebra to be one of the roots of 202 -0(c + 1) -a2 2c, i.e.

c + 1 V/9(2 + 18c + 1

(the sign of X/U is because 0----xz as c---cz). Using the first expression for h() in (9.5)
yields

hO)
4 (9.7)

hO) 3 + 3- + 9-2 + 18. + 1

Since U -)(0)- 0 for 0 <_ 70, it follows that
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h(o) f_(u) _-o)eXpl-(v/92/18/1-l-)u},4
{_2e r (U) exp 4 u

in particular, letting u =0 yields the Laplace transform of the busy period as (9.7). In

Proposition 8.3, M(-)’ -1/2+1/2.3-2, and we get M )(u)--2r_(u)-2u (thus, in this

case (8.3) is exact) and M + )(u) $-1r- (u) 3 + 2u.

10. Appendix: Miscellaneous Proofs

Proof of Theorem 4.2: The strict convexity follows from [27] by noting that et(s) may be
viewed as the Perron-Frobenious root of F[s] for some fixed t. For s large, sAr dominates h so
that (s) s max e E + ri and ’(s) max E E + ri; the behavior at -c is obtained in a

similar way.

Differentiating u(S)K[s]- (s)u(s) w.r.t, s and omitting the argument s for brevity yields

(10.1)

"t, + 2’v’ + t," v"K + 2t/Ar. (10.2)

From ve =- 1 it follows that u’e u"e _= 0. Thus letting s 0 in (10.1) and multiplying by
e, we get

’(0) + 0 0 + rXe r;
iEE

that this is lirntooSt/t follows by the law of large numbers for Markov processes, and the proof
of (4.1) is complete.

For (4.2), we get similarly from (10.2)

"(0) 2v’(O)Are.

Letting s 0 in (10.1) and using (h er) yields

’(0)(A- ) ’(0) (0)^ +a (0)(^- ,) + x,
v’ ’(O)r rArD

and the proof of (4.2) is complete. The identification in terms of the limiting variance can be
obtained by appealing to discrete-time results of Keilson & Wishart [29], [30] and the method of
discrete skeletons.

Proof of Proposition 4.6: Let 0 be fixed and define

LT h--oo.eXp{OST- T(O)}.
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Then inspecting the explicit form of LT shows that {LT} is a multiplicative functional of
{(Jr, St)}. Since it is also a martingale w.r.t. Pi (Proposition 4.3), it follows by general Markov
process theory ([31]) that there exist governing probabilities 0;i, w.r.t, which {(Jr, St)} is a time-
homogeneous Markov process and

PO; i(G) Ei[LT; a], a T"
Also, {lILT} is a multiplicative functional and a martingale w.r.t. P o;i, from which it follows in
particular that

1- 1:O;i Ir rr on {v _< T}. (10.3)

To see that Po;i- o;i, it suffices to consider the one-dimensional transition function or

equivalently the matrix m.g.f., i.e to show that

g-o; ke JT J
i, jeE

But the 1.h.s. is

E0;iLe ;JT- J (10.4)
i, jEE

T(O)A lh(O)[ce + O,Aa(o),l
which is the same as the r.h.s., el. the proof of Proposition 4.5.

It follows that for G E 5T,

e0; LLr
In particular, if G r,G {7 T}, we have G T and get

EO; i[I(G)Eo; [-

using (10.3). Now consider a general G E r" Then GT G G {r <_ T} satisfies GT r,
GT g {r _< T}. Thus, according to what has just been proved, (4.3) holds with G replaced by
GT. Letting Ttoc and using monotone convergence then shows that (4.3) holds for G as well.
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