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ABSTRACT

We prove the existence of a continuous selection of the multivalued map
a-(I)() which is the set of all mild solutions of the evolution inclusion

&(t) E Ax(t) + F(t, x(t)) + / h(t- s)g(x(s))ds
0

(o)

Here F is a multivalued map, Lipschitzian with respect to x, and A is the
infinitesimal generator of a C0-semigroup.
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1. Introduction

According to a generally accepted terminology in the theory of differential equations, an

initial value problern, whose solutions exist, are unique and depend continuously on the initial

data, is called well posed. For problems lacking uniqueness, (i.e., those for which any solution

through a point, can be embedded in a continuous, single valued family of solutions depending on

the initial point) can be considered as the natural extension of the well posedness.

The existence of a continuous map x, such that xo is a solution of the Cauchy problem

e

where F is a nonempty set-valued function, .Lipschitzian with respect to x, was proved first by
Cellina in [4]. Then, the same problem for a differential inclusion with Lipschitzian right-hand
side defined on an open set, was studied by several authors [3, 4, 6, 7]. Well posedness for a

differential inclusion on closed sets was proved in [5]. A continuous function f:XY is said to

be a continuous selection of a multivalued map F’X2Y if f(x) F(X) for all x X.
Continuous selections exist due to continuous selection theorems. A detailed study of continuous

selection theorems is given in [2]. The existence of a continuous selection of the set-valued
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!c(t) Ax(t) + F(t,x(t)), x(O) ,
function --(), where (T) is the set of all mild solutions of the Cauchy problem is established
in [7, 9]. Here F is Lipschitzian with respect to x and A is the infinitesimal generator of a C0-
semigroup.

In this paper, we consider the evolution inclusion of the form

2(x) e Ax(t) + F(t, x(t)) + / h(t- s)g(x(s))ds,
0

x(O) , (1)

where F is a set-valued function and E X. We prove the existence of a continuous selection of
the set-valued function (I)(), where () is the set of all mild solutions of the Cauchy
problem (1), assuming that F is Lipschitzian with resect to x and A is the infinitesimal generator
of a C0-semigroup. This work was motivated by the existence of unique mild solution of the
evolution integrodifferential equation studied by Ahmed [1].

2. Prehminaries

Let T > 0, I [0, T] and denote the (r-algebra of all Lebesgue measurable subsets of I. Let
X be a real separable Banach space with the norm I1" II. Denote by %(X)the family of all
Borel subsets of X. For any subset ACX and xEX, we set d(x,A)=inf{]lx-yll:yA}.
Furthermore, for two closed bounded nonempty subsets A and B of X, we denote by h(A,B) the
Hausdorff distance from A to B, that is, h(A, B) max{sup d(x, B), sup d(y, A)}.

xEA yEB
Denote by C(I,X) the Banach space of all continuous functions x:I--,X endowed with the

norm II x II sup{ II x(t) I1" I} and by 1(I,X), the Banach space of all Bochner integrable
T

functions x: IX with norm 1] x II1 f ]] X(t)II dt. A subset K of 1(i, X) is called
0

decomposable if for every u and v in K and A L we have uRA + vRI A K, where bA stands
for the characteristic function of A. Denote by the family of all closed nonempty decomposable
subsets of 1(I, X).

Let X be a separable Banach space and {G(t):t > 0} C (X,X) be a strongly continuous

semigroup of bounded linear operators from X to X having infinitesimal generator A. Consider
the Cauchy problem (1) where E X and F’I x X2X is a set-valued function satisfying the
following hypotheses:

(i) F is the (R).%(X) measurable,
(ii) there exists k 1(I,R) such that h(F(t,x),F(t,y)) < k(t)II x- y II, for all

x,y X a.e. in I,
(iii) there exists # 1(I,R) such that d(0, F(t,0)) < #(t), I a.e.,
(iv) g:XX be a continuous function and there exists a constant C > 0 such that

Ilgfx) ll C(I+ Ilxll)and Ilgfx)-g(Y)ll CIIx-Yll,frallx, yX,
(v) h e 1(I,R) and there exists a constant H e 1(I,R) such that for each pair

T
s, e I with s < t, f h(r) dr f h(r) dr H.

s 0
of the Cauchy problemDefinition 1" A function x(. ,):I-X is called a mild solution

(1) if there exists f(. ,) 1(I,X) such that
(i) f(t,) F(t,x(t, )) for almost all I; and
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(ii)
r

x(t, 90) G(t)90 + f G(t r)f(r, 90)dr + f G(t r)( f h(r s)g(x(s, 90))as)dr)
0 0 0

for each E I.
We denote by (I)(90) the set of all mild solutions of (1).

Let S be a separable metric space. A set-valued function G:S--+2X is called lower
semicontinuous if the set {s E S: G(s) C C} is closed in S for any closed C C X. The following
two lemmas are used in the sequel.

Lemma 1:[7] Let F:IxS-+2X be L(R) %(S) measurable and lower semicontinuous in s.
Then, the function s--GF(S given by

GF(S {v e .l(I,X):v(t) e F(t,s) a.e. in I}

is lower semicontinuous from S into if and only if there exists a continuous function
#: S---+I(I,/) such that for every s S, #(s)(t) <_ d(O, F(t, s)) a.e. in I.

Lemma 2: [7] Consider a lower semicontinuous function G:S-D and assume that
p: S--LI(I, X) and q: S--LI(I, R) are continuous functions and for every s S the set

H(s) cl{u G(s): II u(t) p(s)(t) II q(s)(t) a.e. in I}

is nonempty.
selection.

Then the function H:S---D is lower semicontinuous, so it has a continuous

3. Well Posedness

Theorem 1: Let A be the infinitesimal generator of a Co-semigroup {G(t):t >_ 0} and let
the hypotheses (i)-(v) be satisfied. Then, there exists a function x(.,. ): I x X--X such that

(i) x(., 90) G (90) for every X; and
(ii) 90--x(., 90) is continuous from X into C(I,X).

Proof: Let M sup{ II a(t)I1: I}, and for 90 E X defined x0(. 90): I--+X by xo(t 90)=
G(t)90. Clearly 90--+x0(. 90) is continuous from X to C(I,X). For each 90 e X, let c(90): I-+R be
given by

()(t) #(t)/ (t)II o(t, ,)II,

Clearly, ct(. )is continuous from X to LI(I, R). Moreover, for each 90 e X,

d(O, r(t, xo(t, )) </(t) + t:(t)II o(t, )II ,()(t).

Let e > 0 be fixed, and for n G N, set en el2n + 1. Now define

Go" X--,2
(I’x) and Ho" X--+2

(1’X) by

Go()) {v .l(I,X)’v(t) F(t, Xo(t 90)) a.e. e I} and

Ho( c{ ao(): II (t)II ,()(t) / o a.e. I}

Clearly by Lemma 1, Go(. is lower semicontinuous from X into and H0(90 :fi 0 for each

90 E X, and, hence by Lemma 2, there exists a continuous function ho:X--1(I,X), which is a
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continuous selection of Ho(. ).
For each 90 E X, let 3(9)’IR be given by /(o)- HC(1 + II Xo(t,9)II )" Clearly, /(. )is

continuous from X to 1(I,R). Let K(t)-k(t)+CH and set m(t)-fK(v)dv. For n >_ 1,
0

define Fn: X--ZI(I,R) by

Set fo(t, ) ho()(t and go(x(t, )) g(xo(t )).
also continuous. Define

rn()(t) Mn / a((s))[m(t) m(s)]n- x

(n 1)!
ds

0

r(8)]n_+ Mn /3()(s)[rn(t)(n- 1)!
ds

0

n ei)[ 1-+ Mnt(E m(t)]n
(n )! e I.

i-O

Since x0(. ,T)is continuous, go(x(. ,))is

r

xl(t, ) G(t) + / G(t 7)fo(r, )dv + / G(t 7")( / h(r s)go(x(s, (fl))ds)d’, I.
0 0 0

Then, fo(t, qo) e F(t, xo(t p)), II fo( t, s) II -< ()(t) / o, and II go((t, )) II II g(o(t, ) II
_< C(1 + l[ xo(t, o)II ). For t I\{0) and by Fubini’s theorem,

II xl(t, )- xo(T, )II f II G(t- v)II ] fo(r, )II dr

0

+ f(f II G(t- v)II h(v- s)I dr)II go((, )II d
0 0

_< M / II f0(v, )II d + M / H II g(0(r, ))II d
0 0

_< M /(a(,)(r)+ co)dr + M / HC(1 + II o(, )II )d-
0 0

<_ M / a(q)(v)dv + MTeo + M //3()(r)dv < r(o)(t).
o 0

We claim that there exist three sequence {fn(" ,)}n e N’ {Xn(’’ 9)}n E N and {gn(X(., ))}, E N
such that for each n _> 1 the following conditions are satisfied.

(a)
()
(c)
(d)

--+fn(’, o)is continuous from X into 1(I,X),
fn(t, ) e F(t, xn(t, )) for each e X and a.e. I,
Ilfn( t,9)-fn-l(t,9)11 -<K(t)Fn()(t),
gi(x(.,qo)) g(xi(.,)) and gn(X(.,o))is continuous from X into C(X,X) for
i= 1,2,...,
II g(x(t, )) g l(x(t, )) II <- K(t)Fn()(t),
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(f) xn + l(t, 99) G(t)99 + f G(t- r)Sf(v,)dv / f a(t- r)( f h(r s).
o o 0

gn(x(s,99))ds)dr.

Suppose that we already constructed fl, f2," fn, Xl’ X2"" Xn and gl, g2,’" gn satisfying
(a)-(e). Define xn + 1(’, 99)" I---+X by

Xn + l(t, 99) a(t)99 q- / a(t- ,)fn(r,99)dr + / a(t- 7)(/h(r- s)gn(x(s,99))ds)dT.
0 0 0

Then, for t E I\{0}, we have that

0
u

/ / II G(t- )I1( / h(u- 8) II gn((, ))- gn-1((, ))II ds)du
0 0

< M / k(u)II xn(u, 99)- xn- (u, 99)II dtt

o

+ M /CH II (u,) l(U, 99) II d
0

(by Fubini’s theorem and making use of (iv) and (v))

< M / (k(u) + CH)II xn(u, 99) xn 1( tt, 99)II dtt

0

< M / g(u)rn(99)(u)du.
0

By making use of calculations provided in [2] we get

.()]II + 1( t, 99) Xn(t, 99)II Mn +
rt! dT

0

" / ()[ "
+ Mn + 1T(E ei)[m(t)]nn! + Mn + 1 (8) (t)--n!m(T)] dT

i-o 0

< r, + l()(t)

and d(fn(t,99),F(t, Xn+ l(t, 99)) _< k(t) II Xn+ 1(t,99)-Xn(t,99) II
<_ K(t) II Xn + l(t, 99)- Xn(t,99) I]

<_ K(t)r +
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Define Gn + 1" X---2"(I’X) and Hn + 1" X--2(I’X) by

Gn + {V e 1(I,X)’v(t) E F(t,xn + 1(t,99)) a.e. in I} and

Hn + cl{v e Gn + 1(99): II V(t) fn(t, 99)II <- K(t)Fn + 1(99)(t) a.e. in I}.

Again, by Lemma 1, Gn + 1(" is lower semicontinuous from S into and Hn + 1(99) is not
empty for each 99 G X. Hence, by Lemma 2 there exists hn + I" X-I(I, X) as a continuous
selection of Hn + 1(" )" Then, fn + l(t, 99) h, + 1(99)(t) satisfies the conditions (a)-(c). Also

Il gn+1(X(t,99))-gn(X(t,99)) ll II g(Xn+1(t,99))-g(Xn(t,99) 11_
C II Xn + 1( t, 9) Xn(t, 99)II

<_ K(t) II Xn + 1( t, 99)- Xn(t, 99)II

_< K(t)r +

Therefore, gn + satisfies (e) and (f) and since xn(. 99) is continuous, gn + (t, 99) is continuous.

Now,
T

II fn(’, 99) fn 1(’, 99) II 1 / II fn(u, 99) fn 1( tt, 99) II d
0

T

<_ / k(l,) II Xn(tt, 99) Xn 1(/t, 99)II du
0

T

5 f K()r()()d
0

_< f .()()[(T) -.()]"
0

[.(_t)]
i=0

T

-4- Mn f fl(99)(u)[re(T) m(u)]"
n! du

0

[M II K1 II in
n [ll ()II1 + II ()II1 + T].

Since 99---, II ()II1 and 99-- II (99)II1 are continuous it is locally bounded. Therefore,
{f,(’,99)}neN is a Cauchy sequence in 1(I,X). If f( 99) (_-- 1(I, X) is the limit of
{f,(", 99)} e N, then 99f(., 99)is continuous from X into 1(I, X).

Similarly,
T

II gn(X( ,99))- gn- l(X( ’99))II1 < / C II (,)- ,- 1(?/, 99)II d
0

T

<_ J K(u)r,(,)(u)du
o
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n (11 6t(90)II1 + II fl(90)111q-T()
and so, as previously, {gn(X(.,90)))nE N is a Cauchy sequence in C(X,X).
C(X,X) is its limit, then x(., 90)-+g(x(., o))is continuous from X into C(X,X).

On the other hand,
T

II Xn + 1(’, 0) Xn( 90) II oo -- / M II fn(u, 90) fn 1( tt’ 90) II d
0

T

+ MH j II gn(x(u, 90)) gn I(X( tt’ 90))II dtt
0

If g(x( 90)) e

<_ M II fn(u, 90) fn 1(t, 90) II 1 -- MH II gn(x(u, 90)) gn l(X(tt, 90)) II 1

T

_< M J [K(u) + CH] [I Xn(U, 90) Xn 1( tt, 90) II du
0

< [M II/t’l II ]
n! [M I] 0z(90)Ill + M I1/(90) Ill + MT].

Hence, {Xn(’,)}ne N is a Cauchy sequence in C(I,X). If x(.,) C(I,X)is its limit then it
follows that +x(-, )is continuous from X into C(I,X).

Since xn( ) converges to x(., ) uniformly, and d(Fn(t ), F(t, x(t, )))
(t) II Xn(t, )- (t, )II, the limit of a.subsequence {fnk}k N of {In}n e N converges pointwise

to f, so we obtain I(t, ) e F(t,x(t, )) for e X and e I a.e.

Furthermore, g(x(., )) converges to g(x(. ,)) uniformly, passing the limit in the condition

(f) we obtain

x(t, ) G(t) + j G(t v)f(v,
0

+ f a(t- ,)( f e
0 0

Therefore, x(., ) e () for every e X and the proof is complete.
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