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ABSTRACT

Identities between first-passage or last-exit probabilities and unrestricted tran-
sition probabilities that hold for left- or right-continuous lattice-valued random
walks form the basis of an intuitively based approximation that is demonstrated
by computation to hold for certain random walks without either the left- or
right-continuity properties. The argument centers on the use of ladder variables;
the identities are known to hold asymptotically from work of Iglehart leading to
Brownian meanders.
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1. Introduction

In Daley and Servi [1] some computations of conditional probabilities of a lattice-valued
random walk arising from investigating the busy period in certain queueing models suggested
that, in the contexts considered there, the approximation

oPoj (- ,0]P0j R_Poj -gPoj (j 1,2,...) (1.1)

of the last-exit probability of a random walk {Xn:n 0, 1,...} on {0, + 1,...} with X0 0, is a

reasonable one, for n not too small and some constant c that depends on the step-length
distribution of the particular random walk. This note states more clearly the nature of the

1Work begun while visiting lcole Polytchnique Fdrale de Lausanne and completed
with support from GTE Laboratories Incorporated.
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approximation in terms of ladder variables, studies it more fully for the last-exit probabilities
considered in that previous paper, and also studies a similar approximation for a first-passage
probability for which the heuristic justification is less appealing. Section 4 provides another
probabilistic interpretation for c, and thereby relates c to asymptotic results due to Spitzer [5].

The approximation is also suggested by limit results. Closer inspection of Iglehart [4] than
noted in [1] shows that (1.1) is consistent with asymptotic properties that he proved involving
Brownian meander. Specifically, he showed that under the assumption that the random walk has
zero mean and finite third absolute moment, the conditioned process underlying the taboo
probability on the left-hand side of (1.1) converges weakly to Brownian meander, while it is well
known (the local limit theorem for zero-mean lattice-valued random walk with finite third
moment) that the probability on the right-hand side converges (for n--cx and j-cx such that
j/v/---.y > 0) to a normal density function, so the limit of the right-hand side is proportional to
a density for Brownian meander.

2. Approximating Last-exit Probabihties

We study random walks {Xn} satisfying Xn -Xn_ 1 4" Yn (n- 1,2,...) for independent
identically distributed (i.i.d.) integer-valued random variables (r.v.s) Yn that are genuinely two-
sided so Pr{Yn < 0} > 0 and Pr{Yn > 0} > 0. We write

ai-Pr{Yn-i} (i- 0, +l,...). (2.1)

Feller’s ladder variable argument establishes that for right-continuous random walks (i.e.,
walks for which a 0 (i 2, 3,...)), the last-exit probabilities 0P0nj satisfy

oPj Pj (j 1,..., n; n 1, 2,...). (2.2)

In brief, for a sample path of n steps of a right-continuous random walk from 0 to j (j > 0) with
the walk always positive apart from its starting point, exactly j of the steps leave points that are

never revisited, and hence, exactly j of the n cycle permutations of the realized n steps have the
first step as a last-exit time from 0. We gave this argument in [1] as motivation for (1.1), and
suggested below (2.6) there that (1.1) is a reasonable approximation for any random walk, at
least for j and n not too small (inspection of its use in [1] shows that it appears reasonable, in the
sense of being used where it matters, for j O(v/)). We now exhibit the nature of the approxi-

n and the ratio of the two sides inmation in more detail than earlier, and later plot both oPoj
(.),

n / J n (2.3)ctj, n oPoj / "ffPoj,

for a particular non-trivial step-length distribution {ai} of interest.

Given any sample path with steps {Y1,’", Yn} leading to (Xo, Xn)- (0, j), with j > 0, there
is always at least one cyclic rearrangement of these n steps, {Ys + 1,’",Yn, Y1,’"’Ys}- {Y’I,’",
Yn} say, for which the resulting path {Xt} say, satisfies X’o Xo, X Xt- 1 A- Yt (t 1,..., n)
and which, apart from t- O, is always positive, i.e.,

X > X)- 0 (t- 1,...,n). (2.4)

For any such cyclic rearrangement there is a positive integer r in {1,. min(j, n)} characterized
as the number of last-exit epochs -0 < 2 <... < tr < n for which
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X ) X (all ) tu, each u- 1,..., r).
u

Y} are cyclically permuted by a shift tu, we again obtain a rearrangementIf now the (Y1,...,
satisfying (2.4) and, for a possibly different set of epochs, (2.5). Thus there are exactly r cyclic
permutations of the steps satisfying (2.4), and for any sample path with (Xo, Xn)- (O,j), this
positive integer r is a characteristic of the path. These are simple combinatorial facts that are
another way of saying that the set of all sample paths with (X0, Xn) (0, j) can be expressed as
the union of min(j, n) disjoint, albeit not necessarily nonempty, sets, characterized by the possible
numbers r 1,...,min(j, n) of ladder indices that can occur in the cyclic rearrangements. Write

r n; r
0j and oP0i for the probabilities associated with the sets of such sample paths, the former

being the set of all paths with r ladder indices, and the latter (taboo probabilities) with the paths
satisfying (2.5). Since these decompositions are mutually exclusive and exhaustive it follows that

min(j, n)
oPj O’Oj

r=l

and by Feller’s ladder variable argument,

min(j, n)
and Pojn E n; r

r=l

n;r r__n;r
oPoj "Poj (2.7)

Then min(j, n)
min(j, n) E (r/Jn;r

E Jg ,eoj Jnn r. _n;r_ r=l
oPoj POj min(j, n) - pOj

r=l _n;r
POj

r=l

j, n POj, o POj,

showing that 0 < cj, n < 1, with aj, n- 1 and equality here when both sides are positive if and
only if either j- 1 or the walk is right-continuous. It was suggested below (2.6) in [1] that these
quantities aj, n should be approximately independent of j and n for those pairs (j,n) for which

(j/n)po is not too far removed from its ’mode’, which should cover those cases occurring in
practice, when the distribution {ai} is unimodal. We now investigate this suggestion further by
computing aj, n" For a whole family of conjugate distributions

aiR (2.9)
j ajRj

indexed by R in 0 < R < oc, subject to the convergence of the sum in the denominator in (2.9),
this ratio is in fact independent of R (cf. below equation (4.10) in [1]). Choosing that R which

gives the distribution a zero mean optimizes the computation, though, being independent of R, it
is independent of whether the mean is zero or not. Later, where we use a local limit theorem, we

require that the particular conjugate distribution (with zero mean) be used, so we assume

hereafter that the one-step r.v.s Yr have zero mean.

n and the ratios Oj, n for the cases n- 10, 40Figure 1 plots both the taboo probabilities oPoj
in the case of the random walk with {a + i} equal to a Poisson distribution with mean 1 (this
corresponds to an M/D/1 queue with traffic intensity 1). The taboo probabilities have in fact
been multiplied by 4n so as both to make them of comparable size and to make it easier to see

the range of values of j where the bulk of the probability mass is located, namely, for values of j
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where cj, n a the limit of the ’average’ values

oPo
n j=a (2.10)Olav,

E (j/n)pj

(see the next paragraph); note the choice of scaling of the abscissae. The figure shows that for
such n the values of c_.,n in the region of the modal values of the taboo probability distributions
change relatively slowly (and also approximately linearly), centered (roughly speaking) on the
limiting value c, and that the mode for the distribution of the taboo probabilities occurs where

Note that, here and later, ’average’ values of ratios like Oj, n are computed using the
denominator like (j/n)pj as weights. This is equivalent to summing the numerators and
denominators of (2.3) and defining c’ve as at (2.10).

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

00

%
10

J.40

1 2 3 4 5 6 7
t/

oPrdJ and averageFigure 1. Rescaled taboo probabilities 0Pj, probability ratios cj, n (j/n)pj’
values O/ve for left-continuous random walk with Poisson distributed step lengths.

Equation (2.8) shows that jcj, n equals the average number of ladder steps between 0 and j,
i.e., oj, n ER’/j where R is the number of ascending ladder variables in the path of a random
walk that is at j after n steps starting from 0. If E(L) denotes the average length of ladder steps,
then the elementary renewal theorem, if applicable, would assert that ER j/E(L), and hence

oj, n , 1/E(L). (2.11)
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We return to this observation in Section 4.

3. Approximating First-passage Probabihties

We now study the first-passage probability

n _Pn" -Pr{X <0 Xr>0(r-1 n-1)[X0-j},(-o]Pj,(-oo,0] R ,R_ n-- ,’", (3.1)

p. is the probability that a first passage into the left half-line from j > 0 occurs ati.e., It 3,R_

time n. It was suggested in [1], with similar intuition as for (2.7), that the approximation

_pn. 3 n
R 3,R_ fl Pjo (3.2)

should be reasonable under (imprecisely described) conditions as before. Recall that for left-
_pn. ncontinuous random walks, (3.2) holds for - 1 with equality because then tt 3,R_ R_ PjO"

It is quickly apparent that the approximation suggested at (3.2) is more complex than (1.1).
To see this, write

pn.R 3,R E R 3, k; (3.3)
k-0

this shows that the target state(s) concerned at time u in (3.2) is a single state on the right-hand
side but, except for left-continuous walks, more than one state on the left-hand side. At the very
least then, we should be considering, not (3.2) but

_pn. pn. (3.4)R 3,R_ 7 3,R_

we study this numerically via the ratio

pn. / 4_ n (j 1, 2 n) (3.5)3/j,n R_ 3,R_ Pj, R_ "’"

which, by analogy with the property 0 < aj, n < 1, we might expect to satisfy 0 < 7j, n <- 1.

To examine whether 7j, n < 1 more generally than for left-continuous random walks, consider
first pino. For any sample path with (Xo, Xn) (j, 0), there is a characteristic number r of cyclic
rearrangements of the path for which the step to 0 at time n is a first passage into It_ from
X0 j. Then just as for (2.6), we have

and

min(j, n) min(j, n)
n E n;r n E _n;r (3.6)R_ Pjo R_ Pj0 and Pjo Pjo

r=l r=l

again as before, at (2.7),

n;r r n;r (r 1, min(j,n));R Pjo Pjo

min(j, n)

PJo j g Pjo 3, . Pjo
r=l

(3.7)

(3.8)

for 0</,n<_ 1.
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The range of diagrams that can emerge from plotting {13,n} and It_pino against j is exactly

the same as for the ratios {aj, n} and the last-exit probabilities oPoj as in Figure 1. To see this,

define for,., given n the random variables Yr Yn + 1 -r and Xr Xo + Y +... + Yr (r =
1,...,n), X0 being given. Then

and

Py"0 erIX 0IX0 j) PrIXn j lXo O)

PrIXn j lXo 0} Fj say, (3.9)

It_ pin0 Pr{Xn 0, Xr > 0 (r 1,...,n- 1) IXo j}

=PrIXn- -j,Xr> -j (r-1,...,n-1)}X0-0}

=Pr{Tn--J,n+l-r >0 (r --1,...,n--1) 0-0}-R_jsay. (3.10)
Then the ratio fl’. can equally arise from last-exit probabilities as asserted.

Now it is equally true that any sample path contributing to tt P,- k for any k in {0, 1,...},
has a first passage into It_ at its last step and at most j-1-downward first-passage steps
amongst the times 1,..., n-1. Denoting the number of these downward first-passage steps by r,
it need no longer be true, however, that all r cyclic permutations of steps that contribute to

-k say are simultaneously first passages into l_, because there is now the added requirement
that the last step be of length >_ 1 + k. Thus,

equivalently, for some 0 < fl" < 1j,n;k,r

"r ’! -z
J "r

R p,’" (r 1, min(j, n)).

Then,

(3.11a)

(3.11b)

oo min(j,n) __[ min(jn)fl --_- : k]pn. E E :R_ 3,R R p "r r "r

k --j,n;k,r jP
k=0 r=l k=0 r=l

min(j, n)
E fl’!3,n;k,r k
r-1

o min(j, n)

k=O r=l

j pn. pn.g :I,R_ 7j, n ,R_ (3.12)

for some 0 < 3’j, n < 1.

We conclude therefore that a first-passage probability analogue of the last-exit probability
approximation at (2.7) holds, albeit of the form (3.4).
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average values 7ayes for right-continuous random walk with Poisson distributed step lengths

pn. and the ratios "Tj, n for the casesFigure 2 plots both the taboo probabilities R_ 3,R_

n- 10, 40 in the case of a random walk with {a1 -i} (i- 1,0,- 1,...) a Poisson distribution
with mean 1 (this corresponds to a D/M/1 queue with traffic intensity 1). The taboo
probabilities are rescaled by 4n as for Figure 1, and the x-axis is similarly scaled. The comments
concerning cj, n there are applicable mutatis mutandis to 5’j,n here. The only features that
appear to us to be markedly different are firstly that the first-passage probabilities from 1 to R_
do not have a constant value for the ratio as for the last exit probabilities from 0 to 1, and
secondly that the ’average’ values

n j=l
7ave (3.13)

E (J/n)Pn.
j--1

vary with n much more than their c analogues.

Just as (j,n has an interpretation as the reciprocal of the average length of ascending ladders
steps (cf. equation (2.11)), equation (3.12) shows that J/j,n equals the mean number of

descending ladder epochs in a random walk starting from j and entering R_ for the first time

after n steps. The elementary renewal theorem now implies that 7j, n is approximately like the
reciprocal of the average length of descending ladder steps.

Recall that for first-passage probabilities of a random walk we can write a forwards Chap-
man-Kolmogorov equation, namely,
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_pn. n-1

i=0 k=l =0

, R_pjnl-lE Ea_(k/,)
k-1 i-O

(3.14)

E n-IEyR_pjnl-1 .a_.-- R_Pjl

= R_Pj"l-1} E Y I,

where Y is a generic one-step random variable (recall that EY- 0 so EY
Similarly,

R_Pjo R
k=l

so since Y is integer-valued

pink- la

-EY+ -1/2EIYI).

n n EY_ n
It_ PjR_ R_ PjO Pr{Y < 0} = R_ P0E( Y Y < 0) >_ R_ Pj0" (3.16)

Coupling (3.16) with (3.8) implies that we may anticipate that (3.2) holds provided that we

identify fl as an ’average’ value of
pn.R ,R

i,n (j/n)Po "3,,E([ Y [Y < 0), (3.17)

which need not be < 1.

_pn. / n (SO, --flj, //’. n), forFigure 3 shows plots of {j,n} and Pj, n It .,R_ R_Pjo Pj, n n .,
the same distribution for Yn as in Figure 2. Note that for this distribution, E(IYI Y < 0)-
e-1/(1--2e -1) --1/(e--2)- 1.39221. The plot of the former ratios shows much the same
behavior as for the ratios in Figures 1 and 2. The latter indicates relatively little dependence on
either j or n, and that the p./, n are of the order of magnitude of the conditional expectation factor
at (3.16) without being equal to it.

We conclude this section with an aside, discussing an approximation that is relevant for
values of j and n where (3.2) may not hold. The difference between (3.2) and (3.4) lies in the
right-hand side: in the former there is a density (with respect to counting measure), while the
latter has a tail probability. Because both probabilities concern a large number of steps of a
random walk, we can appeal to both local and the usual central limit theorem. Using (I)(-) and
(-) for the distribution and density functions respectively of a standard Gaussian random
variable with zero mean and unit variance, and writing a for the standard deviation of the steps
of the random walk, the right-hand side of (3.4) is like 7j, n(j/n)(- j/ax), and, under further

-k ’ R pin1- 1pr{Y < 0}, (3.15)
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conditions, the right-hand side of (3.2) is like ’(j/n)o(j/rv/)/r/’. Mills’ ratio asserts that
for large positive x, x(- x)/,(z) 1, so (3.12) implies that for large j//-,

O" ( J ) 2 n (3.18)Tj, n -- \

7j, n. PjO"

This is not of the from (3.2), but neither should we expect it, because (2.7) and (3.4), in the
numerical cases we studied, hold in the sense that a and 3’ are ’average’ values of aj, n and 7j, n
that reflect these latter in the neighborhood of j- O(v/-), where j/ is not necessarily large.

4. Some Asymptotics

Write T for the first entrance time of {Xn} into {0, 1,...}, starting from X0 0.
it is true that

R POj -fi-Poj’

at least for n not small and j _< n. Then addition of each side over j gives

Suppose

(4.1)
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n o E(Xn;Xn > 0) -if" 1/2E( X, I) (4.2)Pr{T > n} E R_ POj ’ -ff
=1

and now appealing to the central limit theorem and using the fact that 1/2E(IZl) z/v fo
a normally distributed random variable Z with ero mean and standard deviation rz gives the
second approximation below from a2 vat(Y):

c a .r2-n ca (4.3)Pr{T > n} - E 1/21Xn ’ - .
Now from Theorem 3.5 of Spitzer [5], quoted at (2.1) of Iglehart [4] (but, we have not found it in
Spitzer [6]), the left-hand side here is asymptotically like

c where c- exp E 1/2-Pr{Xk > 0}
(4.4)

(as an aside, note from Proposition 18.8 of Spitzer [6] that for T’-the first entrance time of
{Xn} into {1,2,...}, Pr{T’ > n} 1/(cx/-)). Equation (4.3) with (4.4)implies that a can be
given in terms of c, namely

r (4.5)

Notice that this is indeed independent of n. Using the first approximation in (4.3) now gives

nErt pinPr{T > n} j 1 (4.6)n-lim anna where cn E{Xn; Xn > O) , :lPoj" n

j=l

leading to the data in Table 1 for Yn + 1 Poisson-distributed with mean 1. (The term for n c
comes from (4.4) used as described in Section 5.)

Comparison with part (a) of Proposition 18.5 of Spitzer [6] shows that our a is just the
reciprocal of the mean of the step-length of the upward random walk of ascending ladder steps of
{Xn}. This is exactly what follows from the discussion around (2.11).

Values of c%
TABLE 1

for Poisson distribution for steps

5 10 15 20 30 40 50 60 70 c
0.75660 0.73692 0.73486 0.73581 0.73508 0.73525 0.73535 0.73542 0.73547 0.73576

Inspection of the numerical value of a shown in Table 1 suggests that for this particular
random walk, this equals E(I Y I) 2e- 1 0.735759.

We have not been able to obtain similarly useful expressions for / and 3’ from the
approximations of (3.2) and (3.4). Summation over j of the variable quantities in the right-hand
sides yields closed form expressions in terms of the first and second moments of the positive parts
of Xn. Similar summation of the left-hand side yields only the tautology

E R_pjnR_ E Pr{Tj- n}
3=1
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where Tj denotes a r.v. for the time of first passage into It_ of a random walk starting at j > 0.

5. Computational Notes

Using the asymptotics above as a guide, a practical route to the computation of c is to
evaluate

n 1_ Pr{Sk > O}
Cn E 2 (51)k

k=l

and, assuming the power series representation below holds, to write

1

Cn CWn- (a ++O(n-2)) (5.2)

for some constants a and b.
considering

Then we can improve on Cn as an approximation to Co -c by

3 b_O(n-5/2),Co,n 2C4n Cn Coo --"n
and neglecting terms that are 0(n-3/2). Even better is to neglect terms only after n

yielding

(5.3)

-3/2

C(2) 8C’4n C’n C+ O(n 5/2). (5.4)

In the case of the Poisson distribution with mean 1 (i.e., the same example as underlies
Figure 1), using Fortran 77 double precision arithmetic and evaluating the sum in the exponent of
(4.4), gives e.g., C256 -0.620219, C64-0.587238, so Coo, 64 =0.65320. Further computation
shows convergence of the improvement towards 0.653380 before underflow errors start influencing
the computation. From this one would have a 0.735793. The second of the improvements
converges and stabilizes (to six significant figures) to 0.653426 and hence c .. 0.735759, for n

between 528 and 752 before underflow errors have any influence.

For the same example, computing a directly gives values of (j,n as sketched in Figure 1 for
n- 10, 40, all normalized so as to be plotted against j/v/. Table 1 lists values of an that come

from using (4.6) with these computations.
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